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Coalescent resonances in atom-surface collisions
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In atom-surface collisions, there are pairs of resonances which merge into a single resonance for
special values of initial parameters of atomic beam. They display an unusual broadening effect
when they are close to each other. In this paper we describe some of their properties based upon a
model example.

I. INTRODUCTION

Resonances in atom-surface collisions have been
thoroughly studied because they give very accurate infor-
mation about the atom surface potential. ' These reso-
nances can be studied in different ways, depending on
how their degrees of freedom are independently varied.
Since there are three of these degrees of freedom, energy
of the incoming atom, the azimuthal, and polar angles of
its momentum with respect to the surface, there are a
number of ways in which they can be independently
varied. Usually two of them are fixed and the third is
varied. For example, the azimuthal and polar angles are
fixed and the collision energy is varied. In such a case the
position of the resonance in the variable which is scanned
is a function of the two degrees of freedom. In the
preceding example it means that energy of the resonance
is a function of the two angles. We will call these two de-

grees of freedom the "controlling parameters" because
they determine the position of resonance in the third vari-
able.

Let us look at a single resonance, for instance, in the
energy variable. As the controlling parameters are
changed, the resonance will "move" on the energy axis
and in doing so it can come close to another resonance.
Several things can happen then. Either they "repel" each
other, cross without noticing each other, or they merge to-
gether. In the first case the effect is caused by the degen-
erate resonances, while in the second case the two reso-
nances do not interact. The third case we will discuss in
this paper and, as we will show, an unusual effect is ob-
served. As the resonances approach each other, their
width broadens until they merge together. After this
point, the intensity of the merged resonance peak rapidly
goes to zero. This property, as we will see, is something
unique to these resonances, the "coalescent resonances" as
we will call them.

In this paper we will discuss two types of coalescent
resonances: one in which the collision energy of atom is
scanned and the other when the azimuthal angle is
scanned (in this case the controlling parameters are the
collision energy and the polar angle). We will also show
their properties using a simple example.

However, before describing in detail these resonances,
we will briefly review how they are located. We will as-

where the channel energies K are
G

K - =k cos 8 G 2k—G sin8—cos(P —PG ) (1.2)

and G is the inverse lattice vector. The angle PG is de-

fined as

Gy
tanPG ——
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where G~ and G~ are the x and y components of G in the

plane of surface. G in (1.2) is the module of G. The an-

gles 8 and P are the polar and azimuthal angles of the
specular peak.

In the weak-coupling limit we solve the system (1.1) by
neglecting the off-diagonal elements of the potential ma-
trix, in which case (1.1) becomes

P" +K' g =V PG 6 G 0 G
(1.4)

In the uncoupled set of equations (1.4) we distinguish
channels which are open (K- & 0) and those which are

2
G

closed (KG &0). A resonance of the Feshbach-type 1s

formed if one of the closed-channel energies coincide with
a bound state of V-. Therefore an appropriate position

0
of a resonance is obtained from the equation

kb kcos 8 G— 2——kG sin8co—s(P ——PG ), (1.5)

where —kb is the energy of a bound state of V-. Equa-
0

tion (1.5) implicitly gives the value of the position of the
resonance in the variable which is scanned. For example,
if collision energy is scanned, then (1.5) gives two values
of k (k is the collision energy in units of wave-number
squared) for which resonance is observed. These values
are

ko+[ko —(kb —G )cos 8]'
k1q ——

cos 0

sume the weak-coupling case so that perturbation theory
can be applied.

The set of equations describing atom-surface scattering
1s

P" +K' g =+V
G G G, G —G' G''
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where

ko =G sin8 cos(P —PG ) . (1.7)

where ( m, n) are the Miller indices. For diagonal elements
V- we will take

0

The solutions of (1.6) are only meaningful if k, 2 are posi-
tive, therefore not always will the two resonance peaks be
observed for a given kb and G.

