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Quantum theory of a one-dimensional laser with output coupling: Linear approximation
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A simple model of a one-dimensional optical cavity having output coupling is used to develop a

fully quantized linear laser theory. The present model and procedure, which work directly within

the continuous spectrum, allow us to find a simple treatment that leads to explicit solutions for the

field inside and outside the laser cavity. The threshold condition for laser light onset is obtained by

assuming the field operating in a single collective mode and the usual adiabatic hypothesis. A

development that removes this later restriction is also discussed and outlined.

I. INTRODUCTION II. CAVITY MODEL AND FIELD MODES

Laser theory conventionally deals with discrete cavity
modes and introduces artificial mechanisms to simulate
the field loss due to beam extraction. More recently, how-
ever, several realistic models' have been introduced in
theoretical treatments which are able to describe properly
the output coupling, i.e., the coupling of the field inside
the laser cavity with the field outside this region due to
partial transmission at one of the mirrors.

In this paper, which is a natural extension of a previous
semiclassical treatment, we develop a fully quantized ver-
sion using a simple model of a one-dimensional optical
cavity where the field quantization is carried out in terms
of the modes of the continuous spectrum defined
throughout the space. The coupling of the radiation field
with the active atoms is confined in the laser cavity,
which is the subspace defined in the interval z E [0, I] of
the entire cavity defined in the interval z E ( —oo, I].

The present treatment becomes simple and compact due
to the model and procedure which work directly within
the continuous spectrum. This yields an integral equation
for the field inside the laser cavity, within the linear ap-
proximation. The application of standard techniques
leads to an explicit solution that exhibits the role of exci-
tations in the buildup of the laser field from vacuum.

In Sec. II, we briefly discuss the model and normal
modes of the entire space zE( —oo, l]. Section III treats
the field quantization. In Sec. IV, the basic equation of
motion for the field in the presence of active atoms is de-
rived. As usual, we assume a model of two levels and
noninteracting atoms with the population inversion kept
constant. This later assumption leads to the linear theory.
The damping term for the atomic polarization is added
phenomenologically, while the damping term for the field,
due to beam extraction, is automatically built in the
present model. In Sec. V we solve the field inside and also
outside the laser cavity, under the following usual approx-
imations: the laser field in single-model operation, homo-
geneously broadened atoms, and slowly varying amplitude
approximation. Discussions, conclusions, and the outlook
on further extensions of the present treatment are present-
ed in Sec. VI.

Here we summarize the model of a laser cavity con-
sidered in Ref. 4; the reader must refer there for further
details. This model is realistic with respect to the in-

clusion of the loss in the radiation field, by taking into ac-
count the beam-light extraction in the laser, allowing the
natural inclusion of the dissipation in the quantized elec-
tromagnetic field.

The laser cavity in this model essentially consists of two
parallel plates, one of which is totally reflecting, whereas
the other one is semitransparent. The origin is taken at
the semitransparent plate and we put the other plate at a
distance I; the z axis is made to be perpendicular to the
plates. Then, the optical cavity is the region 0&z &1 and
the outside region is the left half-space —oo &z &0. The
semitransparent plate simulates an ideal limiting case of a
dielectric medium placed at z=O, having a very small
thickness with a large dielectric constant g. So the model
is analytically described by'

e(z) =eo[1+q5(z)],

where eo is the electrical permissivity of vacuum; g is a
real parameter with dimension of length, which deter-
mines the transparency of the window at z=0; and 5(z) is
the Dirac 5 function which represents the ideal limiting
case of narrowness for the semitransparent plate.

