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In this paper we analyze the steady-state and stability properties of bistable optical systems, lasers

with an injected signal, and ordinary free-running lasers. The starting point of our study is a unified

model of a ring cavity containing a finite-size cylindrical sample of homogeneously broadened two-

level atoms, and capable of supporting a single field mode with a Gaussian transverse profile. After

solving the equations of motion in the steady state, we carry out a linear stability analysis of the sta-

tionary solutions, identify the domains of unstable operation of each of the three systems, and com-

pare in detail the results of this work with those of earlier plane-wave uniform-field calculations. In

the case of the laser with an injected signal, we find a significant enhancement of the instability

domain relative to the plane-wave limit. A similar conclusion holds for mixed absorptive and

dispersive optical bistability, although the enhancement of the domain of instability is less pro-

nounced. Unstable behavior is predicted to occur for experimentally accessible values of the bistabil-

ity parameter, and to be favored by the absence of bistability and by the selection of atomic and cav-

ity detunings having opposite signs. This configuration ensures that the instability will be respon-

sible for the emergence of undamped output pulsations of the type that will make the bistable sys-

tem behave as an optical clock.

I. INTRODUCTION

The unstable behavior of certain optical systems has at-
tracted considerable attention not only because of the
widespread current interest in the general area of non-
linear dynamics, but also because optical instabilities are
viewed as a practical working principle for such devices as
optical clocks and other all-optical logic components.
With very few exceptions' most instability problems in
quantum optics have been analyzed in the context of the
plane-wave and infinite active inedium approximation.
Recently we have begun to see evidence that a nonuniform
field transverse profile can alter the predictions of the
plane-wave theory not only quantitatively, but qualitative-
ly as well. This fact has been made especially obvious by
the results of Refs. 2 and 4. Thus, for example, the Ikeda
instability which, in the plane-wave approximation, is the
source of a period doubling sequence and chaotic oscilla-
tions, develops a different route to chaos if the input field
has a Gaussian transverse profile. ~ Other instabilities of
the plane-wave theory in the presence of a Gaussian field
profile are even suppressed altogether.

In dealing with transverse effects, one must distinguish
between the cases in which the cavity has plane or spheri-
cal mirrors. In this paper we consider a ring cavity with
spherical mirrors containing a collection of two-level
atoms. If an input field is present, we assume that this is
matched to the fundamental TEMOO mode of the resona-
tor. Our analysis is based on the simplest possible model
and it involves the following approximations.

(i) We consider the mean field limit aL «1, T«1
with aL/T constant and arbitrary; as usual, a represents

the absorption coefficient per unit length of the atomic
sample, L the length of the medium, and T the transmis-
sion coefficient of the mirrors. We assume, in addition,
that the evolution of the system takes place over a time
scale which is much longer than a single cavity round-trip
tifne.

(ii) We assume that the transverse profile of the electric
field in the filled cavity corresponds to the TEMOO mode.
This appears to be a reasonable approximation in the
mean field limit.

(iii) We assume that the Fresnel number iJO/AL is
large so that the beam radius is practically constant over
the length of the atomic sample; ioo is the beam waist and
k is the wavelength of the radiation.

As a consequence of points (i) and (ii), this is a one-mode
model whose equations of motion were derived from first
principles in Ref. 4. Studies of its steady-state properties
have appeared in Refs. 8 and 9.

Assumption (ii) requires some comments. Because it
imposes a time-independent TEM00 profile for the electric
field, it cannot be expected to hold over the entire range of
parameters of practical interest. In fact, the occurrence of
a laser instability in which transverse modes, other than
TEMOO, play an essential role is documented in Ref. 5.
We note, in addition, that this instability does not even
have a counterpart in the plane-wave limit because it
arises in the rate-equation approximation. Our present
strategy is to concentrate on instabilities which are known
to occur in the plane-wave limit and to evaluate the role
played in the context of our model by a more realistic
field profile. We expect that our one-transverse mode as-
sumption should be satisfactory in at least two situations:
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(a) when all the other modes are sufficiently detuned from
the carrier frequency of the incident field (or, in the case
of the free-running laser, from the center of the gain pro-
file) or (b) when the losses of all the other modes are large
enough to keep their amplitudes at a negligible level. In
the absence of arguments for neglecting higher-order
transverse modes, a coinpelling justification for the stabil-

ity analysis performed in this work is that our model al-
lows an analytic handling of the steady-state and stability
properties over the entire parameter space. The exact
equations of motion without the one-mode assumption
can, apparently, be studied only by numerical methods, a
task which is time consuming and of uncertain effective-
ness. Thus, as a second step, and building from the
knowledge gained from the present model, do we plan to
study a more general setting.

At present, we consider simultaneously three of the
most interesting systems in quantum optics: mixed ab-

sorptive and dispersive optical bistability (OB), the laser
with an injected signal (LIS), and the free running laser
(FRL) with nonzero detuning between the centers of the
atomic and cavity frequencies. In all cases the atoms are
assumed to be homogeneously broadened. As our first
step, we consider the stability of the stationary solutions.