II. COALESCENT RESONANCES IN ENERGY

In the Introduction we described the source of the
coalescent resonances and we also showed that there are
several types of them, depending on which degree of free-
dom is scanned. In this section we will describe these res-
onances when k is scanned (or collision energy, which is
k ). As we mentioned, the position of the resonance in k
is a function of the controlling parameters 8 and P. This
relationship is explicitly given by (1.6). As the controlling
parameters are changed, the position of the pair of reso-
nances (1.6) will also change up to the point when k

&
——k2.

This will happen when

—19.28 A Z & 2A=Z1V-=
0, Z)Z,

while all the coupling matrix elements are

V
1 A, Z(Z1
0, Z)Z1

(2.4)

(2.5)

f( —K-)
0~0 f(K)

(2.6)

except the elements G —G'=(2, 0) and (0,2), which are
zero. The potential Vp has three bound states:
k1 ———2.4077, k2 ———11.4602, and k3 ———17.2986 A
For the lattice constant we have taken a =2.84 A.

The set of equations (1.1) can be solved in a closed
form for the potential (2.4) and (2.5). The appropriate S-
matrix elements for the specular intensity is

ko = /kb —G cos8, (2.1) where

or

tan8, cos(P, —PG ) =—/kb —G
1

6 (2.2)
and

iz) K~f (K)=e 'det[Up cot(zp)U iK]— (2.7)

cos8, = —(kb —G )
2 1/2

k

1/2
b

cos(P, —PG ) = —1 cot(8, ),
(2.3)

where k is the collision energy for which we want to ob-
serve the merged resonances.

The question now is how do these resonances affect the
intensity of diffraction peaks? We will show this on a
model example, which is general enough so that it incor-
porates all the essential elements for formation of these
resonances. It should be pointed out that the essential
properties of the coalescent resonances, and especially
around the point where they merge together, are almost
entirely determined by the structure of the channel energy
and not the form of potential. After all, in the relation-
ship (2.3) the potential only enters indirectly through the
bound-state energies kb Therefore, the .following model
calculation will indeed be representative of the more gen-
eral cases.

We will assume a model with the following five chan-

nels: G—:(m, n)=(0.0), (1,0), (0,1), ( —1,0), and (0,—1),

if we use the definition (1.7). The index c of the two an-
gles designates the specific values of these variables for
which the two resonances (1.6) merge together. Equation
(2.2) gives the value of one angle if another angle is arbi-
trarily specified. When 8, and P, are obtained from (2.2),
the collision energy of the merged resonances is
k =kp/cos"0, .

However, in practice one would also want to specify the
energy of the merged resonances and obtain 8, and P, .
This can be done if we combine (2.2) with (1.5) in which
case we obtain

p = U(K —V)U . (2.8)

K is the diagonal matrix of channel energies, while the
matrix U diagonalizes K —V, where V is the potential
matrix. f ( —K-) means that K- in f (K) is formally re-

0 0

placed by —K
0

Near the isolated resonance the S-matrix element (2.6)
parametrizes as

S- +b,
k —k res

(2.9)

where k„, is a pole of the S matrix, P is the residue, and
b is the background term. The parametrization (2.9) will
become useful in the analysis of the coalescent resonances.
As it will be shown, the position of merged resonances is
very sensitive to the change in 8 and P. However, when
the coalescent resonances are relatively far from each oth-
er, this dependence is less sensitive. Therefore we can lo-
cate the appropriate poles of the coalescent resonances us-

ing (2.9), when they are separated, and follow the move-
ment of these poles when 8 and p are varied. Using this
procedure for locating the point of merger is much easier
than following the resonance peaks. Furthermore, as it
will be shown, the two poles of the coalescent resonances
are located on the opposite sides of the real k axis.
Therefore we can easily identify resonances which are
coalescent, namely, all the poles which correspond to the
usual resonances are located in the lower half of the com-
plex k plane, while one of the two poles which corre-
spond to the coalescent resonances, is in the upper half.
Therefore, it is easy to identify this pole, while the identi-
fication of the other will immediately follow.

