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In treating a many-body system, the concept of correlation has been used by various authors to
calculate the interacting ground state. In particular, in the %'ong-Fung theory, the interacting
ground state is expressed in terms of the correlation operators and the noninteracting ground state.
Including pair (uz) and three-particle (u3) correlations, the wave function can be written as explicit
algebraic functions of uz and u3 and the noninteracting wave function [K. W. Wong et al. , Phys.
Rev. A. 22, 1272 (1980)]. On the other hand, the authors of the present paper have recently
developed a U-matrix theory [Phys. Rev. A 27, 1760 (1983)] to study general quantum-mechanical
problems. For a time-independent problem, we can use this theory to find an analytic solution for
the interacting wave function in terms of the potential functions of the system. A bridge between
the correlation functions and the potential functions is built by identifying the interacting wave
functions of the stated two theories to be the same quantity. Using the above idea, we are able to ex-
press the two-particle potential function Uz as a simple function of the pair correlation uz and a
"switching integral" I, which determines how the interaction Hamiltonian is switched on, to the
lowest order of approximation. Instead of using a model for uz, we obtain the explicit form of uz
through the neutron scattering data of Henshaw and the concept of radial distribution function gz.
It is interesting to note that this uz is not divergent at any point and is Fourier transformable. Then
we proceed to deduce the resulting two-particle potential function. The deduced two-particle poten-
tial is shown to be similar in form to the Lenard-Jones potential, with the same depth, a smaller
hard-core radius, and a softer core.

I. INTRODUCTION

The same authors have developed a new method of
solving general quantum-mechanical problems based on
the previous basic U-matrix formalism. The essential
ideas and steps of this new approach are: (i) We treat the
Schrodinger equation as an operator equation so that the
noncommutability properties of all operators involved are
taken into consideration. (ii) Previously, the U matrix
was written down as a multiple integral of the interaction
Hamiltonian, controlled by a proper time sequence. We
have been able to express the U matrix as one dominant
term plus an infinite series. (iii) We treat every problem
as a time-dependent one to begin with. The interaction
Hamiltonian is assumed to be switched on "suddenly" or
"gradually" in time for every problem. The particular na-
ture of the switch-on process is described by a switching
function S~. (iv) We define a time-independent problem
as one for which the total Hamiltonian remains constant
in time after the switch-on process is completed. For the
process where the agency of interaction has very high
speeds (like the exchange of photons in electromagnetic
interaction), we may use the sudden switching model to
turn on the interaction. We have discovered that for this
type of problem, the U matrix is exact, given only by the
dominant term stated in (ii). (v) For a more general prob-
lem where the Hamiltonian is still a function of time after
the switch-on process is completed, we have shown that
we can solve for the wave function approximately, in gen-
eral. However, for a class of Hamiltonians which satisfy
certain operator conditions, our solution for the U matrix

and hence the wave function is still exact. In this paper,
based on our approach and the Wong-Fung theory of
many-body problems we are able to build a bridge be-
tween the concepts of correlation and interaction, at least
to the lowest order of approximation, which have been
treated practically as two somewhat "independent" enti-
ties in the past.

For the past two decades, the correlated-basis-function
(CBF) method is developed to describe the state of a
many-body system using correlation functions. For exam-
ple, the pair correlation describes how the particles corre-
late themselves in space due to two-particle interaction.
Combining the CBF method and the canonical transfor-
mation approach, Wong and Fung have proposed a
method with which the exact ground-state wave function
including interaction is expressible in terms of the nonin-
teracting ground-state wave function

~
$0) by operating a

function of the correlation operators Q2, Q3 ~ on
~
P(j).

After the stated operation, the interacting wave function
is expressible in principle as an algebraic function of the
multiparticle correlation functions u 2, u 3,u 4, . . . . In
practice, using the %'ong-Fung theory, one can express the
three-particle correlation function us in terms of the pair
correlation u2 explicitly to a high degree of accuracy.
Now the pair correlation function u2(r&z) is simply relat-
ed to the radial distribution function g2(r&2 ——