The normal field modes are stationary solutions of
Maxwell equations, which satisfy certain boundary condi-
tions. They are given by (see Appendix)

Lksin[k(z —I)], 0&z & I
Uk(z) = ~ (2)(2/m)'~ sin(kz —Pk), —oo &z &0

where the 5-function normalization
II Uk(z)Uk(z)[e(z)/eo]dz =5(k —k') (3)

has been employed. Pk is a phase shift:

Pk =sin '[(n/2)' Lksin(kl)] for Lk as given by Eq. (4)
below. The plot of Lk as a function of cok shows reso-
nance peaks centered approximately around the Fox-Li
quasimodes frequencies coo„n(cm /I) w——ith spacing
b,co=co./l.
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with

A=qk, =n (q~/l)»1
and coo the resonance frequency associated with the nth
Fox-Li quasimode (in the optical case n =10 »1)

coo cko-——(n~+A ')c/I .

Equations (5) and (6) together express the requirement
that the transparency in the window be very small.

III. FIELD QUANTIZATION

The classical Hamiltonian for the free radiation field in
the present case is

HJ: —, f [e(——z)(BA/Bt) +p(z)( V X A) )dz, (8)

where e(z) is given in Eq. (1), p(z) is the magnetic permea-

bility of medium, and %=A (z, t)x is the vector potential.
Since we are dealing with a nonmagnetic medium we set
lLl(z)=1. Expanding the vector potential in terms of the
complete set of the normal modes Uk(z) in the whole cav-

ity, we have

A(z, t) = f qk(t) Uk(z)dk x . (9)

Using Eqs. (3), (8), and (9) the Hamiltonian for the radia-
tion field in the whole cavity can be written as

Hr= 2 f (Pk+~kA)"k (10)

where pk(t) =jk (t). The field is quantized by imposing on
the qk's and pk's the standard commutation relations

[ek Pk]=t&&« —k'» [ek Vk'] 0=[Pk Pk']

Introducing the annihilation and creation operators ak, ak
through the conventional canonical transformations

ek (~/2~k ) (ak +ak ) (12a)

Pk = l (~k /2)—'"(ak ak»— (12b)

we have

We assume the transparency of the transmitting win-

dow is very small, in such a way that the function Lk will
be strongly peaked around the Fox-Li quasimodes fre-
quencies. In this case, the linewidth I „associated with a
given Fox-Li resonance frequency cop& is much smaller
than the spacing between the neighboring resonances, i.e.,
I „&&hco=cm/I, and' we can approximate the line-shape
function Lk by a Lorentzian function Mk(n) as ' (hereaf-
ter, for brevity, we drop the band index: I „~I,
Ao„—+A, and coo„~coo)

Lk-Mk(n) =(2/n)'~ I A/[(cok —coo) + I ]'~

where I is determined by the window transparency,

I =c/A I,

where the zero-point energy has been neglected. From
Eqs. (9) and (12b) and the definition pk(t) =jk(t), we find
the electric field operator in terms of the operators ak, ak.

E(z, t) = —(8/Bt)A (z, t)

=i f (fink�/2)' (ak ak—) Uk(z)dk . (15)

IV. LASER EQUATION OF MOTION

A. Derivation of the general expression

H =Hg+H~+Hg .

HF stands for the Hamiltonian of the free field and is
given by Eq. (14);

H~ = g&II~tJm, le,

is the Hamiltonian of the atoms; and

Ht= g f &(gk ako, o,+H.c. )dk (19)

is the interaction Hamiltonian, where H.c. means Hermi-
tian conjugate and

I= Q
k

1/2

Uk(z )p

is a coupling constant, representing the interaction. In
Eq. (20) p is the z component of the dipole matrix ele-
ment of the mth atom.

Using Eqs. (13), (14), and (16)—(19), we find the Heisen-
berg equations for the field and atoms operators:

(d ldt)ak =l&kak+l g gk~w~ N~ (21)

(d /«)(l7, lT, )

=» (~ ~~ ) r(a —~ ) —l gk~ak+ dk

where

%'e assume the active two-level atoms inside the laser
cavity distributed with a uniform density per unit length
in the z direction; we also assume that they are coupled to
the field at t =to. We introduce two sets of operators
[o~,cr~ ], which satisfy the anticommutation rela-

tions

[lT , lT , ]+——&;, , [lT , ,o , ]+ -—[ot,ot )+ ——0 (16)

and are the creation and annihilation operators for the
upper (lower) energy state of the mth atom. The atomic
energy levels are separated by a gap AQ