The simplest way to locate the approximate position
where two coalescent resonances merge is by assuming a
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k for which this happens. Then we check wheth-
er for this value of k the equations . ave

d G. If they do not have solutions, wecertain —kb and
r k but if they have, then the obtainedmust choose another, u i

values 8, and P, give the approximate position o

k =6.5 A '. For thisour example we have taken k =
value of k, the set of equations . as

In our examp
(2.3) has a solution for the

bound state ~0, ;( 1 2) ' The values of 8, and P, are

2'0

8 = 67.05o

40
I

20

0 = 6695

40 k2

8, =66.784', $, =60.212' . (2.10)

1 ze the poles of these resonances as aLet us first ana yze e p
F licity wefunction of the controlling p

'n arameters. or simp
'

while 0 ise that ~~ is fixed and equal to P„w i e is
varied. In Fig. 1 we show positions o e p

f 0. The poles were calculated by ittingcal values o . e
he vicinitto the values o ef th S-matrix element (3.6) in t y

of a resonance.
' . 1 are indicated by the Ro««

s in Fi . 1 indicates the approximate position o e
iven b (2.10). ~e notice that onemerged resonances, gi y

ole is in e upi.th pper and the other in t e ower a
lex k lane. For the values of 0 away from 0 the

which indicate that the corre-two poles are separated, w ic in
1 se arate . sd. A the

ima inary parts until the poin w e
ole

g
h in the imaginary part of the pocauses only a c ange in

1 art is ractically unaffected.while the rea pa i p
these two resonancesIn Fi . 2 we show how we observe t ese won ig.

k. W have calculated their positionsin the specular peak. e ave c
1 values of 8. As the parameter 8 is changed,

the two resonances come closer, w i e a e

CV

CV

E

to
V)

0 — 66 85 8 = 66 802o

t

200
k2

ces a ear in the specularFIG. 2. How coalescent resonances app
peak. We notice t e roth b oadening effect described in text.

k24040

their width changes. At the point o me gmer er, their width
lar e indeed and instead of two resonances we

is not real because their corresponding poles are we

ese oles is nearly the same. eve e ethese po es
Fi . 2 the "giant" resonance.the merged resonance in Fig. e g

Simple be avior ob h
' f the coalescent resonances in ig. is

ize if ones found. This is important to realize i o
looks for them in other circumstances. e

'

le of the giant resonance for k =7 Awith the example o e g
103). In such aw ic asasoun n h source in the bound state (, ; . n

case

(2.11)8, =59.793', 0, =22.060',

and the position of the poles which are found in the vicin-
it of the giant resonance are shown in ig. 3.

merals I—VII indicate the following set

a resence of a third pole,59 35' respectively. We notice a presence o a~ ) ~

0 1'1). As the an-w ic as a son' Li h source in the bound state
k lane isgle 0 is vane, po e ad 1 a in the upper half of the p

IV
V,r

~«y~e)~

20

II ~

40 60

Re(k )(A )

80

IV

CV

E

0.05—
~ VI
I

-05-
30 40

VII

I

Re(k )(A )

VI b~)y tlt tI

~P V
VI

es for t ical values of 9 in-FIG. 1. Coalescent resonance poles o yp'
dicated by the Roman numerals. The vavalues of 0 are given in
text.

-0.05—

oles when a third pole is be-FIG. 3. Coalescent resonance poles w

tween them.



30 COALESCENT RESONANCES IN ATOM-SURFACE COLLISIONS 151

practically unaffected by the presence of the third pole.
Pole b initially corresponds to one of the coalescent poles,
but as it approaches pole c an exchange effect occurs.
The role of the coalescent pole is taken by pole c, while
pole b replaces c. This effect is typical for the degenerate
resonances.

In Fig. 4 we show how this effect is observed in the
specular peak. Initially, the three resonances are well
separated. As the resonance that is furthest right ap-
proaches the middle, it is "repelled" by it and stops its
movement. The middle resonance takes the role of the
coalescent resonance that is furthest right and forms the
giant resonance with the left resonance. In search of a gi-
ant resonance, the exchange effect, which we have just
described, may cause some difficulties.