~
r, —r2

~
)

which describes the probability of finding one particle in
position r& if another particle is in position rz. Since
g2(r&2) is related to the liquid-structure function S(k),
where k is the momentum, and S(k) is deducible from
experimental result, ' one can start from experimental
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evidence and deduce quantities like the momentum distri-
bution function using the Wong-Fung theory, including
effects of pair and three-particle correlations. ' However,
whenever the Hamiltonian begins to be involved, as in the
calculation of ground-state energy and excitation spec-
trum, a model potential function has to be employed. In
the study of liquid helium both the spherical shell
model' ' and the Lennard-Jones potential' have been
used to calculate the ground-state energy. Thus the corre-
lation function and the potential function are treated as
two unrelated (in the explicit sense) functions. We would
emphasize that for a neutral system where long-range
Coulomb interaction can be neglected, it is precisely the
characteristics of the potential around each particle which
determine what state a multiparticle system would settle
in at the end of the transient interaction period. The
above statement is particularly true for a dense system
like the liquid-helium system. Thus the wave function
given by the Wong-Fung theory describes the "end result"
of interaction.

The main aim of this paper is to establish an explicit re-
lationship between the correlation function and the in-
teraction potential function. As a concrete example we
apply our concept and theory to study a liquid-helium
system at very low temperatures. It is interesting to note
that, starting from experimental data on the liquid-
structure function, we deduce a two-particle potential
which is very close to the Lennard-Jones potential in
form, but with a softer core and a smaller core radius—
this result is not at all surprising if we understand the
meaning of correlation and interaction as briefly sketched

above. In our deduction we need to use the uncertainty
principle and a certain model to specify the "characteris-
tic interaction length" due to phonons interaction. At this
point we can only claim that we have roughly obtained
the two-particle potential, due to unknown information of
the switching process. Our result, however, seems to be
consistent with the experimental measurement of the pho-
non speed in a liquid-helium system.

II. SERIES EXPANSION OF THE MANY-BODY
POTENTIAL OPERATOR

u(t) = g v„(t),
8=2

(2.1)

where u„(t) denotes the n-particle interaction operator.
If P'( x;(t) ) and g( x;(t) ) represent, respectively, the

creation and annihilation field operator for a particle in
position x;, we may write the interaction potential opera-
tor u„(t) in the following form:

In order to avoid repetition, we omit the formalism and
foundations of the U-matrix theory developed in Ref. 1,
but list only relevant results, using the same symbols,
which have not been stated. Readers are asked to treat
this paper as a continuation after Sec. IV of Ref. 1. To
simplify notation we add "I"in front of an equation to in-
dicate that it is the equation of Ref. 1.

Consider a general interacting N-body system. We as-
sume that the interaction potential operator v(t) [in (I2.2)]
is expressible in the additive form

1 r J &*[x (t)]0*[xj(t)]v2(
I

xl —xJ ~;t)y[x, (t)]y[x;(t)]d'x, d'xj,
l (j

1 &*[""t(')]&'[ J(t)N"fxk(t)]v3(x;, x xk, t)p[xk(t)]y[x (t)]y[x, (t)]d'x d'x. d x' i (j(k
(2.2)

u„(t)= 1
X

l ] (l2 (l3 ' ' (i~
Xi txi t UgXi yXi p ~ ~ ~ pXi pl Xi

Xg[x; (t)]P[x;,(t)]g[x;,(t)]d x; d3x, d

where u2(
~

x& —x2 ~;t),u3(xj xp x3 t), . . . , v„(x;,,
x;, . . . , x;;t) are the two-body, three-body, . . . , and n

body interaction potential functions, respectively. In (2.2)
the spin index has been omitted for simplicity. Note that
even though the general form of u„(t) is similar to that of
the correlation operator Q„ in the Wong-Fung theory,
they are, in general, different and arise from explicitly dif-
ferent mathematical sources; in fact, it is the purpose of
this paper to find an explicit relationship between them.
Now in a many-body system, the termination operators in
the U-matrix theory become [see (I3.3)]

N N
I ((t) = Hp, g u„(t) = g I ((n, t),

lg =2

I 2(t) =[Hp, l'&(t)]= g I 2(n, t),
8=2

I,(t) = g I „(n,t),

where

(2.3)
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I (n t)=[Ho [Ho. . ~ [Ho u (t)]] ' ' ' ] (2.4)

with [Ho, [Hp, . . . , [Hp representing an r-fold nesting of
the commutators, so that in view of (2.3), (I2.7) and (I3.2)
appear as

i' =S (t)[Ta,u(t)]q'(t),d+(t) (3.2)

It is easy to see that from (I2.9) and (I2.7) the Schrodinger
equation in the interaction picture becomes

P

V(t)= g u„(t)+ g, 1„(n,t)
n=2 i=1

(2.5)
where

(3.3)

=u„(t)+ g, I „(n,t) .(it /fi)'

r=1
(2.6)

The expressions derived in this section will be used later
in calculating the wave function.