In subsequent contributions, we plan to analyze the equa-
tions of motion of our model and to investigate the nature
of the pulsations that emerge under unstable conditions.

In Sec. II we describe the model which forms the start-
ing point of our analysis. We construct its stationary
solutions in Sec. III and derive, in Sec. IV, the basic sta-
bility conditions; in Sec. IV we also discuss the connection
between our results and the sidemode gain approach. Sec-
tions V—VII illustrate the type of instabilities that arise in
the presence of a Gaussian transverse profile for OB, LIS,
and FRL, respectively. Our results are summarized and
discussed in Sec. VIII.

II. GAUSSIAN ONE-MODE MODEL FOR ACTIVE
AND PASSIVE SYSTEMS

A unidirectional ring cavity of the type shown schemat-
ically in Fig. 1 contains a cylindrical atomic sample of
length L and radius R. Because of the cylindrical sym-

metry, the only relevant transverse variable is the radial
coordinate r whose range of variation is 0&r &R. The
one-mode model is characterized by the following equa-
tions of motion:

8 /too

Ic ' fp(t)= —fp(1+ig) y+2C I —dr 4r exp( r)P(r—, t)
0

(la)

yi
' P(r, t) =D(r, t)fp(t)exp( —r ) —(1+id, )P(r, t),

y~~
' D(r, t)= ——,

' [P(r, t)f p(t)+P*(r, t)fp(t)]exp( r) D—(r, t)+—1 .
at

(lc)

The normalized radial variable is defined as r =r/iup, wp

is the beam waist, and fp(t) and y are defined as

1 1
fp(t) =V 2/77 fp(t) y =v'2/7T yp

wp Wp
(2)

The parameters yp and fp denote the normalized ampli-
tudes of the incident field and of the fundamental TEMpp
cavity mode, respectively. P ( r, t) and D ( r, t) are scaled
quantities corresponding to the macroscopic atomic polar-

I

ization and population difference at a distance r from the
axis of the system. The equations of motion for fp(t) and
P'(r, t) are the coinplex conjugate equations (la) and (lb);
v is the field damping rate cT/W, where W is the length
of the ring cavit[ and T is the mirrors transmission coef-
ficient; y~~

——Ti and yi=Ti are the longitudinal and
transverse atomic relaxation rates, respectively. The pa-
rameter C is defined by

aI.o.

2T
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r
/
1

4

E~

L
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where a is the unsaturated absorption coefficient, and o
(~o

~
&1) is the unsaturated population inversion per

atom created by the pump. In the laser case, o. is positive
and

~

C
~

represents the gain parameter. In the presence
of an injected signal one has y&0, while for the free-
running laser y must be set equal to zero. In the case of
OB one has cr= —1 (no pump) and C coincides with the
usual bistability parameter.

For OB and LIS, 0 and 6 denote the cavity and atomic
detuning parameters, respectively,

FIG. 1. Schematic representation of a unidirectional ring
cavity with spherical mirrors. E;, E„and E„are the incident,
transmitted, and reflected fields, respectively. Mirrors 3 and 4
have 100% reflectivity. Mirrors 1 and 2 have transmittivity T.

0= COg —Q)p COg —COp

K
(4)

cop is the frequency of the incident field and coc the fre-
quency of the cavity mode, while co~ is the atomic transi-
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f= —[(1+i8)f—y+2CP],
dt

(sa)

yi
' P=Df (1+—id)P, (Sb)

yii
' D = —,' (Pf*—+P*f) D+1-,

dt
(5c)

where y and f are the normalized amplitudes of the in-

cident and cavity fields, respectively. In Eqs. (5) the field
and atomic variables are only functions of time.

III. STEADY-STATE SOLUTIONS

tion frequency. In the case of the FRL, we identify coo as
the laser oscillation frequency in the nontrivial stationary
state. As shown in Sec. III, the laser's oscillation frequen-

cy is still given by the well-known mode-pulling formula,
even in the presence of a transverse Gaussian field profile.
Thus 8 and b. are no longer independent of each other but
are linked by the relation b = —8.'

For the sake of comparison, we recall the equations of
motion for the mean field model in the plane-wave limit:"

where

g= 1 —exp[ —2(R/wo) ] . (13)

The phase of the steady-state field f 0' of course remains
arbitrary.