The two resonances will merge into a single one if

cos 0—G =+1,
2kG sinO

(3.2)

III. COALESCENT RESONANCES IN 4I

Instead of looking for the coalescent resonances in ener-

gy, we can study them in the variable 0. In such a case
(1.5) also gives two solutions in Ii), given by

k cos 0—G +kbf—$g ——cos (3.1)
2kG scn0

—G sin8, +(G —kbcos 8, )
k, =

cos 0,
(3.5)

and for only one value of k the giant resonance is ob-
served (the other value of k, is always negative).

An interesting effect is observed when P —Pg ——O'. We
noticed from (3.4) that there are two values of k, for
which the giant resonances are observed. These two giant
resonances can also merge into a single one if

G =kbcos0, . (3.6)

cos8,=, k, = Qkb —G
G kb

kb' ' G
(3.7)

where P —Pz ——0'.
We have calculated two examples of the coalescent res-

onances in the P variable. In the first we show formation
of a giant resonance and in the second the supergiant reso-
nance. For the position of the giant resonance we have
taken /=90', since this is arbitrary, and 8, =60' which is
also arbitrary. It follows that for the bound state (0, 1;2)
k, is given by (3.5) and we have taken the larger of the
two values, k, =13.363 A '. For the value of 0, we have
calculated the poles of the S matrix in the variable (() for
different values of k . They were calculated by fitting the
S-matrix element (2.6) near a resonance by the function

We can call such a resonance the "supergiant" resonance
and its position is given by

in which case P is given by

P —(()g ——0', 180' . (3.3) S- -= +b,0~0 (3.8)

The corresponding values of the controlling parameters
when (()—Pg ——0' are

Gsin8, +(G —kbcos 8, )'
k, = (3.4)

cos 0,

where we have assumed that 0, is arbitrary. We notice
that there are two values of k for which we observe the gi-
ant resonance, provided both values of k are positive.

Similarly, when (t —Pg ——180' we obtain

where (tz is complex. The results of calculation are shown
in Fig. 5.

Typical pole positions are shown by the Roman
numerals I—VIII for the following values of k: 175, 176,
177, 178, 178.5, 178.8, 179, and 179.02 A, respectively.
In Fig. 6 we show how these resonances appear in the
specular peak.

Their behavior is very similar to the coalescent reso-
nances in k . However, it does not mean that the giant
resonance in Fig. 6 will also be observed if P is fixed to

8 = 59.7O 0 = 5968o
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FIG. 4. Behavior of the coalescent resonances when an ex-

change effect occurs with a third resonance.
FICx. 5. Coalescent resonance poles in the (b variable. Roman

numerals indicate different values of k. given in text.
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FIG. 6. How coalescent resonances in P appear in the specu-
lar peak.

FIG. 7. Formation of a supergiant resonance.

90', 8 has the value of 60', and k is scanned around
k =179.03 A . The property of a giant resonance is
that it can only be observed if the appropriate variable is
scanned. It cannot be observed when we scan all vari-
ables. This property follows from the fact that although
the conditions (3.3) and (3.4) are satisfied for the giant res-
onance in P, they do not satisfy the conditions (2.3) for
the giant resonance in k . The exception is the supergiant
resonance. Its formation is shown in Fig. 7 for the bound
state (0,1;3), 8, =57.864', and k, =43.838 A . One can
easily show that this resonance is observed in both the P
and k variables.

are observed when one of the parameters, which deter-
mine the initial condition of the incoming atom, is
scanned. Under the special circumstances discussed in
this paper these two resonances form a single resonance of
very large width and we called them the giant and super-
giant resonances. The giant and supergiant resonances are
only superficially single resonances because, as we have
seen, they are represented by two poles of the S matrix of
almost equal real parts. We did not study these reso-
nances when 0 is scanned, but it is believed that no fur-
ther insight would be gained when this is done.
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