Substituting (2.2) into (I2.7) and comparing the result with
(2.11), we arrive at

V~
( )

iapilii
( )

iapi la

in which 4(t) is the time-dependent wave function of the
system in the Schrodinger picture and %(t) is obviously
the wave function in the interaction picture.

We have already found' the solution to (3.2),

4(t)= U(t, t, )4(tp),

where

III. RELATING THE WONG-FUNG CORRELATION
OPERATOR Q„TO THE INTERACTION

HAMILTONIAN OPERATOR 0'„(0)
and

U(t, t, )=exp ——f, S (t')[Ta u(t')]dt' +A(t, to)

(3.5)

A. Interacting ground state obtained via
the U-matrix theory

We first introduce the transformation operator

iapil» iapils—
0

(3.1)
I

1 n 2

b(t, to)= g, g (r+1)![U (ti, t )p]" '+ 'B„(t,tp),
n=2 r=O

(3.6)

while

J t) t.
B„(t,tp)= y —— f dtiHi(ti) f, dt2H, (t2)x x f dtf+i A(tJ+i, to)U„J(tJ+„to)'0 0 0

(3.7)

with

and

t.j+1
A(t&+i, tp)= f dtg+2Hi(ti+2) Hi(ti+i)

0

Hi (tq+ i) —H, (t)+2)dt's+2, (3.8)
tp

(3.9)

U (t tp)= — f dt Hi(t )U i(t' tp)

—iHot/A=e

—iHot/fi '

=e

exP ——,S t TH U t'dt'

+b (t to) e 4(tp)

N

exp ——g g„(t,tp)
n=2

+5(t t'p) e @(tp) (3.10)
with Up(t', tp)=1. Then the explicit form of the wave
function @(t) in the Schrodinger picture is, using the ex-
plicit expressions of I, which have been given previously, while

g„(t,t, )= S (t') u"„(t')+ g, 1„(n,t') dt'.( it '/iri)"

0 r~
(3.11)

We now express (3.10) as

—iHpt/A iH pt/fl —iHp(t —tp)/ffN(t)=e exp ——g g„(t,tp) +b,(t, tp) e e ' @(to)
n =2

and we write the term involving b, (t, to) as

(3.12)
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where

iH—oi/A~ iHoi/A iH—O{t i—o'i/h ( —it /jri) ~, iH—O(t to)—/h

srs=0
(3.13)

~,{t,to) =~ao, Z(t, to) j, . (3.14)

If Eo is the eigenvalue of Ho, we can substitute (3.13) and (3.14) into (3.12), giving

iEO(t—to)—/ii i ~ iHot/—A~ iHot/I ~ ( —it/$) y.
A. =,

'
s=0 st

(3.15a)

making use of the fact that

—iHot/fi iHot/A i iHot/—A iHot/fi
e exp —— g„(t,to) e =exp —— e g„ t, to en

n=2
(3.15b)

Now, we treat the He system as a time-independent system, so we need only to know the solution of the Schrodinger

equation up to the time t=0. So the wave function is

4(0)= e exp ——g g„(0, b) +6—(0, b) 4'( —b)— (3.16)

when the perturbative Hamiltonian is suddenly turned on.
Then

C&(0) = e
—iEob/fi l

exp ——g g„(0, b) 4( ——&)
n=2

(3.17a)

is the exact form of the wave function of the system, since
b(0, —b) =0.

%hen the switching process is not exactly sudden, as in
the case of a liquid-helium system where interaction is
due to exchange of phonons, b(0, b) in (3.—16) is not
equal to zero. However, for a weak perturbing Hamiltoni-
an operator U(t) in the Schrodinger picture, the contribu-

tion b, (0, —b) to U(0, b) is very sm—all, and we can take
the wave function to be

B. Relation between WF correlation operator Q„
and interaction operator P'„(0)

Q=Q2+Q3+ . . +Q~= g Q. (3.20)

%e now turn to joining our U-matrix theory to the
Wong-Fung theory. The first postulate of the WF theory
states that the interacting ground state of the many-boson
system is obtainable from the noninteracting ground state

I Po ) via the operation of exp {Q ):