In the plane-wave limit, starting from Eqs. (5) we ob-
tain the following steady-state values of the atomic vari-
ables:

(14a)

g(x )=x /(1+6, +x ) . (15)

The laser threshold occurs at a value of the gain parame-
ter given by

(1+id)f"
1+6,'+

/

f" f'
1+5Dst (14b)

1+Qz+
~

f"
~

~

After setting x =
~

f"~, Eqs. (7)—(11) retain their struc-
ture even in the plane-wave limit. The function g(x ),
however, is given by"

In steady state the atomic variables are given by
~

C
~

=(1+8')/2. (16)

P"(r ) =

D "(r)=

(1—ih)f 0'exp( —r )

1+6, +
~ f 0'~ exp( —2r )

1+6
1+6, +

~ f 0'~ exp( —2r )

(6b)

y =x2 2

2

1+ g(x ) + 8— g(x )
2C 2 2CA

X X

2

and, after setting x =
~ f 0' ~, the field equation can be cast

into the form

Thus on comparing Eqs. (12) and (16) we see that the
threshold gain in the case of the Gaussian profile coin-
cides with that of the plane-wave theory, apart from the
simple rescaling factor g [Eq. (13)].

We consider now the limit R/w0~0 of the Gaussian
theory. In this situation the atomic sample interacts only
with the central part of the Gaussian beam, so that one
may expect to recover the results of the plane-wave
theory. One has to be careful, however, because the limit
R/w0~0 by itself leads to the empty cavity configura-
tion. On the other hand, in the double limit

where' ' '

g(x )=ln 1+6 +x
1+6 +x exp[ —2(R/wo) ]

R /w0~0, C~ ao

with

C'=2C(R/wo)

(17)

In the case of the FRL (y =0), Eq. (7) implies the identity

(9)

as anticipated in the preceding section. By taking the def-
initions of 6 and 8 into account, one finds, from Eq. (9),
the well-known mode-pulling formula

+pic
600= K'+ yg

(10)

The steady-state output field is given by the solution of
the transcendental equation

1=— g(x ) .
2C
X

In addition, the state equation (7) is satisfied by the trivial
solution x =0. From Eq. (11) we see that the laser
threshold is characterized by the following value of the
gain parameter:

constant and arbitrary, one does indeed recover the plane-
wave results, as one can readily verify from Eqs. (8) and
(15), if one replaces C with C'. It must be noted that a
direct comparison of the steady-state values of x in the
Gaussian and plane-wave theories is not entirely meaning-
ful because x corresponds to the peak value of the field
profile. A more meaningful comparison, instead, is the
following. In the Gaussian case, the power W emitted by
a sample of radius R can be estimated as follows, using
Eq. (2) and the definition of x:

R
2 —2(r/~0)2

WG ~2m r dr xGe
0

=(m. /2)wo[1 —exp[ —2(R/wo) ]IxG

=(m. /2)wogxG .

In the plane-wave case, instead, one has

2 2
Wpw o: mR xpw

~

C
~

=(1+8')/2g, (12) In the double limit of Eq. (17) in which, as shown, the
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value of xG converges to that of x~„, the ratio WG/W~„
approaches unity. In the opposite limit, R/wo~o(), the
ratio WG/W~„vanishes because the plane-wave energy
density is uniform everywhere in space.

Even if a direct comparison of the values of x in the
Gaussian and plane-wave cases is not correct, it is still
meaningful to compare quantities such as the laser or the
bistability thresholds, or features such as the presence or
the absence of an instability for the same values of the pa-
rameters. For example, a remarkable feature of OB is
that, in the limit R/wo~ ao, the bistability threshold C,h,
for fixed values of b, and 8 turns out to be markedly
larger than in the plane-wave case.

IV. LINEAR STABILITY ANALYSIS

In order to study the stability of the stationary solu-
tions, we introduce the deviations from the steady state,

5f ( t) =fo(t) —f o'

5P ( r, t) =P( r, t) P"—( r ),
5D ( r, t) =D ( r, t) —D"(r ),

(19)

and linearize Eqs. (1) around the steady-state values of the
field and atomic variables. The resulting linear equations
are

8/uo
5f (t) = —5f (1+i8)+2CI dr 4r exp( r)5P—(r, t)

0
(20a)

yi
' 5P(r, t)=[D"(r)5f(t)+fo'5D(r, t)]exp( —r ) —(1+i')5P(r, t),j

(20b)

y~~
i 5D(r, t)= —'[p'"(r)5—f'(t)+f o"5P(r,t)+P*"(r)5f(t)+fo5P'(r, t))exp( r) 5D—(r, t)—. (20c)

Next we seek solutions of Eqs. (20) in the form

5f(t) 5f(0)

5f (t) 5f ()

5P(r, t) .=exp(A, t) X 5P' '(r)

5P'( r, t)

5D(r, t) 5D"'(-.)

(21)

following the procedure outlined in the Appendix. We are especially interested in locating the boundary of the stability
domain, where Rek, =0. Thus, we set

A, =iv, v real

and, after some lengthy but elementary steps, we obtain the coupled linear homogeneous equations
~'

i —+1+i8 5f' )+2C[W(v, x,b„y)5f( '+(f ()') %(v,x,b„y)5f' ']=0,

(22)

(23a)

i +1+i8 5f' '+2C[—W(v x, b„y)5f' '+(f()") 9P—(vx, b„y)5f( ']=0-,
K

(23b)

where

(24)

I

investigation for the plane-wave case so as to keep our
handling of both the Gaussian and plane-wave configura-
tions as close as possible to one another.

