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Squeezing of intracavity and traveling-wave light fields
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A general input-output theory for quantum dissipative systems is developed in which it is possible

to relate output to input via the internal dynamics of a system. This is applied to the problem of
computing the squeezing produced by a degenerate parametric amplifier located inside a cavity.
The results for the internal modes are identical with those of Milburn and Walls [Opt. Commun. 39,
401 (1981)]. The output field is also found to have only 50%%uo of maximal squeezing. However, by
taking the output for a degenerate parametric amplifier inside a single-ended cavity and feeding this
into an empty single-ended cavity, one can produce a maximally squeezed state inside this second

cavity.

I. INTRODUCTION

Recent calculations by Milburn and Walls' and by
Yurke have shown that squeezing in a parametric ampli-
fier is a subject of great subtlety and possible ambiguity.
Milburn and Walls made calculations using rnaster-
equation techniques which give a maximum squeezing of
only —, compared with a theoretical maximum of 4, while
Yurke has carried out a single-mode analysis which ap-
pears to show that the actual output from the cavity is not
so limited.

We show that a more careful formulation of input, out-
put, and internal fields in such a system is needed. The
behavior of the light field inside a cavity can be described
by standard master-equation techniques, which treat the
external field only in its role as a heat bath. This ap-
proach is incomplete in two ways: first, it does not allow
for the possibility that the incoming part of the field may
be other than a vacuum or thermal, although the inclusion
of a classical driving field is equivalent to allowing the in-
coming field a coherent amplitude; second, and more im-
portantly, it contains no prescription for calculating the
properties of the light emitted from the cavity, despite the
fact that it is precisely this emitted light which is normal-

ly accessible to measurement. The approach presented
here aims to provide such a method. The internal field is
linked with the input by identification of the "noise" with
the incoming field, and the output can then be calculated
using the boundary conditions at the cavity mirror.
Yurke and Denker have treated the case of an electronic
circuit connected to a transmission line from this
viewpoint. To the circuit this looks just the same as a
resistor, but it is clearly capable of carrying signals in and
out.

II. INPUT-OUTPUT EQUATIONS
FOR A MODEL CAVITY

We present here a phenomenological derivation of the
input-output theory for a light field interacting with a
cavity. In a later paper we wi11 present a rigorous
development, which is, however, not so intuitively appeal-
ing or instructive.

An optical cavity is commonly described by a Hamil-
tonian of the form

a i
dt R

' "' 2
= ——[a,H, ,]— a +I, (2)

where a is the annihilation operator for the internal mode,

y is the cavity damping constant, and I' is the noise
operator. For a single-ended cavity, the bath is simply the
radiation field outside the mirror and the inhomogeneity
I' must therefore be ascribed to the incoming part of this
external field

I =g'ain ~

where a;„describes the incoming field and y is as yet un-
determined. Time reversal of (2) must be equivalent to a
change of sign in the systematic part, and replacement of
the incoming field by the outgoing one, to give

[a Hsys] a +y'aoUt (4)

There will be a boundary condition at the mirror which
will take to be of the form

a =k(a;„+a,„,)

and consistency in (2)—(5) then requires y =ky, giving

da l
[a,H,s, ]—+a +kya;„—

(5)

[a,H,„,]+ a —k—ya,„, .

For a linear system this can be rewritten as

~tot ~sys+~b+~i t

where H,„, is a function of internal-mode operators only,
Hb is the free Hamiltonian of the bath, and H;„, describes
the interaction between bath and cavity field, which is
taken to be linear. The behavior of the internal mode or
modes may then be calculated by master-equation
methods. Alternatively, one may obtain quantum
Langevin equations which for a single-mode cavity be-
cornes
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A — I u+kyu;„
which is an ideal Lorentzian with width y/2. The factor
k can be seen to be just a normalization constant for the
internal mode. It can be determined by the requirement
that the internal mode have the usual equal-time discrete
boson commutator

where

and A is a matrix. This system is linear in a quite general
sense, including, for instance, the possibility of phase con-
jugation (on phase-conjugating and phase-preserving arn-

plifiers, see Caves ). In terms of frequency components,
defined by

a(co) = f e'"'a (t)dt,
277

Eq. (7) becomes

iu(co)—= (A —TyI)u(co)+kyu;„(co)

