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Diffusion of a tagged particle in a fluid with uniform shear flow is described. An expression for
the diffusion tensor is obtained in a form similar to the Green-Kubo result for the equilibrium self-
-diffusion coefficient, but which is applicable even far from equilibrium. In one form the diffusion
tensor is determined from a type of Einstein relationship to the nonequilibrium mean-square dis-
placement in the Lagrangian frame for the fluid. Alternatively, the diffusion tensor is expressed as
a time integral of the autocorrelation function for the velocity of the tagged particle in a local rest
frame. A frequency- and shear-rate-dependent diffusion tensor is defined from these results and
evaluated in two limits. The first case is the Boltzmann limit for a low-density gas, and the dif-
fusion tensor is found to be an analytic function of both frequency and shear rate. Consequently,
nonlinear transport coefficients of arbitrary order are well defined and finite. In the second case the
mode-coupling contributions for a general fluid are obtained by an extension of the equilibrium
mode-coupling phenomenology to shear flow. The hydrodynamic modes are obtained as a function
of time and shear rate and lead to a nonanalytic dependence of the diffusion tensor on both frequen-
cy and shear rate. A universal function is obtained to describe the crossover from asymptotic fre-
quency to asymptotic shear-rate dependence. This function is compared with a similar result
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predicted by a phenomenological model from nonlinear continuum mechanics.

I. INTRODUCTION

Attempts to extend the time correlation function
method of linear response' to describe nonlinear transport
in systems far from equilibrium have been limited pri-
marily to formal analyses.>~® An exception is the partic-
ularly simple state of uniform shear flow in a fluid. For
small values of the shear rate, the pressure tensor is linear
in the shear rate (Newton’s viscosity law), and the propor-
tionality constant is the shear viscosity given by the
Green-Kubo time correlation function expression. For
larger shear rates the pressure tensor can be represented
by a formal Taylor series expansion in powers of the shear
rate, whose coefficients are the nonlinear transport coeffi-
cients.>~7 However, in a pioneering study of this problem
Kawasaki and Gunton showed that mode-coupling effects
lead to a nonanalytic dependence of the pressure tensor on
the shear rate,®° and consequently some or all of the non-
linear coefficients in the Taylor series are divergent.'
More recently, methods have been developed for computer
simulation of transport in nonequilibrium states,!!~!> and
the qualitative results seem to be consistent with the non-
analytic form predicted by Kawasaki and Gunton.!® One
of the objects of interest in both the theoretical and com-
puter studies is the shear viscosity 7). At zero shear rate,
n is given by the low-frequency limit of the Fourier
transform of the Green-Kubo time correlation function.
Mode-coupling effects are responsible for a square-root
dependence on the frequency (long-time tails),

7(0,w)—no—n'Vw for small w . (1.1)

At zero frequency, the mode-coupling results of Kawasaki
and Gunton lead to a square-root dependence on the shear
rate,
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1(a,0)—>no—n"Va for small a . (1.2)

Thus if a frequency- and shear-rate-dependent viscosity is
defined, y(a,w), it is predicted to be nonanalytic in both
the frequency and shear rate. The nonequilibrium com-
puter simulations can be fit with the forms (1.1) and (1.2),
but the coefficients %’ and 7'’ obtained are an order of
magnitude different from those of mode-coupling theory.
The reason for this discrepancy is not understood at
present, but some of the points at issue have been re-
viewed at a recent conference on this subject.” The fact
that both nonanalyticities arise theoretically from mode
coupling suggests a relationship of the two, even though
the physical phenomena in Eqgs. (1.1) and (1.2) are quite
different (viscoelasticity in the former, non-Newtonian
flow in the latter). There have been no mode-coupling
calculations of 7(a,w) at both finite frequency and shear
rate, so that such a relationship is at present obscure.
However, Zwanzig has noted that the phenomenological
Goddard-Miller rheological equation of state leads to a
definite connection between the frequency and shear-rate
dependence.'® In particular it would imply that the coef-
ficients %’ and %" in Eqgs. (1.1) and (1.2) are equal. The
results of the computer simulations leave this possibility
open, but mode-coupling theory leads to an order of mag-
nitude difference between 1’ and 7" (in three dimensions).
The validity of the Goddard-Miller model in this context
is therefore appealing but uncertain.

The objective here is to describe a related nonlinear
transport process, that of self-diffusion in shear flow.
Self-diffusion involves only single-particle motion and is
therefore somewhat simpler to treat theoretically. It is
also a process that can be investigated by the current
methods for nonequilibrium computer simulation.!
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There are two main components to the results presented
here. The first is the derivation of a general expression
for the diffusion tensor that is applicable to the nonequi-
librium state of uniform shear flow. The result general-
izes the corresponding Green-Kubo equilibrium time
correlation function expression to states far from equili-
brium and provides the appropriate object for both
theoretical investigation and computer simulation. The
second component is the evaluation of this result for the
diffusion tensor in two different limiting cases, to deter-
mine its frequency and shear-rate dependence.

In Sec. II the continuity equation for the probability
density describing the position of the tagged particle is
considered. The current density in this equation consists
of two parts, one due to convection at the local velocity of
the fluid and a remainder due to irreversible transport.
The diffusion tensor is identified by expanding the ir-
reversible part of the probability current to first order in
the gradient of the probability density, but with no restric-
tion on the shear rate. Some comments on the distinction
between the “molecular” diffusion tensor and the Taylor
diffusion tensor (due purely to convection by a nonuni-
form flow field?®) are given. The diffusion tensor is ex-
pressed as the time integral of a nonequilibrium auto-
correlation function for the velocity of the tagged particle
in its local fluid rest frame, generalizing the Green-Kubo
expression to the nonequilibrium state. This result can
also be expressed as an Einstein relation in terms of the
mean-square displacement of the particle in the Lagrang-
ian frame of the fluid.