Quite generally, then, the condition that ensures the ex-
istence of nontrivial solutions for Eqs. (23) is

The functions W and A are displayed in full in the Ap-
pendix.

In the plane-wave limit, with Eqs. (5) as the starting
point, the field fluctuation equations retain the same form
as Eqs. (23), of course with different functions M and A.
Actually, in this limit, the linear stability analysis leads to
a simple fifth-order algebraic equation for A, which can be
studied by standard methods such as the Routh-Hurwitz
criterion. ' We choose not to pursue this simpler line of

i +1+i8+—2CM(v, x,b, y).
K

i +1 i 8+—2CW—(v, x, —A, y)
K

=4C x A(v, x, b„y)A(v, x, —h, y) . (25)

In terms of the two auxiliary functions
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M'(v, x,h, y)= T[W(v, x,b, y)+v, x, , =,', M(v, x, —h, y)],

v x v —,' '
) —~(v,x, —~,y)],~ "(vx b, v)= T[W(v, x, ,y, —

7

E . (25) can also be written inn in the formq.

i +—1+2CW'( v, x,b„y )

=4C x 3P(v x 4 y)A(v, x, —&,y)

[O—i 2C—W"(v,x,h, y)]

Hence, after setting

W(v, x,b„y,C, O)

=4C x A(v x 4 y)A(v, x, —~,y)
—[O—i 2CM"(v, x,b, y)]

we finally obtain

(28)

i—+ I+2CM'(v, x,b„y )=+~ (v,»- y»i/2 c O)
K

(29)

(30b)

this result in terms o itsIt will be convenient to analyze thi
real and imaginary parts:

1 =8~(v,x,b„y, C, O),

v =2&+(v, x,5,y, C,O),

the exce tion of x. For a selected valueeters fixed with the exception o x. e
n be solved graphica y wi re

y g ersect of the curve v + v wi
line. et V(x) de ot the solution obtaine in is

si —V(x) is also a solution because ot +oil y, —v
re odd functions of v, w i e +

e of v, x,h, y, C, O) is exactly unity for
1' the stability boun-e selected value o x ies on e

a . , sake of definiteness thatda . If not, suppose for the sa e o
, C, O) is smaller than unity [Fig. 2(a . n

V x,x,h, y, C, O)=1 [Fig.
lications of this procedure, a e

ined with excellent accura-values of x can be determme wi e
) th boundary coincides with t e

1
'

th t bif ates from
lue of V(x at t e oun

oscillation frequencync of the so ution a
ar itself. The same ar-tiona state at the boundary itse . e

gument applies with respect to t e seco

s are a ropriate at this point. The first
and &

pp

'2 &

' ' ' f diabatic elimination of
s the values of S and or v= . n

consider Eqs. 220 in the limit o a ia
ds to setting the timeic variables [this correspon s o se

d (20c) both equal to zero]. It
that the ansatz (21) leads to a

tives in Eqs. (20b) an c
is now easy to veri y that t e ansa z

where the functions 9'+ and ~+ aare defined by

9'+(v,x,h, y, C, O) =Re[+A '~2(v, x,h, y)

—2CM'(v, x, b.,y)],
W+(v, x,b„C,O) =1m[+X '~ (v,x,b„y

—2CW'(v, x,b„y)] .

(31a)

(31b)

n~p(x)

e selected concurrently inThe plus or minus signs must be s
alldE s. (30a) and . o(30b). Note that the functions + an

onl on the modulus x of the stationarya field
1 ith the fact thatst on its hase. This is in ine wi

r ( =0) the choice of thefor the case of an ordinary laser y = e

(30a) and (30b) are to be usedWe now discuss how Eqs. a an
nts to identify the stability boundary.if one wants to i en

of OB and LIS, where the in-(i) Consider first the cases o an
rs are, b, K,y, C. In place o y, i isdependent parameters are y,

use x as an indepen en pamore convenient to use
een and x being provi e yided b thewith the relation between y

bounda as functions of the mo u us o
fh FRL h 'd mdfield. In the case o t e" g 7K,C. InStea Oparameters are " K p,

h link between Cinde endent parameter; t e in eselect x as an indep p
x is rovided by the state equation (11). Again, we

'
it of the FRI as a function of x, holding

all the other parameters fixed. Note t a
pear at, all in q. a,E (30 ) while it enters Eq. (30b) as a sirn-
ple multiplicative fac o .

