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A practical approach to the description of time evolution via the mean values of a set of a few
relevant observables is discussed. The mean values determine, in a self-consistent way, the time
propagation of the system. The procedure yields variational formulation, through which closed-
form equations of motion of Hamiltonian form are derived for the relevant mean values. The ap-
proximation can provide an exact description under well-defined conditions. The time evolution is
reversible in that the entropy does not increase and that it can be described by a unitary evolution
operator. A special case of both practical and formal importance is when the relevant observables
form a Lie algebra. The self-consistency conditions can then be explicitly implemented and a sym-
plectic structure can be provided for the reduced phase space. Time displacements (of either the
state or the observables) can then be described by a self-consistent Hamiltonian, linear in the genera-
tors. An example corresponding to the evolution of a Morse-type oscillator under a time-dependent
external perturbation is discussed in detail.

I. INTRODUCTION

The use of a few relevant expectation values to charac-
terize the time evolution of small mechanical systems
(and, in particular, collisions of composite projectiles' ) is
yet without a fully satisfactory theoretical basis. A spe-
cial case, where an exact description of the evolution is
given by such an approach, was previously discussed.
In that case the Hamiltonian of the system was restricted,
however, to be linear in the generators of some Lie alge-
bra. Often, and in many important applications, this is
not the case. The subject of this paper is a well-defined
approximation which is free from the above limitation.
We do, however, restrict the discussion to reversible time
evolution (in the sense that the entropy does not change).
The more general case of an irreversible evolution is
planned to be discussed in a sequel paper.

Our starting point is a requirement of self-consistency
on the propagation in time of the relevant observables.
This condition and its implications are then rederived us-
ing a time-dependent variational principle. Both formula-
tions lead to a close set of equations of motion for the
relevant expectation values. These equations of motion
can be expressed as Hamilton's equations by the introduc-
tion of a set of conjugate variables. The relevant variables
are then shown to determine a unique state of maximal en-

tropy consistent with the instantaneous values of the
observables. The Lagrange multipliers which are so intro-
duced turn out to be the aforementioned conjugate vari-
ables. This "Hamiltonian"-like formulation of reversible
evolution in terms of relevant expectation values and their
conjugate Lagrange multipliers is of interest not only for a
reduced description of mechanical systems but also in
thermodyamics proper. Determining this Hamiltonian

for the propagation of the relevant variables (i.e., impos-
ing self-consistency) requires the explicit construction of a
density matrix of maximum entropy at each time step. It
is clearly desirable to avoid a repeated solution of such an
extremum problem. This is done by assuming that the (if
need be, enlarged) set of relevant observables form a Lie
algebra. The Hamiltonian of the system, in contrast to
the previous formulation, can be any function (not neces-
sarily linear) of the generators. This opens up a wide
range of new possible applications. Another bonus is a
rich formal geometrical structure which we only briefly
explore.

II. THE REDUCED DYNAMICS

Based on physical grounds, the description of deeply in-
elastic and of transfer collisions in both nuclear' and
molecular physics is in terms of the time-dependent mean
values of a few linearly independent relevant observables.
Computational results suggest that such a description is
appropriate not only for understanding the final, post-
collision state but also during the course of the collision.
Similar ideas have been used in the description of the
response of a multilevel system to external perturbation. '

For macroscopic systems" such a description has existed
for a long time. A particular example is the reversible
process of classical thermodyamics. '

The most general description of a state in quantum'
(or classical) mechanics is by a density operator (or func-
tion). The state of the system corresponding to the re-
duced description is thus a density operator parametrized
in a unique way by the time-dependent mean values of the
(say, rn + 1) linearly independent relevant observables

l —=l ((~.)(t), . . . , (~.)(t)) . (2.1)
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In (2.1) we have explicitly indicated that the mean values

(and hence the state of the system) can vary with time. In
what follows we shall not, unless essential, show this

dependence explicitly.
An immediate implication of (2.1) is that the time

dependence of the density operator is only via the mean

values of the relevant observables

(2.2)

The m+1 operators Bp/B(A, ) which appear in (2.2) are
biorthogonal to the relevant observables:

T (A, 3p/B(A„))=BT (pA, )/a(A„) =5,' . (2.3)

Here and elsewhere Tr can be understood to stand for in-
tegration over a classical phase space, so that the formal-
ism is equally applicable in classical mechanics. In partic-
ular, unless otherwise indicated, mean values are over the
state p given by (2.1), e.g. ,

( A, ) =Tr(pA, ), (2.4)

as is consistent with (2.3).
An important special choice of the density operator as a

function of the expectation values is the one whose entro-

py

S = —Tr(p lnp)

is maximal for the given m +1 mean values. Then

(2.5)

p= exp —g A.'A„
r=a

(2.6)

The m +1 Lagrange multipliers V are functions of the
mean values of the relevant observables. They are deter-
mined by the condition that at any time t the state (2.6)
when used in (2.4) reproduce the m+1 mean values at
that time t. One can show that this is equivalent to the
implicit equation

A,"=OS/B(A„) . (2.7)

B(A„)/Bt =i Tr(p[H, A„]) . (2.9)

In (2.7) S is the entropy of the state of maximal entropy.
An important consequence of (2.7) that we shall often use
is the symmetry of the second derivative

aV/a&A, ) =a'S/a&A, &a&A, &=ax/a&A„& . (2.S)

Using the information theoretic notion of the entropy it
is possible to argue that the density operator (2.6) pro-
vides the "least biased" or "most probable" description of
the system. Also, using requirements of consistency it can
be shown' that the only consistent inference (or induc-
tion) for the mean value of some observable 8, given the
mean values of the relevant observables, is Tr(p8) with p
given by (2.6). It follows from the Heisenberg equation of
motion that the most probable or most consistent estimate
for the time rate of change of the relevant mean values is
(B=i[H, A, ])

The equation of motion (2.9) is a trivial consequence of
the Heisenberg equation of motion when p is an exact
solution of the Liouville —von Neumann equation of
motion. Otherwise it is by no mean obvious [see (4.8)
below] that B(A„)/Bt—=Tr(A„Bp/Bt) equals the expecta-
tion value of i [H, A, ], computed for p at the time t T.hat
the two are equal is our self-consistency condition: propa-
gating the state or propagating the relevant observables
should yield identical predictions. Another way of stating
the consistency condition is as follows: Given the esti-
mate (2.9) for the "velocities" we have two alternative
ways to propagate the density operator. One is to advance
the mean values of the relevant observables from the time
t to t+5t. At the new value of the time we use the up-
dated mean values as constraints in the maximum entropy
formalism and hence determine updated values of the
Lagrange multipliers and the new state. Alternatively, we
can propagate the state directly using (2.2). The two alter-
natives are self consistent in that they can be shown (in
Sec. IV) to yield identical results. According to either
route the procedure is to start from the relevant mean
values to determine the state. Given the state, the mean
values can be propagated [using (2.9)]. The new mean
values determine the state, and so on.