I
@o&=~e~

I ko& (3.19)

where Q is the total n-particle correlation operator, ex-
pressible in the additive form

4(0)=e exp ——g g„(0, b) 4( b) .— —
n=2

(3.17b)

0
g„(0, b) = f S~(t)—dt

l—0

X U„(0)+ g ', ' I „(n,O)
r=1

=U„(0)f S (t)dt, (3.18)

where g is a positive number satisfying 0 & g & b

Based on definition (3.11), we obtain using the mean value

theorem

Q, = —,g f u, (r,, =
I
x, —x, I)q*(x, )q'(x, )

i (J

Xg(x;)g(x;)d'x; d'x, . {3.21)

Similar expressions can be written for Q3, Q4, . . . , where
u2 is the two-particle correlation function in the coordi-
nate space. Obviously, iT/* and g are, respectively, the
usual creation and destruction free-boson field operators.

In a many-body system the particles distribute space-
wise and momentumwise in a certain way, as we observe.
The main cause of such a distribution is due to the
behavior of each particle in the presence of the potential
field and other fields (such as the long-range order elec-
tromagnetic field). In an electrically neutral, dense system
like liquid helium, we expect the influence of the potential
field of the particles on one another controls how the sys-
tem would distribute in the way stated. In the presence of
the fields due to other partiCle, the particles arrange
themselves until a steady state is reached. In the language
of the correlated-basis-function method, the wave func-
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We would emphasize again that although (3.21) is similar
in «rm to (2.2), uz (etc.) cannot be directly taken to be
identical to Qz (etc.). The weighting function in uz is
uz(r J;t) which is one term of the perturbative Hamiltoni-
an, while the weighting function in Qz in u z(r;.2 2 lJ=

I
x; —xj I

) is a two-particle correlation function —it
measures indirectly the probability of finding one particle
in xj while the other is in x;. Combining (3.17b) and
(3.19), we arrive at the following identifications:

—iEob/Ae (3.23)
N N

Q= g Q, = ——g g„(0,—b) .
n=2 ~ n=2

Substituting (3.18) back into (3.24),

(3.24)

0
Q„=——g„(o,—b)= ——„u„(0)f S (t)dt . (3.25)

Comparing (3.21) and (3.25), we obtain right away
~ t 0

uz(rj)= —— f S~(t)dt uz(rq, O) . (3.26)

tion of a many-body problem is described or obtainable
from the knowledge of the correlation function, of all or-
ders in general. The "interacting wave function" of the
CBF method is a description of the system after the
steady state is reached. On the other hand, using the U-

matrix formalism, the interacting potentials of various or-
ders are turned on by a switching process. If this switch-

ing process bears a close resemblance to the transient
behavior of the particles in their distributing towards the
steady state, then the interacting wave functions of the
Kong-Fung theory and the Lam-Fung theory are two de-

finite, identical quantities. Under such a condition we can
identify (3.17b) with (3.19), namely,

@(O)=—
I
4&0),

(3.22)

Similar expressions can be established between the
higher-order relevant functions.

IV. BRIDGE BETWEEN THE PAIR-CORRELATION
FUNCTION AND THE TWO-PARTICLE POTENTIAL

FUNCTION OF A LIQUID-HELIUM SYSTEM

Based on x-ray and neutron scattering experi-
ments ' ' we can obtain a rather accurate plot of the
liquid-structure function Sz(k) in momentum space. In
this investigation, we base our study on the neutron
scattering experiment of Henshaw. ' As the incident
beam is very narrow and the scattered beam has a rather
definite direction, we can take that the scattering process
results mainly from two-particle interaction. In other
words, to the lowest order of approximation, we assume
that what was measured was the two-particle liquid-

structure function Sz(k), which is related to the radial
distribution function gz(r ) by' '

Sz(k) —l=p f d re'"''[gz(r) —1], (4.1)

where p is the number density of the liquid-helium sys-
tem. After an inverse Fourier transform, we obtain

d'k
gz(r)=1+ —f e '"''[Sz(k) —1] .

p (2n-)'
(4.2)

The form of gz(r ) is rather well known and we show in
Fig. 1 such a plot, where the radial distance is treated as a
scalar, normalized by the unit 0.=2.556)&10 ' m, which
is the radial distance at which the Lennard-Jones potential
is zero. As gz(r) is to be related to the pair correlation
function uz(r) while uz(r) and uz(r) are already approxi-
mately related, the gz(r) rgraph —is considered to be the
experimental data.