&"
~& For the sake of definiteness, consider qs. a~ii~ or e s

ith all values of the param-(30b) with positive signs and with all

X=Xb
v(x)

X=Xb

v(x)
X=X

'
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) The fi ures on the left-hand side display the "gain(see text). e igure
'

n 9'(v) for three different values o x x, & b

p
hand side isp ay1 the "dispersion" function v or e
values of x.
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second-degree characteristic equation for A, whose roots
have real and imaginary parts that coincide with
7[9'+(O,x, b.,y, C,8)—1] and R&+(O,x,h, y, C,8), respec-
tively. The second remark concerns the connection be-
tween our present linear stability analysis and the
"sidemode gain approach" developed in Ref. 13 and fur-
ther elaborated on in Ref. 14. This approach is based on
the premise that, initially, only a single field mode oscil-
lates strongly; in this situation, one inquires about the pos-
sibility that a sideband of very small amplitude can also
satisfy the laser oscillation conditions, i.e., that (1) the
round-trip phase delay of the sideband be a multiple of 2m.

and (2) that the gain per round trip be larger than the
losses. If a sideband satisfies these conditions, the station-
ary state is said to be unstable.

A transparent connection between our treatment and
the sidemode strategy can be established in the resonant
case b, =8=0. In fact, in this case, the sidemode frequen-
cies are determined by equations that coincide with Eq.
(30b) with selection of either a plus or minus sign. The
function & can then be interpreted as an anomalous
dispersion function. In addition, the sidemode gain turns
out to coincide with either 9'+ or 8' [subject to the
same sign selection as in Eq. (30b)]. For this reason, in
the following we refer to 9' as the "gain function. " This
nomenclature is useful in connection with the identifica-
tion of the instability domain. In fact, as already em-

phasized, our procedure allows the identification of the
stability boundary, but cannot decide which side of the
boundary is the unstable domain. In accord with the
sidernode gain approach, we adopt the reasonable point of
view that the unstable side of the boundary is the one for
which the gain function exceeds unity. This selection
agrees with the implications of our first remark and,
furthermore, it has never been contradicted in the course
of the present work.

Hence, it is undeniable that a useful connection exists
between the sidemode approach and our linear stability
method. The sidemode strategy lends itself to attractive
physical interpretations when dealing with the hole-

burning model or with the population pulsation dynam-
ics. ' ' In our opinion, however, these interpretations
should be advanced with some caution for the following
reasons. First of all, the sidemode frequencies calculated
from Eq. (30b) do not coincide with the imaginary parts
of the eigenvalues of the linear stability analysis away
from the stability boundary. Second, we found examples
of solutions v(x) of Eq. (30b) such that the corresponding
value of the gain is larger than but never equal to unity
over the entire range of values of x for which such solu-
tions exist. (An example of this occurrence will be dis-
cussed in Sec. VI.) These solutions are not connected with
the presence of instabilities of the stationary state and
may, in fact, have no physical meaning.

V. OPTICAL BISTABILITY

From now on, in dealing with the Gaussian case we
shall confine our attention only to the situation
R/wo~ao. As shown in Sec. III, the results of the
plane-wave theory are recovered in the double limit (17)

2C(1+5 ) 2 d(y )

(1+6 +x ) d(x')
(32)

where the function y (x ) is defined by Eq. (7). Hence, if,
for example, 9+(O,x,h, y, C, 8)—1=&+(O,x,h, C, 8)=0,
we can conclude the Eq. (32) has a root A, =O. This can
only be so when d(y )/d(x )=0, i.e., at the turning
points of the steady-state curve. In the case of OB, the in-
stability range for which 8 & 1 coincides with the nega-
tive slope segment of the stationary curve (if any exists).

The instabilities of interest in this work are those which
arise with nonzero frequency, because they lead to Hopf
bifurcations and, possibly, to the occurrence of undamped
oscillations. In fact, if the value of the incident field y is
such that there is only one stationary solution, and this
happens to be unstable, the system will approach, of
necessity, a regime of steady pulsations which may be reg-
ular (periodic or quasiperiodic) or chaotic (completely
aperiodic). On the other hand, if the value of the incident
field is such that a second stable stationary solution exists,
two possible outcomes can be envisioned for the long-term
behavior of the system: either stable self-pulsing or ap-
proach to the stable stationary state.

Consider the plane-wave case first. As shown in Ref.
16, appropriate choices of the parameters C, E,8,x, y lead
to the identification of an unstable segment of the steady-
state curve with positive slope. A necessary condition is
that b„8, or both be different from zero. With the possi-
ble exception of a small segment of the high transmission
branch where the instability causes long-term precipita-
tion into the lower transmission state, the instability of
the upper branch leads to undamped self-pulsing behavior.
When C is very large, this instability range includes a
domain of chaotic behavior which is approached on either
side through a sequence of period doubling bifurcations. '

The analysis performed in Refs. 16(a) and 16(b) corre-
sponds to the regime of adiabatic elimination of the atom-
ic polarization (a'/yi ~0, y~~/yi ~0). On the other hand,
a positive-slope instability exists also for nonzero values
of ~/yes and y~~/yi and for values of C that are within ex-
perimental reach. '@' Figure 3(a) shows the domain of the
positive-slope instability for C=75, 7=0.5, y=2, and
several values of b, and 8. The chosen values of these pa-
rameters are compatible with the experiments described in
Ref. 18. (Note that the steady-state curve and the stabili-

and (18), so that all cases of practical interest can be re-
garded as intermediate situations between the limits
R/wo~ oo and R/w0~0.