=(2+ —,
' yl)u(co) —kyu, „,(co),

where

(9)

(10)

a(co)
u(co) =

and for simplicity, the commutation relations of the
operators will be taken as

[a;„(co),a;„(co')]=0,

[a;„(co),a;„(co')]=5(co—co') .
(12)

III. A ONE-SIDED CAVITY

This is really an approximate form, valid only for the case
that one is dealing with a very narrow band of frequencies
around a high frequency, which is always the case in
quantum optics. In a future paper, we will show this is
not an essential simplification. Rearranging to eliminate
the internal mode,

u,„,(co)= [A+( —,
' y+ico)I][ —A+ ( —,

'
y —ico)I] 'u;„(co) .

(13)

[a(t),a (t)]=1 .

Using the commutation relations (12) we find

[a (t),at(t')] =k2ye r I

—& —'
l e

giving

so that

(19)

ao«(co) =v ya(co) —a;„(co)

& y+1 (co —cop)
a;„(co),

—,
'

y —i (co —cop)

(21)

(22)

that is, the output field differs from the input by a
frequency-dependent phase shift and the "out" commuta-
tion relations are the same as those for the input. Though
simpler in form, this is essentially the same result as ob-
tained by Yurke and Denker for signals along a transmis-
sion line connected to an I.C circuit.

IV. A TWO-SIDED CAVITY

In most cavities there is a possibility of input and out-
put in two directions. Using H,„, as in (14) and generaliz-
ing (6) to allow for a second external field gives

a i 'Vz
[a Hsys] a a +V yla&n+V y2&&n

a(co), a;„(co) .
2 y —i (Co —Cop)

This relationship between k and y is nothing other than a
quantum fluctuation-dissipation theorem (on such
theorems in general see, e.g., Gardiner ). It will be shown
in our forthcoming paper that (19) is quite general. It is,
in any case, clear that since k is defined in terms of the
boundary condition at the mirror, it should be indepen-
dent of the nature of the internal system and also of any
other boundaries (mirrors). For the outgoing field one
may then use the frequency-space equivalent of (5) to give

da
dt 2

= —icooa — a +kya;„ (15)

If the systematic part of the Hamiltonian is taken as
that of a free Harmonic oscillator, we get a model of a
single mode in a one-sided cavity, i.e., a cavity with signi-
ficant loss through only one mirror. Thus we take

H,y, ——fico(p ~a . (14)

The equation for the internal-mode operator is

In frequency space we obtain

~yla;„(co)+V y2b;„(co)
a(co) =

T Yl+ 2 Y2 i(~ cop)

The output field components ao„,(co) are then

a.«(~}
=V y,a(co) —a;„(co)

(23)

(24)

which has the solution for the frequency components

a(co)=, ka;„(co)
& y —i (co —cop)

(16)

[Y~l 1 2 1 2+i(co —coo)]a (o )+&yly2b' (~)

2 Yl+ 2 Y2 i(~ ~0)
(25)
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If yq becomes very small we regain the results for the
single-ended cavity, that is to say, a small loss has a com-
parably small effect on the system. If, on the other hand,
the two mirrors are the same, y1 ——y2 ——y, the result is da —lCO= —ice~ +re ~ a-

dt
$1 722+2 '

If this system is inside a double-ended cavity the equa-
tion of motion is, from (23),

i (co co—p)a;„(co)+yb;„(co)
a „&(co)=

y —l (co —cop)
(26)

+~X)a;„+~Xpb;„. (30)

Near resonance (co=cop) this is approximately a through-
pass Lorentzian filter

We transform to a rotating frame with

lcd /2a~e ~ a (31)
a,„,(co) = . b;„(co) .