From now on we shall use the overdot, e.g, as in (A„),
to mean B(A„)/Bt=Tr(A„Bp/Bt) Only .for the relevant

observables do we guarantee that (A„) is correctly com-
puted by iTr(p[H, A„]). Otherwise we distinguish be-
tween the two by the convention introduced above.

The self-consistent scheme as described yields exact re-
sults (i.e., equivalent to a solution of the Liouville —von
Neumann equation p=i [p,H]) whenever there is no error
in the estimation of the velocities (i[H,A„]). A suffi-
cient condition ' for the estimate being exact is when the
set of relevant observables is closed under commutation
with the Hamiltonian:

[H,A„]=+A,a', . (2.10)

Here the a's are numerical coefficients. In Sec. III we
show that even when (2.10) is not valid, the procedure as
outlined provides a variational approximation. In Sec. V
we shall construct explicitly a self-consistent Hamiltonian
which approximates the actual Hamiltonian H and for
which (2.10) is exactly valid.

III. VARIATIONAL PRINCIPLE AND A
HAMILTONIAN FORMULATION

OF THE REDUCED EQUATIONS OF MOTION

%'e use a time-dependent variational principle' '
which is a natural extension, to density operators and ob-
servables, of the Dirac-Frenkel-Schwinger variational
principle' for wave functions. Just as in the latter the
wave function f and its dual g' are independent conjugate
variables, the observable A (t) and density operator p(t)
are the independent conjugate variables in the version used
here: Defining a Lagrangian W

In (2.9) the density operator is given by (2.6) with
Lagrange multipliers evaluated at the time t.

W =Tr f A (t)(Bp/Bt —i[p,H) )j,
the action W,

(3.1)
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t —Trpti A ti (3.2)
az"/ar =/X'i Tr t(ap/a(A„) )[A„H]] . (3.9)

TrI 5A(r)(ap/ar —i[p,H]) I =0,
TrI5p(t)(BA/Bt —i[A,II])I =0 .

(3.3)

(3.4)

When arbitrary variations in A (t) and p(t) are allowed,
one recovers the exact equations of motion. Here, ' how-
ever, we use a restricted variation in that p(t) is
parametrized by the mean values of the relevant observ-
ables as in (2.1) while A (t) is a linear combination of the
relevant observables

is made stationary under independent variations 5p(t) and
5A (r) under mixed boundary conditions's p(to) =p;„,
A (t~ ) =A«, . The extremum condition &=0 leads to

a(A, ) /ar =am/5X',

M, '/Bt = —Bm/B(A„),

where the "Hamiltonian" A is given by

A =i+A,"Tr(p[H, A„]) .

(3.10)

(3.11)

(3.12)

The interpretation of these results is provided in Sec. IV.

The equations of motion (3.6) and (3.8) can be cast in
the canonical Hamiltonian form

(3.5) IV. REDUCED HAMILTONIAN DYNAMICS

The I +1 values (A„)(t) and the m+ 1 time-dependent
multipliers I,"(t) are our 2m+2 variational parameters
and are to be varied independently (subject only to the
boundary conditions). Of course, ultimately, the multi-
pliers A,"(t) [cf. (3.5)] will turn out to be the Lagrange mul-
tipliers of Sec. II. However (and as in the wave-function
version of the variational principle), during the variations
the mean values and the multipliers are subject to in-
dependent variations. In Sec. IV the two independent
variations (3.3) and (3.4) will yield the two (equivalent)
ways of propagation as discussed in Sec. II.

The variation (3.3) with A (r} parametrized as in (3.5)
yields

8(A„}/Bt =i Tr(A„[p,H] )

—(Bf/M, ")(Bg/B(A„) )) . (4.1)

The Hamiltonian A as defined in (3.12) is the generator
of the time displacement not only for the conjugate
canonical coordinates

[(A„&,VI =5,', (4.2)

The mean values of the relevant observables and their
conjugate multipliers can be regarded as a set of general-
ized coordinates and momenta of a classical phase space.
The Poisson bracket ' in that space is given by

If,g J =g[(Bf/B(A„) )(Bg/M, ")

=i Tr(p[H, A„]}. (3.6)
I~, (A„}I

= (A„), (4.3)

(4.4)

B(A„)/Br =i+(A, )a', , (3.7)

and it is not necessary to compute expectation values over
p. The procedure in Sec. V will yield a result similar to
(3.7) except that the coefficients a will depend on the
mean values.

An equation of motion for the multipliers is obtained
from (3.4) using [cf. (2.1)]

5p=g(ap/5(A„) )5(A„} (3.8)

and (2.3),

Here p is a function of the I + 1 mean values ( A„)(t), cf.
(2.1), so that (3.6) implies our estimate (2.8) for the veloci-
ties. The nonlinear equations of motion (3.6) are, strictly
speaking, independent of the multipliers I, (t) (since, in
principle, p is specified by the mean values) and can be
solved by themselves. In reality, one must construct p in
order to evaluate the right-hand side in (3.6). In Sec. V we
offer a practical solution for this problem, that is, we shall
offer an equation of motion that can be solved without the
need for a continuous update of p(t). Here we only note
that in the special case when (2.10) obtains, the equation
of motion becomes linear,

but also for any other observable

(4.5)

Here, as elsewhere, expectation values are over p and the
proof of (4.5) is using (2.2) and (3.10). The overdot
denotes a time derivative. The purpose of this section is
to note the main characteristics of the motion in this
phase space with special reference to its reversible charac-
ter.