Depending on the values of C, 6, and 8, the steady-
state curve (7) may or may not be s shaped. There is a
very simple link between the character of the stationary
curve and the appearance of a zero frequency instability:
the instability boundary points at which Eqs. (30) are sa-
tisfied for v=O coincide with the turning points of the
steady-state curve (if they exist). In fact, as stated in the
previous section, vS+(O, x, b, ,y, C, 8)—1 and 7&+(O,x,
b„y,C, 8) coincide with the real and imaginary parts of
the two roots of the characteristic equation that emerge in
the limit of adiabatic elimination of the atomic variables.
This equation has the form'
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ty of the stationary states are unaffected by a simultane-
ous sign change of both 6 and 8.) We have also analyzed
the first quadrant of the 5-8 plane in the range 0 & b. & 10,
0 & 8 & 10, but found no evidence of a positive-slope insta-
bility. In Fig. 3(a) we identify a domain in the second
quadrant of the b,-8 plane where the steady-state curve

y =y(x} displays a range of positive-slope instability.
This domain also includes points for which 6 is equal to
zero, corresponding to purely absorptive bistability. On
the contrary, no evidence of positive-slope instability was
found in the domain 5&6&10, —10&8&10except very
near to the axis (6=0).

Consider now the Gaussian case in the limit
R/wo~ao. Figure 3(b) shows the domain of positive-
slope instability for the same values of the parameters
considered in Fig. 3(a). We found no positive-slope insta-
bility in the first quadrant of the b,-8 plane and in the
domain 5 & 6 & 10, —10& 8 & 10. When C is smaller than
100, instabilities are more readily found when 5 and 8
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FIG. 4. (a) Optical bistability. Plane-wave case for C=75,
5=1, 0= —9, 2=0.5, y=2. The graph displays the steady-
state transmitted field x as a function of the incident field y.
The dashed segment of the curve indicates the unstable domain.
(b) Same as (a) in the Gaussian case with R/wo~ao.
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FIG. 3. (a) Optical bistability. Positive-slope instability

domain in the 6-0 plane for the plane-wave case. The parame-
ters used in this scan are C=75, k=0.5, y =2. The black circles
indicate that the steady-state curve is s-shaped and that not-
positive-slope instability exists for the corresponding values of
the parameters. The black squares indicate the absence of bista-
bility and instability. The open circles indicate that the steady-
state curve is s-shaped and that a range of instability exists
whose approximate width Ax is indicated within the circle.
Open squares indicate the absence of bistability and the presence
of unstable behavior over the approximate range hx indicated
within the square. (b) Same as (a) in the Gaussian case with
R /too —+ ao.

have opposite signs, a situation which is less favorable for
the observation of bistability.

In general, the domain of instability in the 5-8 plane is
very nearly the same as in the plane-wave case except that,
for b, =0, no positive-slope instability appears to exist in
the Gaussian case. Figure 3(b} shows that when the
steady-state curve y =y (x) acquires an s shape, instabili-
ties are less likely to be found. If we compare the data in
Figs. 3(a) and 3(b) for the same values of b, and 8, we see
that the instability range of the x variable is actually
larger in the Gaussian case than in the plane-wave limit,
as long as 6 is not too small. An example is shown in
Fig. 4. The reason for this difference can be traced back
to the following fact: in the plane-wave case, the instabili-
ty range which lies between the two boundary values such
that 9'(v(x), x, . . . )=1 with V(x)&0 partly overlaps the
negative-slope portion of the stationary curve. On the
contrary, the entire steady-state curve has a positive slope
for the Gaussian case illustrated in Fig. 4(b). This situa-
tion is ideal for observing instabilities because the absence
of competitive stable states ensures the emergence of un-
damped self-pulsing.