The diffusion tensor is evaluated in Sec. III from results
obtained previously for the velocity autocorrelation func-
tion that are exact for Maxwell molecules in the
Boltzmann limit.2! The effects of viscous heating are in-
cluded and the dependence on frequency and shear rate is
displayed explicitly. As expected, in this limit the dif-
fusion tensor is analytic in all variables. Next, the mode-
coupling contributions to the frequency- and shear-rate-
dependent diffusion tensor are calculated. For small shear
rate and frequency, the diffusion tensor is found to have
the form

D;j(a,w)—Do[8;; —CV'w Aj(a/w)] , (1.3)

where C is a constant. The asymptotic form of A;(x) is
V/x for large x, and constant for small x. Consequently
D;j(a,w) exhibits both of the expected nonanalyticities
analogous to Eq. (1.1). The function A;(x) is independent
of any fluid parameters or state condition and is therefore
universal for all fluids governed by the Navier-Stokes
equations. It describes the crossover from asymptotic fre-
quency dependence to asymptotic shear rate dominated
behavior. This result is compared to the predictions of
the Goddard-Miller model. A preliminary report of these
results has been given elsewhere.?

II. DIFFUSION TENSOR

A fluid of mechanically identical particles is taken to be
in a nonequilibrium state of uniform shear flow. The
flow velocity has the form

vi(T)=ayr; , 2.1)

where T is an arbitrary field point in the fluid and a;; is a
constant tensor with the properties (the Einstein summa-
tion convention is used here and below)

a; =0=apay;=ayay, a=Va;a; . (2.2)

In addition, the density, pressure, heat flux, and pressure
tensor are spatially uniform. It is easily verified that the
macroscopic conservation laws under these conditions de-
generate to*

2nin=0, D utr=—aypy0, 2.3)
where n(t) is the number density and u (¢) is the internal-
energy density. Consequently, the conditions of uniform
shear flow are compatible with the macroscopic conserva-
tion laws if the density is strictly constant and the energy
(or temperature) increases due to the shear rate. Equation
(2.3) must be supplemented with an explicit form for the
pressure tensor P;;(¢) as a function of the shear rate.

Let the position and velocity of one of the particles be
identified by R(1) and U(2), respectively. The remaining
degrees of freedom of the fluid are denoted by the phase
point I'. For uniform shear flow the initial state of the
fluid is assumed to be represented by the distribution
function

p(t =0)=p(U",T;0), 2.4)

where U’ is the velocity of the tagged particle in the local
rest frame of the fluid

U; =U;(0)—v;(R(0)) . (2.5)

The time evolution is given by the Liouville equation with
boundary conditions appropriate for uniform shear flow.
The particular choice (2.4) depends on R only through the
relative velocity and will be referred to as the uniform
state. Next, imagine that the tagged particle is observed
to be at the point Ty at t=0. Instead of (2.4) the initial
state is represented in this case by

p(t =0)=08(R(0)—Tt)p(U",T;0) , (2.6)

where the volume factor Q is required for normalization.

The probability density to find the tagged particle at
any point T at a later time # given that it was at T initial-
ly is defined by

P(T)=(8(R()—T)) . 2.7

The brackets ( )?0 denote an ensemble average over the

initial state (2.6). Conservation of probability is expressed
by the continuity equation

D p(Et)+ 7T (Fi)=0,
ot
T(E0=(T0sRO—1) . .

Equations (2.8) follow directly from (2.7) by differentia-
tion with respect to time. The current J(T;¢) may be di-
vided into a contribution due to pure convection by the
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macroscopic fluid flow field and a remaining dissipative
part J *(T;¢):

-

T () =V(DP(T:)+ I *(T30) ,

2.9)
J*(@0=(U'(08(R(1N-T)) .
The continuity equation then takes the form
f%+v&w?.mﬁw+€i%ﬁﬁ=o. (2.10)

In this form the changes in P(T’;t) due to convection have
been made explicit, so the molecular diffusion process can
be identified with the irreversible part of the current
T *(F;1). The diffusion limit is defined by

- 3 .o
J} (T3t)—>—Dy(a ;t)—ar—jP(r;t)

(2.11)

and is expected to apply for sufficiently long times and
small gradients. The diffusion tensor is taken to be in-
dependent of T, since the flow is uniform, but depends on
the shear rate a;; and time (due to viscous heating). It
turns out that the convective part of the current can also
be represented as a diffusion process because of the space
dependence of the velocity field. This is called Taylor dif-
fusion?® and is discussed briefly at the end of this section.

To identify the diffusion tensor in terms of the molecu-
lar properties of the system, it is convenient to transform
the continuity equation (2.10) to the Lagrangian coordi-
nates of the fluid, '

(2.12)

where the tensor A;;(¢) is the relative deformation gra-
dient for uniform shear flow**

gi=ri—v; (D =Ay;(t)r; ,

A,J(t)=8u —a,-jt N
(2.13)
[A_l(t)]ij=Aij( —t) .

The second equality in (2.13) follows directly from the
properties of a;;, Eq. (2.2). Application of the transfor-
mation (2.12) to the continuity equation (2.10) then gives

9

JF(q;)=0
3, (q;t)

-
atP(q”)+ (2.14)

with

P'(g;t)=P(A™'G;t) ,
(2.15)
JF (@0 =A;(0TF(ATG;0)

The motivation for this transformation is to remove the
effects of pure convection so that P'(q;¢) changes only
due to the dissipative part of the current.

From the definition (2.7), P'(q;t) can be identified as

P/(q;0)=(8(R()—A ~')) .
=(8Q—q)) , (2.16)

where _Q(t) is the particle’s position in the Lagrangian
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coordinate system for the fluid
Q:()=A;(R;(1) .