A. Entropy and other invariants

There are many density operators consistent with the
given mean values of the relevant observables, with dif-
ferent values of the entropy, —Tr(plnp). The reduced
description is here defined by choosing the one density
operator whose entropy is maximal. We thereby have a
description in a (2m +2)-dimensional reduced phase
space. In that reduced space, the entropy corresponding
to given m +1 values of the relevant observables is
unique. As is only to be expected for a (classical) Hamil-
tonian (A ) motion —this entropy does not change with
time. The formal proof uses the conservation of normali-
zation (d(1)/dt=O) and Eqs. (2.2), (2.6), and (3.6) to
conclude that
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dS/dt = —Tr(p lnp) = —QTr[(Bp/B (A„& )lnp] ( A„& i"=g(aV/a(A„&)(A, & .

=gg'Tr[(Bp/B(A, & )A, ](A„&=gA, '(A, &

7;S

=i+A,'Tr(p[H, A, ])= i—Tr(p[H, lnp])

It follows that

i, "++V(a(A, &/a(A, &)=a gV(A, & B(A„& .

=i Tr(H [p, lnp]) =0 . (4.6) (4.11)

Note that in (4.6) the A,"'s are the Lagrange multipliers of
(2.6) and that we will shortly show their equivalence to
the multipliers of Sec. III.

The proof of the invariance of the entropy uses in an

essential way the linearity of inp in the relevant observ-

ables. Indeed, in general, only when an observable C is a
linear combination of the relevant observables will it be
the case that

It is important to note that on the right-hand side of
(4.11) gV(A, & is only a function of the mean values of
the relevant observables. Indeed, it equals [cf. (4.6)]
i Tr(H[p, lnp]) and hence vanishes for any set of mean
values. Therefore its derivative vanishes as well. In a re-
versible process it thus follows that

i = —gV(a(A, &/a(A„&)

d (C & /dt =Tr(pC) =i Tr(p[H, C]) . (4.7)
= —t'gA, 'Tr{[H, A, ](Bp/(j(A„&) j . (4.12)

The proof is immediate. In general

B(C&/dr =QTr[(Bp/B(A„&C)](A„&

Comparing with (3.9), the Lagrange parameters satisfy the
same first-order equation of motion as the variational pa-
rameters of Sec. III. It follows that one can identify A (t),

= i+Tr[(Bp/8 ( A„& )C]Tr(p[H, A „]) . A (r) =gA, "(r)A„ (3.5')

If, however, C =g, y'A, then the orthogonality condition
(2.3) comes into play so that

B(C&!dr=gy'i Tr(p[H, A, ])=iTr(p[H, C]) . (4.8)

with the surprisal ' '
( —lnp).

The self-consistent reversible propagation can thus be
schematically illustrated as (where ME denotes maximal
entropy)

{P,A ]=0. (4.9)

The entropy S =g„A,"(A„& is one such function. In Sec.
IV C we shall explicitly identify m additional ones.
Indeed, we shall conclude that the equations of motion
(4.3) and (4.4) are completely integrable.

B. The Lagrange multipliers and self-consistency

The conservation of entropy offers a simple route to the
identification of the Lagrange rnultipliers as the variables
that satisfy the equation of motion (3.9). Throughout the
proof below the X"'s are the Lagrange rnultipliers deter-
mined via the procedure of maximum entropy. Hence
they can be considered as functions of the relevant expec-
tation values

It should now be obvious that the self-consistency condi-
tion (2.6) is nontrivial. It need not hold for observables
not in the space of relevant ones. In particular, a strict
constant of the motion D, defined by [D,H] =0, may, in
the reduced classical phase space, correspond to an expec-
tation value (D& =Tr(pD) which will vary with time.
The reason is obvious. (D& is our "best" estimate and
our estimate may not be good enough. The constants of
motion in the classical phase space are those functions
which satisfy

(A„&(t):(A, &(t+5t)

ME MF

p(&) = p(&+5r) .—Bm/8& A„)

(4.13)

C. Complete integrability

The identification of the variational parameters {V(t) ]
with the Lagrange multipliers provides also the proof that
the Hamiltonian system (4.2)—(4.5) is completely inte-
grable. In other words, it has m+ I linearly indepen-
dent constants of the motion

{A,Q„I =0 (4.14)

What (4.12) and (3.9) show is that the two sides of the dia-
gram commute. Starting with the mean values of the
relevant observables at the time t one obtains the same
p(t +St) whether one first propagates the mean values to
the time t +5t [using the variation (3.3) or the explicit re-
sult (3.6)] and then the procedure of maximal entropy or
whether one first uses maximal entropy to determine the
Lagrange multipliers at the time t and then propagate
them [using the variation (3.4) or the explicit result (3.9)]
to r+5t In othe.r words, the reversible time evolution
commutes with projecting onto the state of maximal en-
tropy.

i "=y(aX"/a(A, &)(A, &

or, using the symmetry relation (2.8),

(4.10) which are in involution

(4.15)
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Now

BP„/8 (A„)=8,"

and because of the symmetry (2.8)

BP„/M;=BP, /M, " .

(4.17)

(4.18)

Using the definition (4.1) of the Poisson bracket, (4.17),
and (4.18), one verifies (4.15). Also

4, = I~,Q, I =g[(&~/a(~, ) )(ay„/av)

The motion in the (2m+2)-dimensional phase space is
thus restricted to an (m+. 1)-dimensional manifold. (»
Sec. V we shall derive the equations of motion on this
manifold. )

We shall prove the results for the choice (where A o I)——

yp( A, , ( A) ) = (Ap ) —Tr A„exp Ao —yVAg . (4.16)

U(g) =exp(i'&) . (5.1)

Here U(g) is an element of a Lie group. The generators
IX&] of the group form a Lie algebra

[Xq,X,]=C ~~i . (5.2)

The C's are structure constants of the algebra. Given an
initial state po the states at other times are given by

(5.3)

The group parameters I@I are regarded as functions of
time and the purpose of this section is to determine their
equation of motion and its properties.