VI. LASER WITH INJECTED SIGNAL

This system is the active counterpart of OB. In the fol-
lowing, we shall assume that the parameters have been
chosen in such a way that in the absence of an external
signal (y =0), the laser is above threshold. In addition,
the free-running laser frequency, which is determined by
the mode-pulling formula (11), is assumed to be different
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from the carrier frequency of the injected field. Under
these conditions, the LIS can display undamped oscilla-
tions, as shown for the first time in Ref. 19, or chaotic
behavior if the incident intensity or the pump parameter
are suitably modulated in time. Actually, the laser with
injected signal can display chaotic behavior, even when
the external parameters are held constant. '

For the purpose of this discussion, the atomic and cavi-
ty frequencies co„and coc, respectively, are selected equal
to one another, so that the free-running laser frequency
also coincides with them. This implies the validity of the
relation

10

30

10

(o)

[
\

I

20

6/8=Ã . (33)

450—

50-

/
I

I
I

I
I

I

Y„500
(a)

500

(b)

FIG. 5. (a) Laser with injected signal. Plane-wave case for
C = —500, 6=8=5, k=@=1 (note that the resonance condi-
tion 6/8=k is satisfied). Point A marks the boundary of the
instability domain (dashed line) and coincides with the injection
locking threshold. (b) Same as (a) in the Gaussian case with
R /Wo —+ ce.

A variety of self-pulsing behaviors and routes to chaos,
including quasiperiodic, intermittency, and period dou-
bling, have been described in Ref. 21. This same model
has also been analyzed in the limit v/yi~0, y~~/yi ~0
of adiabatic elimination of the atomic polarization, but
without restricting the laser to the resonance condition
(33). Using parameters that are appropriate for a CO2
laser, periodic, quasiperiodic, and chaotic pulsations have
been obtained. The analyses performed in Refs. 19—22
have all involved the plane-wave approximation. The typ-
ical situation with regard to the stationary solutions and
the instabilities is illustrated in Figs. 5(a) and 6(a). The
steady-state curve, given by Eqs. (7) and (15}, has an s
shape; no bistability can be observed, however, because the
entire segment from the origin to point A is unstable.
The value y~ of the incident field plays the role of the in-
jection locking threshold: for y &yz the driven laser os-
cillates with the frequency of the injected field. On the
other hand, for y =0, the laser oscillates at its normal
free-running frequency. In the range 0&y (y„ the long-
term output of the system displays undamped pulsations
that originate from the competition between the laser and
the injected signal.
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FIG. 6. (a) Laser with injected signal. Plane-wave case for
C = —20, 5=1, 0=2, 2=0.5, y=0.05 (note that the resonance
condition is satisfied). (b) Same as (a) in the Gaussian case with

R/wo~ ~.

One can distinguish between two situations. In the
first, the injection locking threshold A coincides with the
left turning point of the steady-state curve [Fig. 5(a}]; in
the second, point A lies in the upper part of the s-shaped
curve [Fig. 6(a)]. In the latter case, as y approaches yq
from below, the amplitude of the undamped oscillations
decreases continuously, and A is a Hopf bifurcation point.
Under this condition, Eq. (30b) has two symmetric
nonzero solutions for y =yz such that the gain function
equals unity. On the other hand, when A coincides with
the left turning point, and y approaches yz from below,
the system exhibits a spiking behavior with a temporal
separation between the spikes that apparently diverges as

y —+yz. ' Under this condition, Eqs. (30) have no solu-
tions for v&0. Actually, a wide range of values of x ex-
ists for which Eq. (30b) has nonzero solutions; the corre-
sponding value of the gain, however, is always larger than
but never equal to unity. This is an example of the situa-
tion mentioned at the end of Sec. IV.

Regardless of the position of point A, the turning
points of the steady-state curve are instability boundaries
at which Eqs. (30) are satisfied, as usual, for v=O. To be
more precise, in the case of LIS two instability ranges of
this kind exist, according to Eqs. (30), depending on the
selection of the plus or minus signs. One of the two
ranges coincides with the lower branch of the stationary
curve from y =0 to the right turning point, the other cov-
ers the entire steady-state curve from the origin to the left
turning point including the segment with negative slope.

Consider now the LIS in the case of a Gaussian profile
with R/wo —mao. Figures 5(b) and 6(b) show the steady-
state curve obtained from Eqs. (7) and (8) and the instabil-
ity range for the same values of the parameters used in
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Figs. 5(a) and 6(a), respectively. For both Figs. (5) and (6)
the instability range turns out to be much wider in the
Gaussian case, and point A, which lies in the upper
branch, corresponds to a Hopf bifurcation. The signifi-
cant broadening of the instability domain can be under-
stood qualititatively as follows. As one can see from the
Appendix, in the limit R/wo —+oo, the functions W and
x A which are the building blocks of Eqs. (30) are ob-
tained by averaging the corresponding plane-wave func-
tions over the profile of the output intensity [see Eqs.
(A7)] from zero to the actual value of x. Hence, the
behavior of LIS or OB in the presence of a Gaussian pro-
file can be viewed as an average of the plane-wave limit.
When dealing with the plane-wave version of LIS, the
gain function 9' is larger than unity for x ranging from
zero to xq. In the Gaussian case, even when x exceeds
the plane-wave value of xz, there is a considerable range
of values of the output field which are smaller than xz,
but still such that the plane-wave gain is larger than unity.
Hence, in carrying out the average, the Gaussian gain
turns out to be larger than unity, at least as long as x does
not become too large. The implication is that the injec-
tion locking threshold xz in the Gaussian case is pushed
to higher values. This is just the opposite of what was
discussed in Ref. 4(a), where the instability domain was
seen to disappear in the Gaussian case because of the
dominance of the stable contributions on the averaged re-
sult when R/wo~ oo.