The complete Hamiltonian for the whole system is

[ak ak' ] ~(k k ) [ak ak'] 0 [ak ak' ] (13) ~m =l7m arm a'm lcm
2 2 1 1

(23)

and Eq. (10) becomes
00

~k yak jZkdg
0

(14)

is the atomic population inversion and y~ is the
phenomenological damping term for the atomic polariza-
tion. Similar equations for ak and u o. can also be
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found.
Equations (21) and (22) turned out to be a set of cou-

pled equations. However, under the assumption that the
population inversion is kept constant for every atom, the
mentioned equations decouple and one is led to the linear
approximation. Using Eq. (15) and taking into account
only the negative frequency part of the radiation field, we
have

E (zt,) =—( f (e,i2)' ak(t)Uy(z)dk . (24)

The positive frequency part E+(z, t) is obtained through a
similar procedure used in the calculation for E (z, t) and
the results do not depend on the choice between E (z, t)
and E (z, t). Keeping in mind the definition in Eq. (24),
after some straightforward calculations on Eqs. (21) and
(22) we get

E (z, t) =F(z,t)+ f f (Kiack/2)' Uk(z)e " g gkmcrm, o,(t')dt'dk, (25)

F(z, t) = —i f (e „g2)'"ak(t, ) U, (z)e'""dk

is a noise operator arising in the initial values of the field operator ak(t). Furthermore, using the approximation

(26)

f gk k(t)dk= E (,t),
COp

we find

(27)

E (z, t)=F(z, t)+G(z, t)

0
+ g ™

2 f, f Uk(z)Uk(z )e " dk f exp[(iQ —y )(t' t")]E—(z, t")dt"dt',
m

where
1/2

G(z, t)= f"

(28)

expI [&'(& —cot, ) —y ]t I
—exp[[i (0 cok) y]—)—

Uk(z)e "
gkmom cpm (to)

2 1 i m cok ym

(29)

is another noise operator which can be shown to be negli-
gible after a long time in comparison to the lifetime of the
atom or the field inside the laser cavity. Unlike F(z, t),
the noise operator G(z, t) depends on the initial values of
the atomic operators omam (t) an. d also on the coupling

constant, as is clear in Eq. (29), which correlates the two
interacting systems of atoms and field.

Equation (28) is the basic equation for our laser field
and is valid both inside and outside the laser cavity. It
can be written in a different form by decomposing

I

E (z, t) into a slowly varying amplitude (in time domain)
and an oscillating factor as

E (z, t)=8' (z,t-)e'"'c- (30)

where co [co=coo, by consistency with Eq. (27)] is the ap-
proximate center frequency of mode oscillation and
E (z, t) is a complex amplitude denoting the slowly vary-
ing field component. Hereafter, for simplicity, we ap-
proximate co—+coo. Substituting Eq. (30) into Eq. (28) and
using the adiabatic hypothesis we find

t
g (z, t)=~(z, t)+ f fi(z,z, t t')8' (z, t')d—t' 8'(z, to)—

O
I

1 z,z, t —t' exp i mo —Q +p to
fp

I ™ (31)

where W(z, t) =F(z, t)exp( i coot) and the terms f& (z,z—,~)
and 8' (zm, to) are defined by

lp fQ
i(z,zm, r) =

2Rcoo

E (APO cd]
X f Uk(z)Uk(z ) dk,

i (coo n)+y—
(32)

I 00(z, to) = i f (fuu—k I2)' ak(to) Uk(z )dk . (33)

The relevant pole of the integrand in Eq. (32) is given
by g=(coo+il )jc In order to. solve f((z,z, i.), we use
the normal modes Uk(z) as defined previously in Eqs. (2)
and (4), and the integral over the continuous spectrum is
extended to infinity, in view of the falloff of the Lorentzi-
an factors. It can be shown that the last term in Eq. (31)
may be neglected when compared with W(z, t). Accord-
ingly, the negative frequency part of the field becomes
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t
8' (z-, t)=W(z, t)+ f, (z,z, t t—')8' (z-, t')dt'.