The parametrization (5.3) clearly preserves the normali-
zation and entropy for any set of (real) group parameters
g. Furthermore, if po is of maximal entropy subject to the
incan values of the relevant observables, the group genera-
tors,

—(ay„/a(~, ) )(a~/av)]

= —gi'(ay„/aV) —(~„)=0 . (4.19)

po ——exp( —A, o—A,"OX„),

then so is any other p(g)

p(g') =exp[ —iP(g) —A,"(g)X,] .

(5.4)

(5.5)

The last expression equals zero because of (4.10}since

g(ay„/av)(av/a(~„) ) =s„". (4.20)

V. LIE ALGEBRA OF RELEVANT OBSERVABLES

A. Parametrization of ihe state

A set of states of equal entropy can be generated by the
unitary transformation

There are several motivations for introducing the spe-
cial case where the relevant observables are generators of a
Lie group (that is, they form a Lie algebra). The more
pragmatic one is that constructing a state of maximal en-

tropy is far simpler than for the general case of noncom-
muting observables. Indeed, it is so simple that we shall
be able to derive explicit equations of motion. Next, as
will be discussed in detail below, such a set of observables
is ideally suited for reversible (constant entropy) motion.
The result is that we can take full advantage of the com-
plete integrability and work with m +1 (or less) equations
of motion rather than with the 2(m +1) equations of the
general case. Finally, and as will be discussed in detail in
Sec. V G the number of generators that need to be includ-
ed can be smaller than the number of relevant observables.
On the formal level, the formalism is a natural generaliza-
tion of the coherent-state representation' ' ' which was
employed in the Dirac-Frenkel variational principle. It
thus admits of a symplectic manifold structure on the
(m+1)-dimensional reduced space [as opposed to the
2(m +1)-dimensional space in the general (not necessarily
reversible) case]. As will also be shown, it is often possi-
ble to restrict the motion to an even-dimensional submani-
fold of the (rn +1)-dimensional manifold. In the follow-
ing sections we restrict the discussion to semisimple Lie
groups.

p(g) = UpoU =exp( —A, o —A,"OUX„U ) .

Hence, using (5.6) and comparing (5.7) and (5.5),

(5.7)

A,'(g) =A,"OG'„(g) .

In Sec. V G we prove a generalization of (5.5} where po is
of maximal entropy subject to additional constraints.

B. The product representation

For practical work the product (global) representation

U(ri)=+exp(iq X~) (5.9)

of the elements of the Lie group is more convenient. The
reason is that it is frequently necessary to differentiate p
with respect to the group parameters. Now, for either
(5.1) or (5.9) one has a similar form for the result: '

a U/aP =iX„U,

8 U/r}g" =i' U .

(5.10)

(5.11)

X„ is a linear combination of the generators (see Appen-
dix A)

Xp =D tv ~ (5.12)

where the matrix D is nonsingular. The matrix D is dif-
ferent for (5.10) and (5.11) but is much more readily com-
puted as a function of the group parameters for the prod-
uct representation, where all one requires is the matrix

The proof follows iinmediately from the automorphism of
the Lie algebra by the corresponding group:

U(g)X„U (g)=G', (g)X, . (5.6)

The elements of the G matrix in (5.6) will of course de-
pend on the value of g. Now
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G defined by the automorphism (5.6). The explict con-
struction, for both representations, is given in Appendix
A.

In the formal discussion one need not commit oneself to
a particular representation for V, hence X& can stand for
the result of either (5.10) or (5.11}. Also, we shall use g
for the group parameters but in this section g can also be
understood as g. This will of course no longer be the case
in the example discussed in Sec. VI.

The dependence of p on the group parameters can now
be determined:

ao. p/arir =Tr(p[[X,Xp],Xr ])
and that

(5.20)

[ IF.G I.&]+[IG.&I.FI+ [I&.FI.G]
=F Gi'z&(a~„/aq +a~,./age'+a~. ~/aq&),

It is readily verified that this definition satisfies the re-
quirements, is an antisymmetric bilinear product in I' and
G, and that it satisifes the Jacobi identity. The proof of
the identity is based on noting that

ap/a~'=(a v/a~") p, v'+ vp, (a v'/a~')
A A=i' p ipX—i i [——Xi,p] . (5.13)

where

F =~ i'aF(~)/a~i'.

(5.21)

(5.22)
Then for any observable B

a(B)/ag =Tr(Bap/ari )=i Tr(B [Xi,B]) .

= —i Tr(p[Xi.»]) . (5.14}

In particular, for the mean values of the relevant observ-
ables

a(X„)/ari"= i T—r( p[ Xq, X,]) (5.15)

o„i=(a(X„)/ari )Di" = i Tr(p—[X„Xi]) . (5.16)

This matrix will play a key role in the formal considera-
tions of Sec. VC coming up. The discussion of the
dynamics begins in Sec. VD and one can proceed directly
to that section.

C. The symplectic structure

In Secs. II—IV we have considered the general case
where the Lag range multiplier s and their conjugate
relevant mean values are considered as 2(m + 1) indepen-
dent generalized coordinates. For the reversible case the
motion was shown to be confined to a lower-dimensional
manifold. In this section we discuss the motion on that
manifold alone and show that it too can be considered as a
phase space of dimension m + 1 at most.

For the parametrization (5.3) the expectation value of
any observable F is a function of the group parameters

or, using the matrix D [cf. (5.12)], one can introduce an
antisymmetric matrix o.:

»serting (5.20) into (5.21) we see that (5.21) must be 0, so
that the Jacobi identity for the Poisson brackets (5.19) is
implied by the Jacobi identity for the operators of the
algebra. The whole question then is whether cr is inverti-
ble.