The second equality in (2.16) follows from the fact that
the Jacobian of the transformation (2.12) equals one.
Next, taking explicit account of the initial state (2.6),
P’(g,t) may be expressed in terms of the displacement of
this new position variable,

P'(a’;t)=<a(6(t)—6<o>-(a_?o))>?o )

(2.17)

(2.18)

It is shown in Appendix A that P'(q;t) is translationally
invariant, i.e., P'(q;t) depends on q and T, only through
their difference q—T,. This property does not hold for
the probability density P(T;¢) in the laboratory coordi-
nates where the symmetry is broken by the convective
flow. As a consequence of this invariance, P'(q;¢) can be
reduced to an average over the uniform ensemble

P'(g;0)=(8(Q(t)—Q(0) (G —T0))0) ,

where the brackets { ;0) now denote the average over the
initial uniform ensemble given by (2.4). This is a signifi-
cant result because it implies that the tagged-particle
dynamics is determined from the same nonequilibrium
state as that which characterizes the hydrodynamic vari-
ables of uniform shear flow for the fluid.

The diffusion limit for P'(q;t) is most easily extracted
using a Fourier representation:

(2.19)

= dE —i?‘(ﬁ'—?o) C(_l—(b't)
P(q;t)= | ——e ettt
d 2m)?
L (2.20)
C(k;t)=In(e K 1QM-QOL0)
Differentiating with respect to time then gives
d — dk —i?~(i’—r0)
—P'(q;t)= e
2P @0= [
3~ c(X;n
X EC(k;t) ettt (2.21)

An expansion of 3C(K;?)/dt in powers of K generates a
gradient expansion in P’(q;t). Retaining only terms to
second order®® for the diffusion limit gives Eq. (2.14) with

9
il .27 I ) A et PR
Ji (q,t)— D,J(a ,t) aq] P (q,t) ,
(2.22)

ra=L9
Djjla;t)= =00 —Q(0)][Q,()—0;(0)];0) .

To obtain (2.21) use has been made of

(U (1);0)=0, (2.23)

i.e., the average velocity of each particle is that of the
fluid at the position of the particle.

The diffusion tensor in the laboratory frame is now
easily obtained by inverting (2.15) to give
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. 3 .
JH Tt =— ,-j(a;t)-a—r;P(r,t) ,
(2.24)
D,'j(a ;t)=A,-k(—t)Aﬂ(——t)D,'d(a;t) .

This is the desired result. The diffusion tensor defined by
(2.24) can be related to the velocity autocorrelation func-
tion using the identity

t
0:(—0,(0)= [ dr Ay(n)U;(7) (2.25)
as follows from the definition of Q(z). Substitution of

(2.25) and (2.22) into (2.24) gives the diffusion tensor as
Dyla;n= f dr Ag(r—t{U; (OUL(1);0) ,  (2.26)

where it has been recognized that only the symmetric part
of Dy(a;t) contributes to V-J*. This result is similar to
the Green-Kubo expression for self-diffusion in an equili-
brium fluid. The differences here are the nonequilibrium
average { ;0) representing shear flow instead of an equili-
brium average, the appearance of the relative velocity (lo-
cal Gallilean transformation), and the transformation ma-
trix A;;. A second representation for the diffusion tensor
can be obtained in a form similar to an Einstein relation.
Direct substitution of (2.22) into (2.24) and use of the defi-

nition of Q(#) gives

t)—l~~a—

Dij(a ;) =Au( —I)Aﬂ( — 2 ar

X A[(Re(8)— R (0)— v (R(£))¢]

X [R)()—Ry(0)—v(R());0) . (2.27)
Consequently Eq. (2.27) involves the mean-square dis-
placement of the particle relative to the convected position
of the fluid element occupied at time .

The subtraction of effects due simply to the motion of
the fluid characterizes Dj;(a;t) as the molecular diffusion
tensor. This is in contrast to what is sometimes referred
to as the Taylor diffusion coefficient. The latter is due
entirely to the convective part of the flux J(F;1) in Eq.
(2.9) and arises because convection by a nonuniform flow
field can be represented by a diffusion equation with an
effective diffusion tensor.?®?® To emphasize this differ-
ence in the present context, consider the special case of a
particle placed initially at F0=6, symmetrically in the
flow field. Then it is possible to show, by direct solution
of the diffusion equation, the equivalence of convection
and an effective diffusion,

2

V() VP(T;0)=[Dya;)—Dyla; t)]a o, PE0 @28
with Dj;(a;t) given as above and

. t

Dya;n= [ dr(UOU;(1), . (2.29)

The diffusion equation for P(T;t) is, with Eq. (2.11),

.
ar, ar, P(T;t)=0

where the convective term of Eq. (2.10) no longer appears.
The diffusion tensor Dj; is defined in terms of the velocity
autocorrelation function in the laboratory frame, in con-
trast to the definition of D;;, Eq. (2.26). Consequently,
D;; represents both the diffusion within a fluid element
due to molecular motion and an effective diffusion due to
nonuniform convection. - This distinction is important be-
cause the velocity autocorrelation function in (2.29) has a
qualitatively different time dependence from that in the
local rest frame.?! The diffusion tensor Djj(a;t) is expect-
ed to grow without bound in time,?” whereas the molecu-
lar diffusion coefficient is expected to approach a finite
limiting value (see Sec. III). The divergent part of
Dyj(a;t) therefore results from the choice to represent
convection as diffusion, rather than from any fundamen-
tal breakdown of the diffusion process; the diffusion equa-
tion (2.10), with (2.11) and a finite D;;, applies even when

Dyj(a;t) is not well defined.?®

The molecular diffusion coefficient still has some
dependence on the convective flow field, of course, and
some of this can be extracted more explicitly. The time
dependence of the velocity autocorrelation function in
(2.26) is determined from the equations of motion

—P(r t)— D,,(a D (2.30)

ot

(2.31)

where F is the force on the tagged particle. The term
a;;U; is an inertial force due to the inhomogeneous flow
field. This inertial term may be eliminated by the intro-
duction of a new “velocity” V(1), -