tp

Next, substituting Uk(z' ) and Uk(z) into the foregoing
equation, we integrate over k by using the residue tech-
nique. We find the single root

When looking for the field inside the cavity, Eq. (33)
turns out to be an integral equation. On the other hand,
once the field inside the laser cavity is obtained, the field
outside can be found from Eq. (34) by direct integration.
In the remainder of this section we devote ourselves to
finding the field inside the laser cavity.

sp ——nM —I2

where

p cup&

4Ay

(38)

(39)

B. Field inside the laser cavity

We want an explicit expression for the above-mentioned
field. If we apply the Laplace transform M[8' (z, t)]
~$' (z,s) and set z =z' in Eq. (34) we get, after a little
algebra,

W(z', s)(z,s) =
1 —fi(z',z,s)

(35)

where the convolution theorem has been used. 8'

and f, are the Laplace transforms of 8', e, and f„
respectively. The application of the inverse Laplace
transformation to the foregoing equation leads to

(z~, t) =W '[8' '(z~, s)]

f i+i ~ , e ~(z~,s)ds
2m&' 1 —' 1 —fi(z',z,s)

(36)

V. SOLUTION OF THE LASER
EQUATION OF MOTION

A. Field inside the laser cavity

As mentioned above, the expression {36)is a formal and
compact expression for the laser field inside the cavity.
Its exact solution is accessible by straightforward applica-
tion of the residue theorem. In Eq. (36) we consider the
case of homogeneous broadening and uniform population
inversion for the atoms. %'e also assume that the atomic
frequency, the dipole matrix element, and the damping
constant, as well as the population inversion, are the same
for all atoms. The poles of interest in Eq. {36) are the
roots of the denominator in the integrand. Thus we set

1 —fi(z',z,s) =0 . (37)

where I, is the abscissa of convergence. Equation (36) is a
closed expression for the field inside the laser cavity.
Note that P (z~,s) in Eq. (36) is an operator, while

f, (z',z,s) is a classical function. Also, Eq. (36) shows
that the laser field rises from the fluctuations through the
inhomogeneous term P(z~, t) of the integral equation
(34).

M = f Mtdk =2/I . (40)

For the sake of simplification we set cop-0 (resonance)
and substitute sin[k(z —I)] in Eq. (39) by its root-
mean-square value, i.e., sin[k(z~ —l)]—+I/v 2. Making
use of the residue theorem in Eq. (36) we find, for the
field inside the cavity,

8' (z~, t)= iaM—e

and, also, assuming that uk
—CpMk where Cp is a coll-

stant, which means an eigenvalue distribution I uk J for the
annihilation operator ak following the Lorentzian line

shape Mk, we obtain

(E (z, t)) =CpM sin[('(z l)](Pic//2)'~—
f ~/2 ) '(lctlp+sp )E

Xe c e (43)

where ( 8' (z~, t) ) = (E (z, t) )exp( inept), —g=(cop
+ il )/c, and Eq. (40) has been used.

B. Field outside the laser cavity

We recall that both Eqs. (31) and (34) are self-consistent
equations. Thus the field outside the laser cavity can be
found from Eq. (34) by direct integration once the field
inside the cavity is already known. The substitution of
Eq. (41) into Eq. (34) gives

2 ak tp . 41
0 $0 —l EQ)k

The threshold condition for laser oscillation is found
from the foregoing result by setting sp ——0, yielding [cf.
Eq. (38)] aM =I, in agreement with the semiclassical re-
sult. At this point, the rapid component of the field
exp(icopt) may be restored [cf. (30)j. The complex ampli-
tude is given by Eq. (41) in an operator form. Its value,
however, will depend on the (initial) state of the field. As-

suming, for example, the field is initially in a coherent
state I I

uk ) I 1' ~ I l
u, ) I =u„ I ~

.„)},we find

(E {z,t)) = iaM e—

,&2
Uk(z~ )