We shall use curve-fitting techniques to find a represen-
tative expression for gz(r). We first carry out a Laplace
transform L on gz(G =I.gz ) and express 6 as a series of
resonance terms. Then we take an inverse transform of
6, arriving at

r+r0 r r=I +a aiz+
CT 0

—7
r

exp ' —CX11 &12+ 0'

' —12
r

&12+
0

(4.3)

where
—a&rl (r) = 1+a—aoe —[az sin(air)+a4cos(air)]

&&e
' +a6re ' +asr e (44)

and the coefficients a,ao, ai, . . . are given by set B of
Table I as an example. As g, =0 for r & ro, in order to fit
the experimental curve, the variable of g, is (r+ro)lo.
where 0 is the normalization constant.

We would remark that the BDJ type of trial wave func-
tion for a many-boson system including only pair correla-
tion is expressed as

N
4( r i, rz, . . . , r~ )= Q exp[ ,' u (rj )]—

=exp —,
' g u(r,J)

l (J
(4.5)

This form of the interacting wave function is shown to be
true for a many-boson system if only pair correlation is
considered. In view of the fact that the radial distribu-
tion function is defined' as
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TABLE I. Parameters for fitting the radial distribution func-
tion.

).0-

0.5-

QX

SET A x

SKT 8 o

Parameters

ap
a)
a2
a3
a4
a5
a6

as
a9
aio

aiz
rp/0'
5fo.

1.720 45 )& 10
0.35
5.443 31
0.87

288
0.65
1.4636
0.425
4.00
4.5
4.8

—0.26
4.0
0.759 63
0.6625
0.097 13

Set 8
2.646 84' 10-"
0.35
8.855 729
0.66

279
0.65
1.3395
0.425
3.75
4.5
4.5

—0.40
4.0
0.759 63
0.6425
0.117 13

FIG. 1. Variation of the radial distribution function g2(r fcr)
as a function of r/cr. The solid line indicates the neutron
scattering experimental result of Henshaw (Ref. 12). %e fit this
curve by the stated curve-fitting techniques and two sets of coef-
ficients from Table I: set 3, )&; set 8, O.

where f(riz/o)is a.n algebraic function. In our analysis
we have used g, (r/o) to represent gz(r/cr). Clearly, to
the order of approximation used in the curve-fitting pro-
cess, inspection of (4.3) and (4.6a) gives

g2(r12 I
rl r2

I
) u2(r/0') = —aii ' 12 6

(4.6a)

it is easy to see from (4.5) and (4.6a) that we can write
g2(ri2) as

r —rof(r /a) =e((r —ro)/o)go

a, i ——4.0 (4.7)

(4.8)

u, (r „y~)
gt( l r/2)oe f (r12/o) (4.6b) in which

go(r/o)= l(r/cr)+a a,2+

—7
r

exp —+11 +12+-
F7

' —12
r

&12+
0

)(exp n1&
r

a12+
0

12
r

&12+ 0'

(4.9)

and the parameter 6 is given by

6/cr =a12—ro/o-,

while e is a step function, defined by

1 for r ) ro
e((r —ro)/o ) =

0 for r &ro

(4.10)

(4.1 1)

ao, ai, . . . (like set B in Table I) for a good fitting of
g2(r/o), we arrive at an explicit expression uz as a func-
tion of r, given by (4.7). In Fig. 2 we also plot the func-
tion f(r/o) versus r/cr.

V. S%'ITCHING PROCESS
AND THE TWO-PARTICLE POTENTIAL FUNCTION

in order to take care of the fact that the radial distribution
function deduced experimentally starts from r/o =ro/o
(Fig. 2). Thus once we find a set of parameters a,

We now need to specify the integral
0I = f S„(r)chN (5.1)
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In other words, ui(rj) must be equal to the u2(rj ) given
in the Eq. (4.6b). Therefore uz(r~/) and v2(r~;0) differ
generally by a negative sign, apart from a certain shift in
scale, which we know is due to the contribution of the
switching integral (5.1)

2.0-
1

u2(r J ) = —— S (t)dt v2(r J ), (5.2)
b

cv

4S

1.0- 0.5

r, /e = 0.64
2.0

I

3.0

FIG. 2. Features of the functions exp[uz(r/o)] and f(rlcr)
u2 is given by (4.7). Note that expu2 ——0 when r =ra. In fact
expu2 is very close to zero for ro & r & 0.785.

in Eq. (3.26) before we can deduce our potential v2 as a fi-
nal goal of this investigation.

