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It is shown that the Schrédinger equation for the helium atom does not have a Frobenius-type solution

in the variables ry, r,, and ry;.

I. INTRODUCTION

In an attempt to detect the Lamb effect for the He atom,
Kinoshita! has extended Hylleraas’s solution to the wave
equation. Allowing for mass polarization and relativistic ef-
fects and a Lamb shift, he obtained a theoretical ionization
potential in good agreement with the best observed value.
His solution, like Fock’s solution,? satisfies the wave equa-
tion, whereas Hylleraas’s series does not. However, unlike
Fock’s solution, his solution is not defined at r;=r,=0.
Kinoshita showed that the wave equation has infinitely
many solutions® and emphasizes the importance of obtaign‘-

ing a suitable type of expansion. Earlier Bartlett, Gibbons,
and Dunn* showed that the wave equation has no power-
series solution. This implies that Kinoshita’s series (2.11)
has no solution satisfying / =m. Here, we prove a more
general result: that the wave equation has no solution of
Frobenius type.

II. THE FROBENIUS EXTENSION TO
THE HYLLERAAS EXPANSION

Bartlett et al. * showed that the wave equation
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has no power-series solution in the variables x =ry, y =r,, and z =ry,.

However, the Frobenius series
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with Co, 0,07 0, does give a formal solution, provided that, for ,m,n = —2,
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where I=!+L,m=m+M,n=n+N.
We now show that this system has no solution. Putting
(Lmn)=1(—-2,0,0), (0, —2,0), and (0,0, —2) yields

L(L+14+N)=M(M+1+N)

=NQN+2+L+M)=0 ,
so that

(LLM,N)=(0,0,0), (0,-1,0), (—-1,0,0) ,

I
or

(=1-N,—-1-NN) .

On putting (,m,n)=(—2,2, —2) and (2, —2, —2) this
reduces to (L,M,N)=(0,0,—-1) or (—1,—-1,0) or
(0, —1,0).

Putting (/,m,n) = (0,0, — 1) now yields a contradiction.

Hence, the wave equation does not have a Frobenius-type
solution.
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