4
dt
Thus V obeys Newton’s equations for an inertial frame,

but still is a measure of motion relative to the local
(noninertial) rest frame. With this new velocity variable,

Vit)=Ay(—0)Uj (1), —-V=F. (2.32)

Eq. (2.26) may be written

Dyla;0= [ drlAl—DGLDATT—D];,  (2.33)
where A7(2) is the transpose of A() and
G;(t,)=(V;(t —)V;(0);7) . (2.34)

For purposes of analysis in the next sections it is con-
venient to define a dimensionless frequency- and shear-
rate-dependent diffusion tensor

D¥j(a;w)=—Rel(iw) f(;° dte™Djj(a;t) , (2.35)
where
j(a;0)=Dy(a;t)/D(T (1)) (2.36)

and D(T(t)) is the equilibrium diffusion coefficient as a
function of the nonequilibrium temperature. The notation
Re in (2.35) indicates that the real part is to be taken. In
equilibrium Eq. (2.35) is proportional to the Fourier
transform of the velocity autocorrelation function. More
generally, it is straightforward to show that
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lim D ¥(a;w)= lim Dj(a;?) 2.37)
w—0 J t— o J

whenever both of these limits exist.

III. BOLTZMANN LIMIT

To illustrate the differences to be expected between the
diffusion coefficient for equilibrium and that for shear
flow, a low-density gas in the Boltzmann limit is con-
sidered here. The calculation of fluctuations in shear flow
for this case has been discussed elsewhere for the special
example of Maxwell molecules.?’ For this potential
model all of the properties of the fluid and tagged particle
can be calculated exactly. In particular, the rest-frame
velocity autocorrelation function was determined to be

A,'j(t —T)( U];(T)U; (T);O> ,
(3.1)

—v(t—71)

(U} (OU; (1);0) =e

where v, is one of the eigenvalues of the Boltzmann
operator and depends only on the mass and potential pa-
rameters. The diffusion tensor is then in the form of Eq.
(2.33), with

Gy(t,r)=e (U (1)U} (1);0) (3.2)
The equal-time correlation function is simply related to
the macroscopic pressure tensor by

(U (1)U} (1);0)=Py(1)/p , 3.3)

where p is the mass density.

The nonstationarity of the uniform shear flow is re-
flected through the time dependence of the pressure tensor
P;(7) and is due to viscous heating. Again for the special
case of Maxwell molecules, Py;(7) can be calculated exact-
ly from the nonlinear Boltzmann equation. The asymp-
totic form of the pressure tensor and temperature, T'(¢),
for v, >> 1 is found to be?!

Py()—>Cyylae™ ",

(3.4)
T()—>Cla)e™ " .
Here C, Cj;, and z; are time-independent functions of the
shear rate. Since the relevant times contributing to the in-
tegrand in (3.3) for vit >>1 are vi7>>1, the asymptotic
forms (3.4) may be used to evaluate Djj(a;¢) in Eq. (2.36)
as

Djla;)=v; [, dr{Alt —)G*(t,IAT(r—1)];
(3.5)

—v(t—7)

Gj(t,r)=e (nCy; /pC) .

The time integral in (3.5) is readily performed and shows

an exponentially fast approach to its asymptotic value.
The frequency- and shear-rate-dependent tensor is de-

fined by Eq. (2.35). To simplify the discussion, only the

scalar trace of ﬁij(w,a) will be considered:
Drla;w)=~1D;(a;w) . (3.6)

It is straightforward now to calculate Dr(a;w) from the
results in Appendix A of Ref. 21. The calculation is

o 1 1
0 0.05 1.0
d*
FIG. 1. Dy(w,a), Eq. (3.8), as a function of reduced shear
rate a*=a /v, for w*=w/v,=0 and 0.6. Also shown is the re-
duced shear viscosity for comparison.

somewhat lengthy so only the result will be given:

x | A+ M[x?=3w* ]
x4+ (w*)? [x2+(w*)*]

Dy(a;w)=

I

(3.7)
x=14cA, c=1.55.
The function A(a*) is defined by

Ma*)=%sinh?{ +cosh~'[149(a*)?]} . (3.8
Here a*=a/v;, w*=w/v,. Figure 1 shows Dr(a;w) as
a function of shear rate. For comparison, the shear-rate-
dependent viscosity 7*(a)=m(a;t)/n(T()) is also
shown. The shear rate dependence of Dr(a;0) is seen to
be similar to the non-Newtonian “shear thinning” of the
viscosity. This dependence also persists at finite frequen-
cies.

It is clear from the expression (3.7) that Dy(a;w) is an-
alytic in both w and a for the Boltzmann limit,

Drla;w)—1—%c(1+c)a* ) —(w*)?

~1—v Aw?+1.1a%) . (3.9)
The asymptotic dependence of Dr(a;w) on w and a is
seen to be the same with coefficients of the same order of
magnitude. However, in contrast to the Goddard-Miller
model described in Sec. V, there appears to be no funda-
mental relationship between the origin of the frequency
dependence and that of the shear rate dependence.

IV. MODE-COUPLING LIMIT

The set of local conserved densities are the phase func-
tions whose averages obey the hydrodynamic equations,
for long times. Consequently, these quantities are com-
monly referred to as the “slow” variables for the system.
In general, the time correlation functions for transport
coefficients involve other phase functions (the conserved
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currents) that are orthogonal to the conserved densities, so
it might be expected that they reflect only the shorter,
nonhydrodynamic time dependence. However, it is
reasonable to expect that if the conserved densities have a
slow or long-time hydrodynamic behavior, then so should
their products. Since the currents in the time correlation
function expressions for the transport coefficients are in
general not orthogonal to products of the slow variables,
there should be a slowly decaying hydrodynamic com-
ponent that dominates for long times. This component
will be referred to as the mode-coupling limit, since it
arises from products of hydrodynamic modes. The
analysis of the diffusion coefficient here will be limited to
the lowest-order (two-mode) approximation, which pro-
vides the asymptotic long-time behavior. There are many
equivalent methods to calculate the mode-coupling contri-
butions for equilibrium time correlation functions.?’ The
following discussion is therefore kept brief, to indicate
only the natural extension of the equilibrium calculations
to the nonequilibrium case of interest here.