In analyzing relation (3.26) we notice that the ima-
ginary number i appears. If we express u2(r;J ) as the sum
of the real and imaginary parts, then the real part van-
ishes and the imaginary part

1
ut(r J ) = —— S (t)dt v2(r J;0) .

bS (t) =exp —y —1b+t (5.3)

where ( —b) refers to the time when the interaction Ham-
iltonian starts to be introduced and y is a parameter speci-
fying the gradual degree of switching to be determined
later. In Fig. 3 we show that variation of S„(t) as a func-
tion of normalized time t lb, for y is either large or small,
the switching process becomes more "sudden. "

Based on (5.3), (5.1) has the explicit form

where the zero in vz(r;~;0) has been omitted for simplici-
ty.

For numerical evaluation, we propose a model for the
switching function S„(t). In the spirit of the new U-

matrix theory, the switching function introduces the in-
teraction Hamiltonian in a certain time interval (which
could be zero, if the switching process is sudden). Sup-
pose we express S (t) as a "gradual model" first, and let
other physical conditions decide the more specific nature
of the switching process. More precisely, we propose to
write S (t) as

I(b, g, y ) =b (b —g')exp ——y b —g
+byer ln + Q ( —y)"+b —g 1

b „& nfn

n

(5.4)

In view of (4.7) we plot u2(r) as function of r (Fig. 4) in
units of the parameter cr, which represents the value of r
at which the Lennard-Jones potential is just zero, so that
the dotted line crosses the r axis at the value 1o. Now, we
need to consider some subtle physical ideas before we can
calculate I. First, we note that the potential function
vq ———(A'/I)uq. The correlation function is dimension-
less, while the integral I has the dimension of time. For

1.0

-1 -0.5 0

t/b
FIG. 3. The variation of the switching function S (t) as a

function of normalized time t/b, for (a) y =3.0, (b) y =2.164,
and (c) y = 1.0.

I

convenience in discussion, we normalize the integral I by
the SI (Systeme Internationale) value of R, but in seconds;
namely, we set I=1.0546X10 s so that Uz ———uz. Us-
ing such a value of I, we plot in Fig. 4 the potential func-
tion v2 versus r (in units of o ). We would emphasize that
whatever value of I we come to later, it only affects the
scale of v2, but does not affect the points where vz is
minimum or when Uz is zero. In our deduced potential
function, the minimum of v2, or its depth, is specified by
rlcr=1.005, corresponding to OP in Fig. 5. For vz ——0,
r/cr=dh, lo =1—6/o =0.883 [see Eq. (4.7) and Table I
for value of b,j. We have used the subscript hc to indicate
that dh, can be taken to represent the hard-core diameter.
The absolute value of the hard-core radius deduced here is
rhc = 1.1282 A

Now consider a helium atom at 0 as shown in Fig. 5.
When another helium atom is in the vicinity of the poten-
tial of the first atom it experiences a force. We assume
that the interaction among two atoms can be described by
phonon interaction between the centers of the atoms. In
other words, we take the view that if a phonon travels
with the speed Ug in the liquid-helium system, the time
taken for an atom to receive a "complete message" of in-
teraction is given by t =R/Ug, where R is the center-to-
center distance.
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Vg

(5.5)

For convenience of quantitative analysis we transform
the time parameter b [in Eq. (5.3)] according to

b
Le

20

1.0

E =1.411x10 J

and the characteristic time scale g in (5.4) according to

Vg

(5.6)
1.0 2.0 4.0

so that

I= S~ t t=a, ,y (5.7)

where p, g, and y are all dimensionless parameters, and

FIG. 5. Schematic representation of the interaction between

two helium atoms, in which the two-particle potential function

u2 has been normalized, i.e., v2 ———u2, where u2 is expressed in

units of J.

a(p, g, y) =p —(p —g)exp —y p
+yper ln + g ( —y)" 1—n

p „,n!n p —g

n

(5.8)
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FICr. 4. Variation of the pair correlation function u2(r/o. )

and the normalized two-particle potential u2(r /o. )

with normalized radial distance r /o. Here
m=2. 556X 10 ' m. u2 is given by Eq. (4.7) and
u2 ———u2(A/I)= —u2, where the integral I is taken to be
1.0546X10 s. For comparison, the normalized Lennard-
Jones potential v~/e is also plotted ——— with
&=1.411X10-"J.