~e have another motivation for requiring that o„„is
invertible. A classical phase space is required to admit
canonical coordinate charts. An arbitrary chart
(ri', g, . . . ) in a neighborhood is said to be "locally
canonical" if the matrix

(5.23)

is nonsingular and can be brought to the canonical form

0 —I
0 (5.24)

at each point of the neighborhood. A necessary and suffi-
cient condition for the existence of local coordinate charts
is that the matrix defined by (5.23) is invertible. But
with the definition (5.19), that is the same as the condition
that the matrix o„„asdefined by (5.18}and (5.16) is inver-
tible. If cr is indeed invertible, the properties of the re-
duced phase space are those of a symplectic manifold. 29'3

That o. is invertible is not automatically guaranteed since,
for example, the dimension of the algebra may just as well
be odd and the phase space must be even-dimensional.
However, for the case of quotient space in semisimple Lie
groups this inversion is assured. '

The stability group H of the reference state po [cf. (5.3)]
is defined' ' ' as the set of all elements h EG (where G is
the full Lie group) that leave po invariant,

F(g) =Tr[Fp(q)] . (5.17) hpoh '=pa . (5.25}

We note again that here and throughout Sec. V g can just
as well be g. If the antisymmetric matrix o, (5.16), can be
inverted

For any g H 6 it follows that

p(g)=gpog '=ghpoh 'g (5.26)

(5.18)

one can define a generalized Poisson bracket ' for any two
expectation values, which are the "classical" dynamial
variables in the reduced description

where h PHAG and H is the stability group of po. The
only transformations of po which serve to change the state
are thus those induced by the quotient space G/H. In
other words, the set of orbits' ' of the state po by the Lie
group 6,

I F(q), G(q) I
= o "'aI' .OG

a~.
(5.19)

M=tp(n)
I
p(n)=g(n}pu '(n» g«I (5.27)

is realized by the homogeneous space G/H. Any element
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gH in the quotient space G/H can be represented as

gH =exp(X)H, (5.28)

where X is in the complement vector space k of the stabil-
ity group H:

g=hek,
where g and h are the Lie algebras of G and H, respec-
tively.

To conclude, it is sufficient to consider the group ele-
ments

U(g) =+exp(ig"X„)

ters provide a complete set of coordinates for our phase
space. This is particularly obvious when the antisym-
metric matrix o is brought to the canonical form (5.24).

The second Euler-Lagrange equation is for the A, 's. It is
equivalent to (3.9) and provides no new information
beyond (5.34). This is as it should be since we have intro-
duced the parametrization p(g) to take full advantage of
the fact that for reversible motion the Lagrange multi-
pliers are completely determined by the mean values of
the relevant observables. Indeed, we could have used the
mean values of the observables [which need be only those
in the quotient space, cf. (5.28)] as the coordinates of the
phase space. To do so we write [cf. (5.15)]

ol (5.30)
&x„)=(a&x„)/ag")g"

U(g) =exp(i'&),
where [X&I is a basis for k, without any loss of generali-

ty. The group parameters need be independent parameters
only in G/H. The manifold M may or may not be sym-
plectic. If the full Lie group is of odd dimensions (as is
the case for example of Sec. VI) but so is the stability
group, then the quotient space will be even-dimensional
and the manifold will be symplectic. In the following we
will assume that po has been chosen such that M is even-
dimensional so that o„„can be nonsingular. The equa-
tions of motion below will thus be for the parameters of
the quotient space G/H.

H (rt) =Tr[Hp(ri)] (5.31)

and the Poisson brackets are defined by (5.19).
The construction begins with the Lagrangian W, (3.1),

which is here a function of g's [via p(g)] and of A, 's [via
A (t), cf. (3.5)]:

W =Tr[A (t)p] —i Tr I A (t) [p,H ] I

=1,"Tr[X„(ap/art"))r'i" A,"i TrI p(rt)[H—,X"]I .

(5.32)

Using (5.14) and (5.12),

M=A, "(a&x,)/aqi')pl' —X"(D ')„[aH(v])/art ] .

With the use of the definition (5.16), the first Euler-
Lagrange equation is given by

~„„q~=aH(q)/aq". (5.33)

Under our choice of po which insures that o is invertible
this can be written in a canonical Hamiltonian form [cf.
(5.24)]

ri" =o ""aH(g)/ag (5.34)

It is worthwhile to emphasize that the group parame-

D. Hamiltonian dynamics on a symplectic manifold

We derive Hamiltonian equations of motion for the
group parameters and for any dynamical variable
+(g)=Tr[Ep(ri)]. The role of the Hamiltonian will thus
be played by H(g),

and, using (S.16) and (5.34),

& x„)=(a&x„)/a~~)~~'aH/a~'

=aH(ri)/art"=o„„aH(ri)/a&x ) . (5.35)

In (5.35) we have introduced ri" as the contragradient
transformation to (5.12). In other words, we write (5.13)

ap/a~"=i [x„,p] . (5.36)

In terms of the ri's the Hamiltonian H(ri) can be written
as

H(q) =x"a~/aq" (5.37)

from which the result (3.10) is seen to be equivalent to
(5.32). As a consistency check we also verify from (5.3S)
and (5.36) that

& X„)=i TrIp(ri)[H, X„]I (5.38)

as should be the case for self-consistency.
Using the Poisson brackets defined by (5.19) we can

now write a Hamiltonian equation of motion for any
dynamical variable 8 (q) =Tr[Bp(g)],

8(ri) = IH(q), 8 (g) ) . (5.39)

The equation is analogous but not identical to (4.5). In
(5.39) H(ri) [and B(g)] are only functions of the group
parameters (or, alternatively, of the mean values of the
relevant observables) and these are fewer in number.

Finally, we note that our original objective has been
achieved. The equations of motion (5.34) can be solved
directly without the need to update the rnaximurn entropy
estimate of p after each time step. What replaces the up-
dating of the state is the updating of the observables via
the automorphism (5.6). But the G matrix can be com-
puted once as a function of the group parameters and then
used throughout the computation. (An example is provid-
ed in Sec. VI.) In general, updating the state and updating
the observables need not yield the same results (apart
from, say, in an exact computation). The parametrization
(5.3) insures however that the two routes are equivalent.