To simplify the analysis it will be assumed that the ap-
propriate macroscopic hydrodynamic equations are those
for an incompressible fluid. The relevant conserved densi-
ties are
|

Gij(t’7)5<n(t—f)i’}(0);7)_>f (;ik)3
T

X g (K, ) [P(— K;¢ — 1), (K;t —n1U; ;1)

where the definition of V, Eq. (2.31), has been used, and
gij(k;7) is the normalization matrix

—OIA—

o

<[p(1?>§,~(

m
=S
~
=
\‘
N

gu(k T)_

o[- bl

W (K )7

W‘l

(& (—

v

(4.4)

To simplify further, the case of asymptotically small
shear rate is considered. Then the equal-time correlation
functions, such as gij> may be calculated in a local equili-
brium ensemble with an error of first order in the shear
rate. In this limit Eq. (4.3) reduces to

Gij(t,'T)= f ‘(;L;(‘)‘;Ail(’f—t)

X(P(=K;t =)y (K;e —1)U} ) . (4.5)
The brackets ( ), denote a local equilibrium average ap-
propriate for uniform shear flow (the viscous heating is of

‘order a? and is also neglected in this limit for self-
consistency). The crucial assumption, implicit in selecting
this particular contribution to the velocity autocorrelation
function, is that the long-time dependence of (4.5) can be
determined from the macroscopic hydrodynamic equations

for P(k;?) and %(K;t). For the nonequilibrum case con-
sidered here, u,(k,t) is the fluctuation around uniform
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4.1)
! 2 [ﬁa—mv(?)]a(?_qa) ’
a=1

where p is the average mass density. The caret on the
variables P and @ are used to distinguish them from their
average values, P(T;t) (tagged-particle probability densi-
ty), and U(T;#)=V(T;t)—V(T) (deviation of the velocity
field from shear flow). It is somewhat more convenient to
work with the Fourier transforms of A(¥) and 6(F).
Consequently, the slow variables are chosen to be

(K )r(P(R),B(K)) 4.2)

with P and @i; being the transforms of P and ;. The
long-time behavior of the velocity autocorrelation func-
tion, Eq. (2_.}33), is obtained by projecting the velocity onto
the set ya(_lf) and their products. The velocity is orthogo-
nal to y,(k), and the dominant product (for small shear
rate) that couples to the velocity is B —E)ffi(E ). There-
fore the velocity autocorrelation function is determined
from the replacement

Agr—t{ U [PUOT, (—K)];7)

(4.3)

r

shear flow, rather than strict equilibrium. The appropri-
ate hydrodynamic equations are given in Appendix B. It
is shown there that G;;(t,7) can be determined from the
Fourier transform of the hydrodynamic equations in their
Lagrangian coordinates, rather than the corresponding
transformed laboratory coordinates as formulated above.
This allows a close parallel to be drawn between the
mode-coupling results at zero shear rate and those at fin-
ite shear rate. The results are (see Appendix B for details)

r dk
G,-j(t,’r)=f (—2;)—3‘

The prime on the integral indicates a restriction to suffi-
ciently small values of k for hydrodynamics to be applic-
able, and Gy;(k;?) is the solution to

G(K;t —7). (4.6)

[gat-+(v+D)k2(t) Gy(K;t)+ Ay ()G (K;1)=0

ki(t)=k;A;(2) , (4.7)

JAi
2A5,(—t)k,, () (2)
a; .
k2(t) Y

This equation for Gj;( K;?) may be compared with that for
zero shear rate,

Aji(t)=—

l-g; +(v+D)k? |GP(k;0)=0 (4.8)




30 DIFFUSION IN SHEAR FLOW 1471

The effects of finite shear rate are seen to be essentially
twofold. First, the wave vector k; is replaced by - X o |x oo kikGy(K)
ki(t)=k;—k;a;t. The second is a “shift” of the hydro- Gy(k;0)=\ P(—k) ui(k)—*'-kz— U;
dynamic mode L

(v+D)k?8;;—[(v+DkX(1)8;;+ A;(1)] . 4.9)
The significant point about this shift is that it is indepen- = ksT 8 — kik; . (4.10)
dent of k but first order in the shear rate a. This effect of P k? )

the shear flow on mode coupling was noted in a qualita-

tive fashion in Ref. 9, and Eq. (4.9) provides the detailed

correspondence. Each of the two effects of the shear rate ~ The transverse part of the velocity field has been used in

is due to the presence of a nonuniform Oseen-like convec-  EQq. (4.10) since the macroscopic dynamics was taken to be

tive term in the hydrodynamic equations. that of an incompressible fluid, i.e., k;#; =0. The solution
The initial condition for Eq. (4.8) is given by to Eq. (4.7) is found to be

o kgT
Gij(k’t)=_p—TiI(t) Sj—— 2

kik; ]
(4.11)
T;(t)=e =2 0{8;;+2kja k[ kil 1 (1) + Ky (@1 — @i 5 (8) — Ky G @i T3(D)]}
with
b(t)=(v+D)(k2—k,kja,~jt +%k,~kja,~majmt2) ’
ki) k;
k) k?
k,(t) k, 4k,k]a,1 2k,k,a,1
kz(t) - k2 E3/2 \/E_
2k2k,(t)k](t)a,} +Et _ 2k2k,~kja,-j
k(1) k?