y —i co —cop
(27)

Further away from resonance there is an increasing ele-
ment of back-reflection in the output. Eventually
(

I
co —cop

I »y) the field is completely reflected,

and similarly for the input operators.
For simplicity, we now use only these operators in the

rotating frame, without any distinctive notation. In ma-
trix notation, the equations become

a.„,(~)= —a,„(co) . (28)
dc'

z (rl+y&)I] —+~71 i +~/2k (32)

A truly ideal Lorentzian through-pass filter is not, of
course, possible as it would also "filter out" the commuta-
tion relations and hence the quantum noise. The element
of reflection that appears in (26) is exactly sufficient for
their preservation.

V. THE DEGENERATE PARAMETRIC AMPLIFIER

The systematic Hamiltonian for degenerate parametric
amplification with a classical pump can be written as' '

H,„,=%co ptaa+ ,'iA[ee ~—(at) e'e ~ a ],—(29)

where

0 e 0

In frequency space Eq. (32) transforms to

0

icou—(co)= [A ——(y~+yz) jL]u(co)

+V y)~; (co)+V yz&; (co),

where now to allow for the rotating frame,

(33)

(34)

where co& is the frequency of the pump beam and e a mea-
sure of the effective pump intensity. For now the pump
and cavity will be considered to be tuned so that ~z ——2coo..
analysis of the effect of finite detuning is postponed for a
later work.

u(co) =
a(co, +co)

a ~(co, —co)
(35)

with co, =co&/2, and similarly for the input operators.
After performing the matrix inversion

( —,
'
y~+ ,' yz ico—)[V—y&a „(co,+co)+~yzb;„(co, +co)] e[~y&a;„(co, co)+~yah;„(—co, —co)]

a(co, +co)=
( ~ ri+ ~ r~ —i~)' —

I

e I' yl+ YY2—ico)' —
I

e
I

If both the input fields are vacuum or coherent, they will have zero normally ordered variance, that is,

C „(a,„,a,'„)=C „(b,„,b,'„)=0,
where

(a,a ) (at, a )

(37)

(38)

using the notation

(39)

In this case the only contribution to the normally ordered variance of the internal field will be from the commutator
terms, giving

( —,
' y)+ —,

'
yp —ico)e'

( ~ »+ ~ r~ I
e

I
)'+~—' 5(co+co'),

( ~ r i+ ,' r~+ I
e

I

-)'+~'
(40)

(a (co, +co),a(co, +co')) =
2 ( 'y~+~y~ -I e

I

)'+~—'
1

5(co —co') .
( ,'y, ~ ,'y, +—Ie

I

)—'+~'
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For the full internal mode, the variances are then

&.-'(,+ ),.-( .+
2m'

(irt+ irz)' —I&I'
(41)

(:x,,x,:)= ——,
' . (45)

Perfect squeezing in one quadrature, corresponding to an
eigenstate of the quadrature phase operator, is achieved
with a normally ordered variance of ——,'. The best that
can be achieved in the case of the parametric amplifier in
a cavity is when on oscillation threshold, giving

e' en(X +iX )

The normally ordered variances of these operators are

(43)

(X„X,:)=—,
4 z»+ zy2 —I&l

( a, a ) = dco dco' (a(co, +co),a(co, +co') )
2m

«2 r~+ 2 r2)
2 (-'r + 2 r 2)' —

I
~

I

'

To see the squeezing, the field must be expressed in terms
of the quadrature phases, ' Hermitian operators defined

by

Squeezing by a factor of one-half can thus be obtained in

the Xq quadrature of the generating cavity with the X~
quadrature infinitely unsqueezed. Note that the proper-
ties of the internal mode considered in this section depend

only on the total damping, not on the damping through
each mirror separately. This is naturally only true when

the two input fields have, as assumed, identical statistics.
The degenerate parametric amplifier in a cavity has

been analyzed in depth by Milburn and %falls' including a
quantized pump beam. It is not difficult to cheek that
their result is identical with ours for the intracavity prop-
erties, but of course it does not give any answer for the
output fields.