E. The linear self-consistent Hamiltonian

The discussion in Sec. VD has been in terms of classi-
cal dynamical variables which are expectation values of
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operators. Here we provide the corresponding formalism
directly in terms of operators. Central to the discussion is
the self-consistent Hamiltonian operator A, defined by

8=cr I'"[aH(g ) /ari" ]X,=i o ""Tr(p[H,X„])X„,
(5.40)

which is linear in the generators of the group.
The self-consistent Hamiltonian attains its special posi-

tion since it acts as the true Hamiltonian as far as the
operators of the algebra are concerned. We prove this in

two ways. First in obtaining a Liouville-von Neumann
equation of motion for the density operator:

is either nonlinear in the generators of G or zero. The na-
ture of the reversible approximation of this paper is to
neglect the role of V. A higher-order irreversible reduced
description will be discussed in a sequel paper.

F. The quality of the variational approximation

It was already pointed out that the approach of this
paper will give exact results whenever the set of relevant
observables is closed under commutation with the true
Hamiltonian H,

p=(ap/an&)i &
[H,xq] =X„a"q . (2.10')

=(ap/aq~)~~"[aH(q)/aq ]= t p, H I

=i [p,X„]o"'[aH(rI)/ag"]

or, from the definition (5.40) of 8,

(5.41) [A,x„]=X„a'„. (5.49)

Here, however, the coefficients a do depend on the state

The nature of the variational approximation can thus be
stated that we satisfy the relevant part of (2.10'):

p=&[ p) . (5.42) a"&——TrI (ap(rI)/a(x„) )[H,x&)I, (5.50)

A =c X~=c X (5.43)

which is a linear combination of operators in the algebra

Tr(p[H, A])=Tr(p[A, A]) . (5.44)

The proof uses the definitions of 2 and of 8 [Eq. (5.40)],
of X [Eq. (5.12)], and of cr [Eqs. (5.15)—(5.18)] as follows:

Tr(p[A, A])=c rT(p[A, X ])

=0&'Tr(p[H, X&])c Tr(p[X„,X ])

=W"cr c Tr(p[H, X„])
=c Tr(p[H X ])= Tr( p[H, A]) . (5.45)

Another point of view of 8 is as the "relevant part" of
the full Hamiltonian H. For an arbitrary operator I' one
defines the relevant part as that operator whose expecta-
tion value will be correctly predicted given only the mean
values of the relevant observables. It is convenient to in-
troduce" a (projection) operator P such that PF,

PF=Tr[(ap/a(X„) )F]X„

= (a~ /a(X„) )Tr[(ap/aq. )F]X„

=i cr""Tr(p[X„,F)X„,
is the relevant part of F. Using (5.12)—(5.18),

(5.46)

PX~ ——Xp (5.47)

so that P is a projection and from the definition of A',

A=PII . (5.48)

The "residual" interaction

This equation of motion is nonlinear in p (since the self-
consistent Hamiltonian 8 depends on the state) yet it
preserves the entropy of p.

The corresponding result for observables is that for any
operator A,

where (5.50) follows directly from the variational equation
of motion (3.9). It is thus possible to rewrite (3.9) as

M,"/at = —a"qA,&, (5.51)

where the point is that u'„can be regarded as a function
of the time only. The reason being that the equations of
motion for the expectation values (X„) or for the group
parameters q" can be solved without reference to the
Lagrange multipliers, [This is also true in the (2m+2)-
dimensional reduced space of Secs. III and IV.] The solu-
tion [of (5.34) or of (5.35)] can be used in (5.50) so that in
(5.51) a can be regarded as a function of time only. The
integrated version of (5.51) is

t
k'(t)=exp —I a"„(t')dt' A,"0. (5.52)

This identifies the G(g) matrix of (5.8) with the integral
in (5.52) just as in the exact approach.

Approximate (in the sense of the variational approxi-
mation) time-dependent constants of the motion can
therefore be introduced. For example, since for any refer-
ence state 1np=AFX& is —a constant of the motion, we
have that [cf. (5.8)]

~~(r)(X„)(t)=~",(X„)(t.)

=iFOG& (Xp)(t) . (5.53)

Equation (5.53) holds for any choice of the A, 0's so that

(Xp)(t) =F"p(X„)(to), (5.54)

where F is the inverse of the 6 matrix.
The linear transformation between the precollision and

post-collision expectation values of the relevant observ-
ables is known as a "sum rule. " Such relations are often
known on phenomenological grounds (see, e.g. , their use
in Ref. 34). Also, they often emerge as the final result of
physically motivated simple models. Whenever such sum
rules are known to be more or less valid or useful the vari-
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ational approximation using the respective operators as
relevant observables will be reasonable.

G. The reference state

S=—Tr(plnp)=A, ,+& (X )+imp(X Xp)+
=i 0+~"OG „(X.).+~;G „G .(X.Xp),+
=So+S,+S,+.. . (5.61)

It might appear that the formalism introduced in this
section allows for only a very limited choice of reference
states po [cf. (5.3)], namely, those given by (5.4). It is
therefore important to dispel any such misconceptions by
showing explicitly that at the very least all reference states
of the generic form

po
——exp( —A,o —At'OX„—A,""OX X„— ) (5.55)

are equally admissible. An example is provided in Sec.
VI.

States of the form (5.55) are of maximal entropy subject
to the mean values of polynomials in the operators of the
algebra. (The set of all such polynomials is known as the
enveloping field of the algebra. ' ')

The proof starts from the automorphism of the algebra

proper,

U(rt)X„Ut(q) =G"„(rt}X„

so that

(5.6')

UX~XpU =UX~U UXpUt=G ~G"pX'~q . (5.56)

An nth power of the generators transforms therefore as a
tensor of rank n

(5.57)

+C"„p Xp Xp Xp (5.58}

It follows that if po is of the generic form (5.55) so is p
and the highest power of the generators that appears in po
is also the highest power in p:

p = UpoUt =exp( i.o i.~o UXU—t —A,""oUX„X —Ut . )—
=exp( i,o il'OG „X —i~"—pG „G X X—p )—
=exp( —A,o —A, X~ —iPPX Xp — ) . (5.59)

The Lagrange parameters are propagated in a contragra-
dient manner to the observables

A, =iPOG „,
X ~=X~;G G~. ,

(5.60)

etc.
The entropy of p can also be resolved according to the

power of the generators which act as the constraints:

Also, the nth powers are closed under commutation with
the generators

[X„,Xp, . . . , Xq ]

=[X„,Xq, ]Xq Xq +

+Xq ~ Xq [X,Xq ]

—C pXpXp . Xp +

The subscript zero on the expectation values denotes with
respect to the reference state po.