Thus a(cr/Us) represents the time taken by a phonon to
travel a distance acr In F. ig. 5, when p=3, we assume
that the "test atom" at Q begins to "feel" the interaction
due to the atom at the origin. ' As the potential is attrac-
tive until v2 ——0, the test atom approaches towards 0.
When the center of the test atom is at dh, /cr, the "hard
cores" of the two atoms touch. Then the second atom
will be pushed back due to the repulsive force. The
second atom will oscillate in the potential well and even-
tually arrives at an equilibrium position, where the center
coincides with the point I'. In describing phonon interac-
tion, we do not assume, of course, that the phonon "passes
through" the helium atom to its center, but we take the
physical picture that it takes time for an atom to absorb a
phonon and vibrates as it does so, and a rough estimation
of the center-to-center interaction time is given by

= 1.005
Vg Vg

(5.9)

To have an idea of how the function a(p, g, y) in (5.7)
behaves with respect to the dimensionless parameter p, we
plot the a-p graph for three values of y=1.0, 1.868 and
3.0 in Fig. 6(a) using our potential Uz

———(A'/I)u2. For
comparison we also plot the a-p graph Fig. 6(b) using the
Lennard-Jones potential. Note that when the potential
model changes, the value of g changes accordingly. Using
our potential, /=1.005(o/Us), while using the Lennard-
Jones potential, g = 1.1225(o./ug ).

Suppose before interaction, the system has energy Eo.
According to the uncertainty principle in quantum
mechanics, if we take the measurement of energy of a
quantum system in a time interval At =a(cr/vc} [see
(5.7)], then the uncertainty in the measurement of energy
of the final state (namely, the state including interaction)
of the system would be b,E=EO+e Eo e, where e- ——
represents the depth of the potential well. While we need
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1.0-

h

0.5-

V= 1.0

V-1.$61

(o)

V2(r/CT) =— uz(r/o )
fi

a 0/Us

already estimated a above, we can plot a graph of a
versus y in Fig. 7(a) for our potential. From Figs. 7(a)
and 7(b), we estimate that the value of y for our potential
is 1.868 and that for the Lennard-Jones potential it is
2.164, respectively.

Finally, in view of relation (4.7) and (5.2), the deduced
potential is given by

=4.0Xe r+6 12 —6

(5.12)

10-

A comparison of our deduced potential to the Lennard-
Jones potential is given in Fig. 4. It is interesting to note
that these two potential functions have similar forms, and
they differ only in the small-r range. The normalized
depth of our "deduced" potential is also the same as that
of the Lennard-Jones potential. There are two more in-
teresting features: our potential is softer and it does not
diverge at r=0 The l.ast feature enables us to carry out
Fourier transformation on u2 (and also u2), and such a

0.100

k k I I

10 20

FICx. 6. (a) A plot of a(P, (,y) vs P for our deduced two-

particle potential function and some different values of the pa-
rameter y as indicated. (b) A plot of a(P, g, y) vs P for the
Lennard-Jones potential function and some different values of
the parameter y.

the value of the switching integral I to find the depth of
our potential well, we, however, need the value of e to
evaluate I. For the purpose of estimation, e is taken ten-
tatively to be that of the Lennard-Jones potential. The
"deduced" depth can then be compared to the ad hoc es-

timated depth afterwards. Thus we take

DE=a=1.411&10 J,
Ug

——237 ms —'.
By the uncertainty principle,

AEht &4

~ 9.$93

)) 0.680

ll
cQ

0.680
1.80

0.700

~ 0.690

II

tl

1.868
I S

1.80

or

ea
0'

Ug

(5.10)
9689 ~ -. . . . !

2.10 2.12 2.14 2.16 2.18 2.20

Taking the lower bound, we get

a=0.6930 . (5.11)

So far we have taking y as a parameter. Since we have

FIG. 7. (a) The variation of a(P=3, g, y) vs y for our de-
duced two-particle potential function. From this figure we ob-
tain y=1.868, which corresponds to +=0.6930. {b) The varia-
tion of a(P=3,(,y) vs y for the Lennard-Jones potential func-
tion. From this figure a=0.6930 corresponds to y =2.164.
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procedure is important in analyzing a dense helium sys-
tem.