VI. THE OUTPUT FIELD

(:X),X2..) =0 .

(44) The internal-mode operators having already been found
in terms of those for the input field, the output operators
can now be calculated with use of Eq. (21):

[(—,'y, ) —( —,'y2 —ico) +
I
e

I ]a;„(co,+co)+eyta;„(co, —co)
a „t(co +co)=

(-'yt+ —'r2 —i~)' —
I
~

I

'

V r ly2( Y~y1+ z Y2 —ico)b;u(cos +&)+6+y ly2b; (&g —&)

( ,' r t+ ,
'

r-2 i~—)'—

Note that (13) could not be applied directly as it makes no
allowance for the second mirror, although if one wished it
could readily be generalized to correct this. As with the
internal field, only antinorrnally ordered terms contribute
to the variances so that

I

& a,„„a.„,)

& Out ~S+~ &Out S+

=y, (at, a ),
& aoutiaout &

(48)

I
&

I rt
2 ( 2 r1+ 2 y2 I

&
I

)'+~'
dco dco (auut(cog +co),auut(cog +co ) )2'

5(co —co'),1

( ,' y i+ 2r-~+
I

~-I )'+~'
(47)

( a,„,(co, +co),a,„,(co, +co') )

I~lrt
'

2 ( ~ r i+ ~ y~ I
~

I
)'+—~'

1 1

1 5(co+co') .
( ,'rt+ lr2—+I~I)'+~'

Calculation of the total output field variances shows a
very direct relationship with those for the internal mode:

=yt&a, a) .

Once again it is the variances in the quadrature phases
which are of most interest. Defining the output quadra-
ture phases in the same fashion as the internal ones, from
(47)

&~, .„t(~,+~) Xt,,t(~, +~'):&

I
&

I (r t~»
5(co+co'),

( .'rt+ 'r2-I ~
I

-)'+—~'
(49)

( Wp, „t(co,+co ),X2,„,(co, +co'): )

I
e

I (y, /2)
, 5(co+co'),

(2yt+2y2+ I&l) +co
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while from (48)

& Xl,out~Xi, 0ut'&
z ri+ z r2 —

I
~

I

'Yi
I
e

I

2, 0ut&X2, 0ut' &

,'r—+,'r-2+
I
~

I

(50)

y1 y1+y2
:S2,out(~s+tt~): = —

4 2 24 (ri+r2) +~
(52)

The maximum squeezing is still attained at threshold,
I~I = 2(ri+r» gi»ng

& %2,„f(CO, +CO),X2,„t(CO, +CO'): &

Yl Yl + Y2 g g)

4 (ri+r2)'+~'
(51)

y1

The most interesting thing about these results is that
while the squeezing in the total field is independent of r2,
this is not the case for the individual frequency com-
ponents. Thy 5 function in (51) can be removed by in-
tegrating over tti' to give the normally ordered spectrum of
the operator +2 Q/t:

1

:S2,out, (0):=

The resonant mode of the output field is squeezed by a
factor of one-half, the same as the internal field. If, how-
ever, the cavity is single-ended, with y2 ——0,

1
'S2, out(0)'= 4 (54)

and this corresponds to Yurke's single-mode analysis.
Thus our rnultimode analysis agrees with Yurke's result,
which is correct for the. case that we measure only the
output field corresponding to co=0. Although the pre-
ferred method of measuring squeezing is by homodyne
detection, we would like here to consider the effect of pas-
sive filtering of the output, to see what the effect on the
squeezing is of trying to isolate the squeezed mode by
means of such a passive filter.

which is a convenient way of describing the squeezing in
the output field. It may be thought of loosely as the
squeezing at a particular frequency, although in this case
it results from the coupling of pairs of frequencies on ei-
ther side of resonance: This spectrum is, ignoring the
sign, a Lorentzian with peak height 4 [ri/(ri+r2)] and
width ri+r2. Thus for a symmetric double-ended cavity
with y=y1 ——y2