2k,-(t)kj(t)a,-j
To calculate the mode-coupling contribution to D,;(a,w), Eq. (2.35) is first rewritten as

vE
Dj(a;w)=38;+ f0°° dt{cos(w)[ A(VG(AT(—1)]; — G (1)} D~ 4.13)

—2k,~a,-j
E

4ki kja,-maj,,,
E3/2

Zkikja,-j
vVE

2ki(t)kj(t)(l,-j
VE

2k,(t)kj(t)au
vE

Il(t)= -1 _ -1

tan

L) =2k
2T E

-1 —tan~!

} , (4.12)

13(t)=(klkmalnamnE‘)n1

4k?

2k,~kja,-j
E3/2

vVE
E =4k,kma1,-amj(k28,-j —-kikj) .

1 -1

+ tan™ —tan

with G,-(jm(t) equal to Gj;(¢) at zero shear rate, and for large ¢

kik;

k ksT
k}_B_T'.I(t 51,-*7(2—‘. (4.14)

 dk ' d
Gy)= [ -2*-G,(k,t ax
]( ) f (217.)3 I( )——) f (277.) p )

The simplest component of the diffusion tensor is that for i and j along the direction of the velocity gradient
D*(a;w)=aya;, D },(a;w)/a® . (4.15)

To be more explicit a representation of the shear rate tensor is chosen,
a,-j=a8ix5jy ) (4.16)

so that the x axis is chosen along the direction of flow and the y axis is along the direction of the gradient. Use of (4.14)
in (4.15) then gives

kgT
pD

kik,
k2

8y — , 4.17)

) ' dE
D*(a;w)—1+ fo dtf -(2—7)—3[T,1(t)cos(wt)—T,f?)(t)]

where T,5j°) is the zero-shear-rate limit of Tj;(z). The specific form of this tensor, given by Egs. (4.11) and (4.12), simpli-
fies considerably for the components in Eq. (4.17), leading to
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k -k}
k2

D*(a;w)—>1+ fowdtf O(ky— [

dk
(2m)?

kpT
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2
—bn_k —(v+D)k?2t

k(z)

cos(wt)—e (4.18)

where now the restriction to small-k values has been made explicit through introduction of the step function ©(ky—k).
The characteristic cutoff k, is typically of the order of the inverse mean-free path. A change of variables, K—k(—1)
for the integral of the first term in the brackets, and a scaling of the magnitude of k gives

kyT
pD[4m(v+ D)3

f drt=32 [ dQ(l-—e})

D*(a;w)—1+

The effective cutoffs k() and ky(¢) are defined by
172
1+-eye.at + 5 (ezat)?

ki(t)=ko(t) ,
! 0 1+eyexat—}—(e,,al‘)2

(4.20)
k3(t)=(v+D)k* ,

and

alat)=1+4-eye at + +(eat)’ (4.21)
Also, e,,e,,e; are components of the unit vector K/ K|,
and dQ denotes the associated solid angle integration. It
is seen from (4.20) that the shear-rate-dependent cutoff
k,(t) is always of the order of k() for all shear rates.
Furthermore, the effective range of the k integral of (4.19)
is k< 1. Therefore, for large t, ky(z)> 1 and the above is
independent of all cutoffs. The k integral can be per-
formed in this limit to give, finally,

kT
pD[4m(v+ D)

x [Tari= [ e

D*(w,a)—1+

x[a~%*at)cos(wt)—1] .

(4.22)
J

Ax)=m)~V2 [ 7 dt =3[ 1—y(xt)cost] ,

f dk k%~

O(k,(t)—k)

2(at) (4.19)

cos(wt)——e(ko(t)——k)] .

I

The large-time behavior (“tails”) of the velocity auto-
correlation function due to mode coupling is reflected by
the factor of #—3/? in Eq. (4.22). This slow decay is con-
trolled by two other functions in the integrand, one de-
pending on (at) and the other on (wt). The long-time
tails will therefore imply a nonanalytic dependence on ei-
ther shear rate a or frequency w, depending on whether
a>>w or w>>a, respectively. To make this more evi-
dent, Eq. (4.22) can be written in terms of a universal
crossover function between these two limits:

D*(w,a)—1—C(w/wy)*Ala /w) , (4.23)

where the dimensionless constant C and frequency w, are
defined by

0 1
YU‘Eﬁ [, d¢ [ dy(cos’d+ysin’$)[1+(1—p)t(sing cosd + 5t cos’)] /2 .

It is readily verified that A(0)=1 and A(x)~V'x for large
x. This leads to the limiting behavior for D*(a;w),

1—C(w/we)?, a/w<<1

D*(a;w)—
1—C'(a/we)'?, a/w>>1.

(4.26)

This result for a/w << 1 is the usual prediction for the
nonanalytic frequency dependence of the self-diffusion
coefficient in an equilibrium fluid. The second result, for
a /w >>1, is analogous to that obtained for the nonanalyt-
ic dependence of the nonlinear shear viscosity on shear
rate. The constant C’ characterizing this limit is given by

372
Cc= 2V 2T Wo
T 3n 4m(v+D) ’
(4.24)
kgT
Wo= ,
mD
and the crossover function A(x) is
4.25)
T
' 12 f® —1/2
c'=cem=V2 [ "dtt=1[1—y(1)]
~0.46C . (4.27)

Therefore, as in the case of shear viscosity, the nonanalyt-
ic dependence of D*(a;w) on frequency at zero shear rate
is the same as its dependence on shear rate at zero fre-
quency. The coefficients characterizing these square-root
forms are different, however. The specific relationship of
C’ to Cis given by the first line of Eq. (4.27) and, in con-
trast to the Goddard-Miller model described in the next
section, depends in detail on the hydrodynamics of shear
flow.
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A (x)

vx

FIG. 2. Function A(x), given by Eq. (4.25) (——), and as
given by the Goddard-Miller model (—0O —).