VI. CONCLUSION

In this investigation we have applied the U-matrix
theory to a many-boson system, and established the
correspondency between the correlation functions and the
interaction potential functions. We would like to remark
on the following main features of our study.

(1) We consider that in a neutral dense system like a
liquid-helium system, the characteristics of the potential
around each particle determine what a physical state the
many-body system would correlate and settle in after a
transient period of interaction. Based on this basic con-
cept, the interaction wave function of a many-body sys-
tem resulting from our new U-matrix theory is identified
as the same wave function, including effects of correla-
tions in the Song-Fung many-body theory. Consequent-

ly, we have found that the pair correlation operator g2
and pair correlation function u2(r, J ) are simply related to
the two-particle interaction potential operator vz(t) and
two-particle potential function v2(r J', t), respectively, by

Qz = — g2(—0, b)—

a)) ——4.0 .

Here we would note two significant aspects of this u2.
(i) Our deduced pair correlation function gives the same

asymptotic approach as that of the pair correlation func-
tion model previously used for r +c—o. However, for
r +0, o—ur pair correlation function tends to a very large
negative value, but still finite, whereas the previous
models tend to infinity. This last property of our pair
correlation function makes it Fourier transformable.

(ii) The form of our deduced pair correlation function is
rather similar to that used in Refs. 26 and 27, but reverse
in s1gn.

(3) We have proposed a model for the switching pro-
cess, described by

S~(t)=exp —y —1b+t

where y is a parameter specifying the gradual degree of
switching on the interaction Hamiltonian, and ( —b )

refers to the time when the interaction starts to be intro-
duced. The effective integral of the switching function
S~(t), i.e.,

I= f S (t)dt

~ r 0f S (t)dt v2(0)

and

0
uz(r, J ) = —— S~(t)dt vq(r, j ),

u2(r/cr) = —a»
—12 ' —6

where

where ( —b) specifies the "starting time" of the interac-
tion and g is a characteristic time parameter for the two-
particle interaction potential.

(2) Based on experimental data on the liquid-structure
function S(k) and an inverse Fourier transform of S(k),
one can obtain the experimental two-particle radial distri-
bution function g2(r). In order to facilitate a more
thorough investigation, we have used curve-fitting tech-
niques to deduce a mathematical expression [namely,
g, (r)] to represent g2(r). According to the definition of
g2(r) given in (4.6a), and the form of the Wong-Fung
wave function including only pair correlation (to this or-
der, this is identical to the BDJ trial wave function) given
in (4.5), we know that gz(r) can be written in the form

g2(rla)=e ' ~f(rlcT) .

Comparing g, (r/o) with g2(r/o), we deduce that the pair
correlation function has the form

0
exp —y —1 dt

serves as a bridge between the interaction-potential func-
tion and the correlation function. We assume, as an esti-
mate that the test particle begins to be influenced by the
source particle when the center-to-center distance is 3',
implying that we have to take 13=3.0 in (5.5). Conse-
quently, the parameter b in the switching integral is
b =Per/vz.

The distance between the origin and the point corre-
sponding to the minimum of the potential is
g=OI'/o = 1.005 (Fig. 6). Taking the uncertainty in ener-

gy measurement to be equal to e, the depth of the LJ po-
tential as an estimate, we have determined the function
a(P=3,/=1.005,y) in (5.10) which is 0.693. Then we
have found out that for a=0.693, @=1.868. We have
thus specified all the parameters in the switching process.
We would emphasize that if we only know the value of in-
tegral I, we can determine the depth of the potential.
Therefore we can use our deduced pair correlation func-
tion to find the two-particle interaction potential, which
has been shown to be similar in form to that of the
Lennard-Jones potential, has the same depth e.

It is interesting to remark, however, that the hard-core
diameter according to the deduced potential is
dh, ——2rh, ——0.8836=2.257 A, slightly smaller than that
obtained from the Lennard-Jones potential, which is equal
to dh, (LJ)=1o.=2.556 A.

(4) It appears that the U-matrix theory works in a
many-boson system as well. Previously, different models
for the pair correlation function and the potential func-
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tion have to be used separately in order to calculate the
relevant physical quantities. It seems that correlation
functions and the potential functions were treated as if
ar' ing from different physical sources in the past. The

application of U-matrix theory reported here appears to
indicate that we have opened the door for the study of po-
tential function around a particle much more directly.
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