X f (iripik/2)'i uk dk
0 Sp —l AQ)k

(42)

g-(z, t)=W(z, t)+a f' f"U„(z)U„(z )e iaM e' f —(~k/2)' &k(tp) . dk' dkdt (44)
tp 0 m

Sp —l ECOk
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The solution (44) still remains in an operator form. Hence the amplitude and phase for this field can be obtained only

after the state of the field is given. Under the above assumption of a field in a coherent state, we find the expectation

value of the field outside the laser cavity:

( W' (z, t)) =(ficok/2)'~ e '&'e' ~ CpM e '/cA+u( 8' (z, t))sin[)(z —l)]e '~'M /cAI (1—e '
) . (45)

X sin[/(z —l)]e '~'/cAI', (46)

where the decaying term exp[ —1 (t —tp)] has also been

neglected. As done previously for the field inside the laser

cavity, the rapidly oscillating term exp(icopt) for the exter-
nal field can be restored.

The results found in Eqs. (43) and (46), or more gen-

erally, (41) and (44), allow us to find the amplitudes and

phases for the field inside and outside the laser cavity. In
a future paper we will employ these results in order to cal-
culate the quantum coherence functions which correlate
these fields.

The first term in the foregoing equations gives the free ra-

diation field (a=O) and has an exponential decay. When

the laser action takes place above threshold, i.e., so ~0,
the second term becomes dominant and Eq. (45) can be
written in the form

(8' (z, t))=aM2(8' (z, t))

(z, t) =P (z, t)+ f ', (z,z, t t')g (—z, t')dt',
0

where

(47)

X J Uk(z)Ut, (z )e " ' dk,

F(z, t) appearing in Eq. (25}. On the other hand, the
threshold condition, as given by Eq. (38), coincides with

previous results as found in Refs. 2 and 4, and the reader
is referred there for comparison. This result has been ob-

tained under the conventional assumption of the adiabatic
hypothesis. However, although it is a usual and justified
approximation, one could shortly reexamine the procedure
following Eq. (28) in the (eventual) absence of this restric-
tion. Therefore, going back to this equation and using Eq.
(30) we find

VI. COMMENTS AND CONCLUSION

The present treatment deals with the modes of the laser
cavity as a resonance in a continuous spectrum. This pro-
cedure comes from the use of a realistic model which

properly includes the dissipation in the field inside the
cavity taking into account the beam extraction at one of
the mirrors. Unlike the conventional discretized version
where the field loss is unrealistically simulated by artifi-
cial loss reservoirs, the present model has appropriate
boundary conditions yielding the continuous set of normal
modes Uk(z), as given by Eq. (2).

By expanding the field as a linear superposition of the
modes Uk(z) [cf. Eq. (9)], we developed a quantum theory
of a laser having output coupling, with the following ap-
proximations: (i) the transparency of the transmitting
window is required to be very small [cf. Eq. (6)], (ii) we

treat the laser in single-mode operation, (iii) we assume
two-level homogeneously broadened atoms, and (iv) uni-

form population inversion is kept constant, yielding the
linear approximation. In this way, we derived the basic
equation (28) for the laser field. This equation turns out
to be an integral equation when one looks for the field in-

side the laser cavity. In this case it was solved by assum-

ing the traditional adiabatic hypothesis plus the applica-
tion of the Laplace transform and the convolution
theorem, leading to the solution given by Eq. (41). Once
the field inside the laser cavity is known, Eq. (28) gives
the field outside the cavity by direct integration, as ob-
tained in Eq. (45). This latter result cannot be derived (or
even postulated) in the usual treatments that employ arti-
ficial loss reservoirs to simulate the outside cavity.