When both frequency and shear rate are finite, the func-
tion A(x) in Eq. (4.23) describes the transition region be-
tween the above two limits. This function is universal in
the sense that it is independent of all physical parameters.
Its form is determined only by the particular nonequilibri-
um state of uniform shear flow. Consequently, all fluids
whose macroscopic dynamics is governed by the Navier-
Stokes equations will lead to asymptotic diffusion charac-
terized by the same function, A(x). Figure 2 illustrates
the smooth transition between frequency-dominated and
shear-rate-dominated limits.

V. GODDARD-MILLER MODEL

To model the viscoelastic and non-Newtonian proper-
ties of complex rheological fluids, a relatively simple rela-
tionship between the irreversible part of the stress tensor,
t;j, and the strain tensor ¥;; has been used,’®3!

()= — fo'd»r[zc(t—»r)r,-j(t,r)] , (5.1)

where I';;(z,7) is the strain rate tensor in the corotating
frame,

() =[R(t -1y Rt —7)]; ,
(5.2)

1

7’ij="2_

aU; dy;

6rj ari

Here R;;(2) is the rotation tensor for transformation to a
frame rotating at an angular velocity equal to that of the
fluid (one-half the fluid vorticity). The response function
C (1) is taken to be the same as that for a fluid with no
vorticity, i.e., it is the response function for linear viscoe-
lasticity. Consider a flow with time-independent vortici-

ty,

d
‘_“ar. U,'='V,'j(t)+wij ’
J
(5.3
1
w,-j=7(a,-j+aj,-) >

where a;; is taken to be the shear rate tensor of Eq. (4.16).

The rotation matrices are easily evaluated for this case
and Eq. (5.1) simplifies to

ty(N=— [ dr{2C(—ricoslalt —D)lyn(r)} . (5.4)

The corresponding frequency and shear-rate-dependent
viscosity is then defined by

n(w,a)= [ * dt coswr)C (t)cos(at) . (5.5)

This model can be applied in an analogous way to dif-
fusion in the flow field (5.3). The irreversible probability
current J* is assumed to be related to the gradient of the
probability density in the corotating frame,

Jr=— fo'dt Go(t~r)R,.j(t—¢)a%P(r), (5.6)

where Go(t —7) is the equilibrium velocity autocorrela-
tion function. The associated frequency and shear-rate-
dependent diffusion coefficient is then

Dj(a;w)= fow dt cos(wt)Go(1)R;;(1) . (5.7)

In particular, the component along the direction of the
velocity gradient is

Dy, (a;w)= fow dt cos(wt)Gy(t)cos(at /2) . (5.8

The small w and a behavior is governed by the long-time
behavior of G(t). Use of the equilibrium mode-coupling
form for Gy(¢) in (5.8) then leads to the result (4.23), ex-
cept y(t) is replaced by

y(t)—cos(at /2) . (5.9)

Similarly, the asymptotic behavior of this Goddard-Miller
model is the same as Eq. (4.26), except that
C'=C/V2~0.71C [note that this result differs by a fac-
tor of 1/V/2 from that of Ref. 22; the origin of this differ-
ence is the factor of + in the argument of the cosine in
Eq. (5.9) that was omitted in Ref. 22]. For finite frequen-
cies and shear rate, the Goddard-Miller form for the func-
tion A(x) is also shown in Fig. 2.

VI. DISCUSSION

A formal definition of the nonlinear diffusion coeffi-
cient for shear flow has been identified in a form suitable
for theoretical analysis (e.g., molecular rather than Taylor
diffusion) and for nonequilibrium computer simulation.
Typically, in a nonequilibrium simulation the appropriate
current (here J*) is divided by the corresponding “force”

(here VP) to determine the nonlinear transport coeffi-
cient. For small gradients this procedure should agree
with the Green-Kubo expressions for transport coeffi-
cients as equilibrium time correlation functions. The re-
sults of Sec. II suggest a means for unifying the study of
linear and nonlinear transport by identifying the appropri-
ate generalization of the Green-Kubo expressions to the
general nonequilibrium state for shear flow. Specifically,
Eqgs. (2.26) and (2.27) define a computer simulation prob-
lem for the determination of the diffusion tensor as a fluc-
tuation expression in the nonequilibrium state, analogous
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to current equilibrium simulations for linear transport
coefficients. The analysis given here for self-diffusion can
be extended to other transport properties for shear flow as
well (e.g., nonlinear thermal conductivity and viscosity).
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APPENDIX A: TRANSLATIONAL INVARIANCE

The objective here is to prove that the probability densi-
ty in the Lagrangian frame, P’(q,t), is translationally in-
variant. A related result has been obtained by Onuki and
Kawasaki.’> Equation (2.18) may be written more expli-
citly

P'(a;t)EP'(q—?o,?o;t)

= [ dQdUdr 0p(T—7(Q),I;0)
X8(Q—T)8(Q()—Q— (4 —Tp)) ,

where 656(0)=ﬁ and I'={7,,B,] denotes a phase
point for the positions and momenta of the fluid particles.
A change of variables,

(A1)

—

U’=6_V(Q)a pa pa—mv(qa)’ (A2)
then leads to
P'(q—To, Tp;t)
= [dQdU’dr’ Qp(U',T;0)
X8(Q—To)8(Q()—Q—(G—T0)) , (A3)

where dT' '_{f'a,f)’;} and it is understood that 6(1‘) is
now a function of Q, U’, I/, and t. The equations of

motion in these variables are readily obtained from the
definition (2.17):

d
ZQi(t)=Aij(t)U; (1),

d (A4)
Z(jil +aijUjl (t)

=A;(0) T Foil A= )(Q(1)—q,(1))]
a
where F;(T) is the interatomic force between a pair of
particles, and q(¢) is defined in a manner similar to Q(¢),
qolt)=To(t) —V(T,(2)) . (AS5)