We already know that the entropy is conserved. The
new result we now prove is that each partial entropy S; in
(5.61) is separately conserved. Each set of powers of gen-
erators homogeneous of degree n evolves separately with
its very own conserved entropy. In essence this is a direct
result of the closure properties (5.57) and (5.58).

The partial entropy of degree n is defined by

S„=—Tr[pA„(t)],

where

Ao(t) =AD(t)I

A, (t) =iP(t)X

A, (t) =iPP(t)X Xp,

(5.62)

(5.63)

etc., and the (time-dependent) coefficients are given by
(5.60). Using the automorphisms (5.56) and (5.57) it fol-
lows immediately that

U A„(t)U=A„(0) (5.64)

and hence that

S„=—Tr[pA„(t)] = —Tr[UpoU~A„(t)]

= —Tr[poUtA„(t) U] = —Tr[poA„(0)] . (5.65)

VI. EXAMPLE

To illustrate the method described, we consider a sim-
ple, nontrivial algebraic Hamiltonian: the forced Morse
oscillator, written in terms of the SU(2) generators. Our
purpose is to present the abstract ideas of Secs. III—V in a
concrete setting.

A. The Hamiltonian and the relevant algebra

The forced Morse oscillator describes, more realistically
than the simple harmonic oscillator, a molecule or a vi-
brational nucleus, acted upon by an external time-
dependent force. The force can be taken as due to the per-
turbation induced by a structureless particle moving along
a classical trajectory. The one-dimensional Morse poten-
tial

(6.1)

provides a realistic description of experimental spectra.
This potential was written previously in algebraic

terms by the generators of SU(2) [JO,J~,JzI. The group
SU(2), being isomorphic to the rotation group in three di-

The observables given by (5.63) are thus time-dependent
constants of (our approximation to the) motion. Each one
such "moment" is, for a reversible evolution, a carrier of
its own entropy.
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mensions O(3), has the commutation relations of angular
rnornentum:

or

~ ( )A
iy Adj Jp iyjp lyly

(6.11)
[Ji Jm]=I&imn J, l, m, tt =0, 1,2 (6.2)

where eI „ is the three-dimensional, completely antisym-
metric tensor. It is convenient to introduce the other basis

I J+,JpI where

J+ ——J)+iJ2 .

The Morse oscillator Harniltonian is now written as

(6.3)

Ho ——A(J J~+Jo)=A(J —Jp) . (6.4)

J =Jl+Jz+Jp is the Casimir oPerator for SU(2), and is
considered as a constant within an irreducible representa-
tion of the algebra.

The external force is written as

V(t) =if (t)(J+ +J ) =2f (t)Jl (6.5)

in terms of the same generators. The full Hamiltonian is
then H =Hp+ V ( t).

The Harniltonian Hp is nonlinear in the generators and
is therefore not closed under commutation relations with
them.

(using the Baker-Hausdorff expansion) and AdjX„A
=—[X„,A].

We now use the product representation of the group
SU(2), which is just the familiar Euler angles representa-
tion of the rotation group O(3):

U(a, P,y) =e e 'e (6.12)

The first advantage of this representation becomes clear
when we apply it to pp to get p as in (5.1):

l'aJ0 l'pJ& l'yJ0 —iyJ0 —l'pJ2p=e e e ppe e e

or
'aJ 'P —'PJ

p(a, P) =e e poe e (6.13)

where we have used (6.10). The parametrization of the
two-dimensional quotient space SU(2)/U(l) is now clearly
the two angles (a,P), and these are going to play the role
of the canonical coordinate chart.

i [Hp, Jp] =0,
i [Hp, JI ]= —A (JpJz+ JzJp),

I [Ho Jz ] A (JpJ1 +Jl JO )

(6.6)

C. The symplectic structure

Consider first the derivatives (5.13):

=I (Jop —pJo)=l'[Jo p]a
for the force V(t) the commutation relations are

i [V,Jo]= —2f (t)Jz,
i [VJl]=0,
i [VJz]=2f (t)JI .

(6.7)

The natural relevant observables, which form a Lie alge-
bra, are the three generators of SU(2).

aP . ial& itII&, , i tIJI ——iu1&&=ie e [Jz,pp]e e

(6.14)

=i[Jzcosa+ Jlsilla, p],

where we have used over and over again the inner auto-
morphisms of SU(2) as given in Appendix B. Comparing
(6.14) with (5.13) identifies the transformation,

B. The reference state

The reference state is chosen as one with maximal en-
tropy with respect to Hp (that is, Jp and Jo) as the origi-
nal constraint, that is, and

Jp ——Jp,

J[——J2cosa+ J/sina
(6.15)

( —A,0
—PH0) ( —A,0—PAJ —A, J0—A, J() )

e 0 0 0 0 0 (6.8)
a(J„) =I Trp[Jp, Jp]

Ba

Trpp= 1

T poJo=(Jo)o=—jo,
TrpoJ' = (J') =—jj

(6.9)

The stability group of pp is clearly the one-dimensional
subgroup U(1) with the generator Jp..

where the Lagrange multipliers A,p, A, ', i(, are determined as
usual by a(J„)

ap
=i Trp[J&,Jzcosa+Jlsina],

(6.16)

from which the symplectic structure is easily derived:

0 (Jl )cosa —(Jz )sina
—(Jl )cosa+ (Jz )sina

(6.17)

[po Jo]=o. (6.10)

The elements of the stability group are just the exponen-
tials

The expectation values of the generators,

( J&)=Trp(a, P)J& TrU(a, P)ppU (a,P——)J&

=TrppUt(a, P)J& U(a, P), (6.18)

i ( )
yAdjJp'

can be written explicitly in terms of a,P and the initial (at
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+Ti'PoJo cosa s111P, (6.19)

( Jz ) =TrpJ2 ——TrpoJosina sinP —TrpoJ1 sina cosP

+TrpoJ2cosa .