VII. FILTERING OF THE OUTPUT

As a model of a passive filter, we consider passing the output through a second cavity resonant with the first, so that
the system is now such that a rotator or equivalent is used to isolate the input a;„ froin any feedback effects. The output
field through the filter is given by (25) as

Coot(~s+~) = ( —,
'

t4., —,' ir2+ ic—o)c;u(cos+co)+Qit itt2d;u(cos+co)
1 1

2 K1+ 2 K2 —LCD

(55)

where gati and it2 describe the mirrors of the filtering cavity. Using d;„=a,„t and assuming c;„ to be a vacuum field, the
variances of the output field c,„,can be computed, and we find for the quadrature phases of the total field

~i~21~1r i
iiolltl iloll't' & 4

( 2 ~i+ 2 ~2)( 2 r i+ 2 r2 —1~1)( 2 ~i+ 2 ~2+ 2 r i+ 1 r2 I
~

I
)—

(56)

~,~2
I
e

I r,
( 2&i+ 2~2)( 2ri+ 2r2+ I

~
I

)( 2&i+ 2&2+ 1ri+ 2r2+ I

~
I

)

At threshold, with the generating cavity single-ended
(r2=0)

1 K1K2y 1
& ~ I2,ot I20t &

8 ( —,
'

It.i+ —,
' x2)[r t+ —,(iti+a2)]

(57)
For any K1,K2 this always gives less squeezing than in the
initial output field a,„,. The best that can be achieved is
with K1 ——K2 »y1, giving

K
&:I'2,0.t I'2, 0.t:&= —

8
. (59)

t

This is the same as if the filter were not there at all, which
is reasonable as, for large K1 and K2, the second cavity in-
teracts strongly with the external field over a correspond-
ingly wide bandwidth. In the alternative limit of
K =K1 =K2 Q( y 1 the squeezing reduces to

y1
~2,0uti +2,0ut (58)

Thus a through-pass filter cannot improve the squeez-
ing in the output field. If, however, one considers the
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~K]CI~(COs +CO) +~IC2di~(COs + CO)
C(COs +CO) =

2K1+ ~K2 —iso

or going directly to the quadrature phases,

(60)

internal mode of the second cavity, the picture is rather
different. From (24)

~IC) Fi ) (COs +CO)+~ICgXg o t(COs +CO)
Y;(CO +CO)=

K1+ TKg —LCO

E=1,2. (61)

With c;„a vacuum field, we find for the full internal
modes

1
1 1 i 1 i 1 1(-, ~i+ -, ~2)(-r i+ ~ r2 —

I
e

I
)( 2 ~i+ 2 ~2+ 2 r I+ 2 r2 I

—e
I

)

On threshold with the generating cavity single-ended

K2 V1(:r„r,:)=——
4 Ici+Icz ri+ —,

' (Ici+ic2)
(63)

If the second cavity is also single-ended (Ici ——0), and is
much narrower than the first (Icz «r i), this becomes

which corresponds to perfect squeezing in the second cav-
ity. We thus see that it is indeed possible to produce arbi-
trarily large squeezing inside a cavity, provided this cavity
is single-ended.

VIII. CONCLUSION

In this paper we have outlined general methods of relat-
ing input, output, and internal dynamics. These methods
will be developed and put on a firm theoretical foundation
in a forthcoming paper. The main results are a clarifica-
tion of how to calculate squeezing in a multimode situa-
tion, and the demonstration that maximal squeezing in-
side a cavity can be achieved.

The results presented here depend on the model of a
cavity mode as a harmonic oscillator. However, calcula-
tions by Gardiner and Savage have shown that exactly
the same results arise by a detailed treatment of the
motion of light waves through a cavity composed of
genuine mirrors, and our forthcoming paper will unify
these two treatments.
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