The equations for q,(¢) and P 4(¢) are formally the same
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as (A4). Consequently, from the translational 1nvar1ance
of ( A4) Q(t ) transforms under the translation Q—Q+%
as Q(t —»Q(t)+ X. [Note that thls property does not hold

for the laboratory coordinate R(¢), as a function of U '(¢),
since it obeys the equation

—R(t Aij()Uj (1) +a;;R;(2) (A6)
which is not translationally invariant. The choice of U’
ragler than U is required for invariance of the ensemble
p(U",T;0).] A change of variables, Q=Q—7% in (A3),
then gives the desired result

P'(q—To,To;t)=P'(4 —Tp, To+X;t) (A7)

and P'(q—To,Tp;¢) depends on T, only through §—7,.
Also, it is simply related to an average over the uniform
ensemble, (2.4), by the identity

Q! [ dXP(G—TFo, To+%;0)
= [ dQ4Udrp@',r;0)
X 8(Q(1)—Q— (G —T1%))

P'(q—To, To;t)=

(A8)
or

P'(4;0)=(8(Q() —Q—(§—T0))0) ,
which is Eq. (2.19) used in the text.

(A9)

APPENDIX B: SOLUTIONS TO HYDRODYNAMIC
EQUATIONS

The hydrodynamic equations for the probability density
P(7’;t) and the velocity field V(T;¢) for an incompressible
fluid are
+V(F;0)-V

P(7;t)—D;; ———P(T;t)=0

2
”88

VAT + L2 p(Ft)—vWh, =0, (B1)

p or;

where v=1/p is the kinematic viscosity, p is the density,
and p(T;t) is the pressure. To calculate the mode-
coupling contributions in Sec. IV these equations may be
linearized about uniform shear flow:

2
2 tayr, aa P(Tj1)—Dy 52— aa P(F50=0
%+aljrj—£-l-—nvz u,(?;t)+a,JuJ(F;t)

V-8(F;1)=0

Here u(T;t) is the deviation of the velocity from that for
uniform shear flow,
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u;(T50) =0, (T 8) —ayr; . (B3)
An equation for the pressure follows from the divergence
of the equation for u;(T;t):

Vzp(f';t)+2pa,-j5(’:juj=0 . (B4)

The set of equations (B2) and (B4) are most easily
solved by making a transformation to the Lagrangian
coordinates (2.12) to give

9
ot

—D,]Ak,(t A]](t) Pl(a,t)=0

dg a

2

a ’ bnd r’ ""P.
[‘57 —vAkj(t)A[j(t)W u; (q;t)+a,-juj (q;t)

1 ) —
+—A;(t)=—p'(q;t)=0
(BS)

u'(q;t)=0
9g;

A,,(t)
i 3

34,0 P(Q't)+2pa,~jAk,~(t)5;;u; =0.

The prime on a function denotes the same fuﬁction with

the prime expressed in the new coordinates, e.g.,

P'(q;t)=P(T;1) , (B6)

Ak,(t)Ah(t)

etc. Define the Fourier transform of a function of g by
FB= [dqe* i@ . (B7)
The Fourier transform of Egs. (B5) then gives

‘~a—+D,-jk,-(t)kj(t) P(i;0=0

at

[%+vk2(t) ﬁ;(E;t)+a,.,.17;-<ﬁ;t>—%ik,-(t)p"(l?;t>=o
o (B8)
ik(¢)-u'(k;t)=0
k)" (K;1)+ 2payik; (07 (K;)=0
Here k(¢) is defined by

ki(t)=k;A(t) . (B9)

The pressure can be eliminated from the velocity equa-
tion to give

[%+vk2(t) 7 (K;0) +ayi j(Ks0)
ki(tk () _,
-—2—kz(—t)—~a,ju j(k;t)=0 (B10)

To set these results in a form most closely related to those
for zero shear rate a final transformation on the velocity
can be made, as suggested by Eq. (2.32):

u" () =Ay( =07 j(K;1) . (B11)

Also, to lowest order in the shear rate, D;; may be re-
placed by its equilibrium value D§;;. The hydrodynamic
equations for shear flow then become

9 2 | BT
lat +Dk“(t) |P'(k;t)=0

_ (B12)
lga;'*"\'kz(t) ﬁi"(E';t)+Aij(t)ﬁ;'(E';t)=0 ,
with
Ko (£)ky(2)
A,-,-(t>s_2A,-,,,(—z>—'”k—2(t)—a,,. . (B13)

For a=0, A;; vanishes, E(t)—»i, and the linearized hy-
drodynamic equations for fluctuations around equilibrium
are regained.

The solutions to equations (B13) are obtained by in-
tegration,

FEn=P(K0exp [~ [ drDkn)]
R (B14)
T (K0 =Ay(0)

X |exp

— foth[sz(T)-i—A(T)] ] ]ljﬁ}(ﬁ;o) .

It is not necessary to transform this result back to the lab-
oratory coordinates for the purposes here because of the
identity

[ dkP(—k;pa (K= [ dKP(—Kna (K0,

(B15)
as follows from the definition of the transformation to
Lagrangian coordinates and the fact that the Jacobian is
unity. Therefore, the mode-coupling integral of interest is
[Eq. (4.6)]

%A,«I(—t)(g(—E;t)ﬁl(E;t)Uj )
(jf)s Gy(k;t), (B16)
where G;( K;1) is the solution to
%+(V+D)k2(t) Gy(K;t)+Ay(DGy(K;0=0  (B17)
with initial condition
G, (K;0)=(P(—K;0)%,(K;0)U; ),
—><P(—k) (k) —k E—f‘f—) U,~>L
= kZT i — kliljj (B18)

The second line follows from the condition k-# (E):O,
for an incompressible fluid. The solution to (B17) is now
straightforward, but lengthy, to obtain and only the result
is quoted in Sec. IV.
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