A little inspection of Eq. (34), plus Eq. (26), shows the
laser field buildup from vacuum. This is due to the quan-
tized theory which gave rise to the inhomogeneous term

(48)

(49)

t&(n
J 2&v) =e (SO)

For the field inside the laser cavity we again apply the
Laplace transform plus convolution theorem and, after
calculations similar to those that led to Eq. (35)—except
for twice applying the convolution theorem —we find

W (z~,s)
(z~,s) = (51)

f1 (zm zrn ~)f2(~)

Following the same procedure used to obtain the result

(38}, the denominator in the foregoing equation has the
roots

(S2)

~o = —(y +I )/2 —I[(y +1)/2]'+y s, ]'~'. (S3)

Here only the root ski is meaningful for laser threshold.
For this root so& we obtain the threshold condition by set-

ting spi~0, which leads to X=(X2+y sp)'~, where
g=(y +1 )/2, i.e., spi~O implies sp —+0. Thus, the
threshold condition so~ ——0 coincides with that found in

Eq. (38). However, according to Eq. (52), above and
below threshold we have ski +sp and, as expected, in the
absence of adiabatic hypothesis the transient behavior of
the laser field differs from that obtained under this as-
sumption. It should be stressed that, in the particular case
where the adiabatic hypothesis is valid, we have
y~ &&sp, l, and Eq. (52) recovers the result given by Eq.
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(38), i.e., sot ——so. In a future paper we investigate the ex-
tension of this work to the nonlinear approximation, as
well as the quantum coherence functions for the field in-
side and outside the laser cavity.
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where

A=A(k)=gk .

Setting t=tan(kl) we find

(n/2)Lk =(1+t')/[t'+(At —1)'] .

The function Lk has peaks at the points

t„=tan(kl)=A '(k„)=(rik„) '—:A„'«1,

(A7)

(AS)

(A9)

APPENDIX: NORMAL MODE SPECTRUM

E(z, t) = Uk(z)exp( itokt},—
and using Maxwell equations we find

Uk(z)+k Uk(z) =0, k =tok/c

(Al)

(A2)

For the sake of completeness, we add a short summary
of some results found in Ref. 4. As mentioned previously,
we consider only longitudinal field modes, so that the
model becomes effectively one dimensional, in the sense
that the field depends only on the z coordinate. For
monochromatic waves of circular frequency cok,

where the window transparency is very small [cf. Eq. (6)].
The peak values of Lt, are given by

(~/2) [Lk(t„)]'=1+A'„=A'„ (A10)

and the peak half-widths are

b, t„=1/A'„=lb, k„. (Al 1)

The resonance frequencies k„are the roots of the tran-
scendental equatiori (A9). In the optical range we have

k„l =nor+ 0„, n » 1,
~

8
~

&& 1 . (A12)

Equation (A9) may be solved by interaction, with the fol-
lowing result:

where the mode functions are subject to the boundary
conditions Uk(l) =0 and k„=ko „(nn+——Ao „')./l =coo „/c, (A13)

Uk(0+) —Uk(0 )=—qk Uk(0) . (A3)

In deriving this equation, the continuity condition at z=O
has been used, i.e.,

Uk(0+)=Uk(0 )=Uk(0), (A4)

sin5k =(n/2)' Lksin(kl),

(n/2)Lk ——[1+A sin (kl) —A sin(2kl)]

(A5)

(A6)

and the discontinuity in Eq. (A3) arises from the 5 func-
tion term in Eq. (1).

The solutions of Eq. (A2) are given by (2) and are sub-

ject to the usual continuous spectrum normalization [see
Eq. (3)]. The substitution of these solutions into the boun-

dary conditions (A3) and (A4) yields

where Ao „ is given by

Ap „——ngtr/l . (A14)

Note that the quasimode frequencies coo „are shifted, with
respect to the modes of a totally reflecting cavity, by
Aeon „——c/Ao „l.

Substituting the above approximations into Eq. (A8)
and setting [see Eq. (A12)]

I „=c/Ao„l,
we find, in the neighborhood of tok =too „,

Lk Mk =(2/tr)I Ao /[(LUk —Np) + I ]

(A15)

(A16)

which is a Lorentzian line shape with linewidth I „given
by Eq. (A15}.
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