After taking into account the special form, (6.8), of po, we
can write (6.19) as

( Jo ) =JocosP,

( J1 ) = —jocosa sinP,

( J2 ) =josina sinP .

Inserting this relation into (6.18)

(6.20)

po) expectation values, by using again the automorphisms
of Appendix B:

( Jo ) =TrPJo ——TrPoJocosP+ TrPoJ1sinP,

(J~ )=TrpJ1 ——TrpoJo cosa cosP —TrpoJ1 sinu cosP

One can verify these equations by calculating alternatively
the expectation values,

Trpi [H,J&], (6.27)

B(J, )
Bt

8(J2)

=+josinpsina a —jocosp cosa p,

=josinp cosa a+jocosp sinu p .

(6.28)

and then using (6.6), (6.7), and (6.15) to get the same equa-
tions.

The equations (6.26) are simple but nonlinear equations
and the solution is not necessarily periodic. Their actual
solution is discussed in Sec. VI F below.

Using the relations (6.20), one can give the equations
for the expectation values:

aH
Bt

=j osinPP = — = —2jof (t)cosa sinP
Bu

0 1
o„„=—josinp

0 —1

josinp

(6.21)

The last two equations can now be written as

~(J )
cosa +sinu

Bt dt

as expected from Eqs. (5.35) and (6.15).

(6.29)

The matrix cr~, is nonsingular whenever jo&0, and
sinP&0.

H(a, P)=TrPHo+ TrP V

=Trpo[ U"(a&P)Ho U(a, P)

+ Ut(a, P) VU(a, P)],
Ho ATrp(J1+ J——z) =A Trp(J —Jo)

=A [j(J+ 1)—jjocos P—JJ isln P]

and is independent of a. We used the fact that

&J.J1+J1J.&.=o, JJ1=-(J1&.,

V(a,p) =2f (t)(J1)= —2jof (t)cosa sinp .

The full reduced Hamiltonian is then

H(a, p) =~ [j(j+1)—jjoco"p—jjl»n'p]
—2jof (t)cosa sinP .

(6.22)

(6.23)

(6.24)

(6.25)

We are now in a position to write the equation of motion
for a and P:

D. The equations of motion

To get the form of the equations of motion (5.34) we
must write the Hamiltonian expectation value H(a, P)
=Tr(pH) in terms of a and P. That is,

E. The self-consistent Hamiltonian

From the definition (5.40) we can now write the linear
self-consistent Hamiltonian 8

A'(a, P)=aJo+PJt
2(jJ'I —jJ'0 )=AJo . cosP

Jo

+f ( t)(2Jo cosa cotp+ J2sin2a —2J1sin a) .

(6.30)

This Hamiltonian is by no means a simple linearization of
the original quadratic (in the generators) Hamiltonian.
However, it gives the same values of the "relevant veloci-
ties" when taken inside the trace with p.

F. Stability analysis and computational results

The equations (6.26) for the group parameters have
fixed points for sina=0 and cosP=O, for which a=P=O.
The equations are, however, singular when sinP=O, near
which cotp~ao. In order to examine the stability of the
equations near these fixed points we must find the roots
of the characteristic equation.

The fixed points are a=nor, p=n/2+mnfor all .in-.
teger n, m. The roots are determined by the determinant

1 &3H 2(jj1—JJ'o)
cosp +2f (t)cosa cotp,

josin 8 jo
(6.26)

1—2f cosa cotp —s —2gsinp —2f cosa
sin p

2f cosa =0,

1 BHp= . . =2f(t)sina .
josin Ba

(6.31)

where g=A(jj1 —jjo)/jo is a, negative constant and
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APPENDIX A: THE MATRIX D„"FOR THE
TVf0 POSSIBLE PARAMETRIZATIONS

OF THE GROUP

i (1—x)P'X ixPXdxe "X e
~

~ ~

0
(A 1)

where we used the explicit form for the derivative of an
exponential operator. If we now define

(A2)

In order to derive the explicit form of the matrix D„'
in (5.12) we write (5.10) and (5.11) in detail:

a U(g) a +g x„
BP BP

ixpx i(1—x)p'x&~

~

0

we easily see

ti U ig'x, . tax„ tg x=e lXqe ' ' e
anal"

t'X—„+e "=tX„U(g)

and similarly

8U~

8'l7

—iq X —iTIX . —&g X&= —e -. e iX --e

mX —i 'X
ie .—" . e 'X~= iU—(rl)X~ .

and (in reversed order)

—ig~X& —ig~X —ig X&
U (q)= e =e e (A7)

(A8)

(A9)

we get X„and the matrix D„"(g) are thus determined solely
from the well-known automorphisms (no summation)

'U=;X.U,
'U = —U'X„.ay=' ' ap

=

Equation (A2) is known as the Kubo transform of X„
with the parameters g. Using the Baker-Hausdorff expan-
sion

For this case, no integration is needed.

(A10)

e'"Be '"=8+i[A, B]+ , i [A—,[A, B)]+ (A4) APPENDIX B: THE INNER AUTOMORPHISMS
OF SU(2)

and the closure property of the algebra (5.2) we see that
(A2) is indeed an operator of the algebra. The transfor-
mation (A2) maps a basis of the algebra IX„I into anoth-
er basis [X&I, because the inner automorphisms,

g (g)X„g '(g), g E6
always do so. The matrix D& (g) is thus nonsingular and
can be explicitly evaluated using the Kubo transform (A2)
and the commutation relation (5.2).

For the product representation

We have

0
—i aJO

e J&e =J&cosa —J2sina,
i aJO —iaJO

e J2e =J2cosa+J~sina,

'Joe '=JocosP J,sinP, —

e 'Jie '=Jicosp+ Josinp,
iyJ& —iyJj

e J2e =J2cosy —J0siny,

(Bl)

(B2)

(B3)

(B4)

(B5)
i n~x& in ~xt i y~x

A,

(A6)
iyJ& —iyJ&e J0e =J0cosy+ Jzsiny . (B6)
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