VII. ORDINARY LASER

This is, to our knowledge, the first quantum optical sys-
tem for which a self-pulsing instability was predicted. As
shown by Haken and co-workers, ' this instability arises
under "bad cavity" conditions (i.e., ~&y~~+yi) and re-
quires laser operation well above the ordinary threshold.
In the resonant case 5= —8=0, and for y =0, the laser
model (5) becomes equivalent to the well-known Lorentz
model of hydrodynamics. Therefore, the instability
threshold corresponds to a subcritical Hopf bifurcation
which eventually leads to the appearance of chaotic
behavior. More recently, the detuned laser (b, = —8&0)
has also been studied. ' By analytical means, Ref. 10 con-
tains proof that when the detuning b, becomes sufficiently
large, the instability threshold becomes a supercritical
Hopf bifurcation, which leads to the smooth appearance
of a periodic self-pulsing state.

Consider now the matter of instabilities in the case of
the Gaussian beam profile and R/wahoo. In studying
Eqs. (30) we take into account Eq. (9) and the relation (11)
that connects C with x for the FRL. For any value of x,
Eqs. (30) are satisfied by the solution v=0, i.e., A, =0 is al-

ways an eigenvalue of the laser stability problem. This is
a well-known general fact which is connected to the arbi-
trariness of the phase in steady state.

As usual, we are interested in seeking nonzero solutions
of Eqs. (30) because they correspond to the emergence of
Hopf bifurcations. The resonant case 5= —0=0 was al-
ready studied in Ref. 4(b) with the conclusion that no
such solution existed because 9 is always smaller than
unity. By holding 7 and y fixed at the values k=5, y=1
we have analyzed the cases 6= —8=1,5,10 and found

that the gain function 8 indeed becomes larger than uni-

ty over sizeable ranges of the v variable without, however,
the appearance of nonzero solutions. The implication is
that for these values of the parameters, the nontrivial sta-
tionary solution is stable over its entire domain of ex-
istence.

Of course, this does not exclude that one can find an in-
stability in the Gaussian case for different values of the
parameters. Furthermore, our calculations have been car-
ried out in the limit R/wahoo. If one should decrease
this ratio gradually, while holding C' fixed [see Eq. (18)],
one recovers the plane-wave theory and therefore also the
unstable behavior.

Regular and chaotic self-pulsing behavior has been ob-
served extensively in inhomogeneously broadened
lasers ' even in the vicinity of the lasing threshold. The
instability problem in such lasers including a Gaussian
transverse profile will be considered in future work.

VIII. CONCLUSIONS

We have undertaken an extensive analysis of the
steady-state behavior and instabilities for three distinct
optical systems, namely, optical bistability, the laser with
injected signal, and the free-running laser. These systems
have all been described in a unified way by the same
homogeneously broadened atomic model. The goal of our
analysis was to clarify the role played by a transverse
Gaussian intensity profile inside the optical cavity and to
compare the results with those of earlier studies in which
the electromagnetic field was assumed to have a uniform
plane-wave cross-sectional shape. In our study of the in-
stabilities we focused our attention on atomic samples
having transverse dimensions that are much larger than
the beam waist, because this configuration is essentially
opposite to that of a plane-wave geometry.

In the cases of optical bistability and the laser with in-
jected signal we found that the domain of instability in
control parameter space is notably widened relative to the
plane-wave limit. This is just the opposite of what was
previously found in the case of other laser instabilities.

In view of the possible realization of an all-optical
clock, the results of our analysis of the OB problem ap-
pear rather promising. For C=75, the instability range
seems large enough to be experimentally accessible. In
this range the optimum configuration calls for values of
the atomic and cavity mistuning which have opposite
signs. Further improvements are predicted in the absence
of bistability when the steady-state curve is single valued
and the existence of an instability implies also the ex-
istence of undamped pulsations.

In the case of the laser with injected signal the Gauss-
ian profile leads to a remarkable increase of the threshold
level for injection locking. This effect arises in part from
the fact that the left turning point of the steady-state
curve is shifted towards a higher value of the driving field
and in part from the broadening of the instability range it-
self in the upper branch. If the numerical simulation of
the equations of motion in the Gaussian case should con-
firm the possibility of chaotic behavior for moderate
values of

~

C ~, there is little doubt that LIS would have
to be regarded as an ideal candidate for an experimental
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APPENDIX

The linearized equations (20) can be solved, for exam-

ple, by the Laplace-transform method. Owing to the pres-
ence of the radial integrals, the Laplace transforms of the
fluctuations 5f(t) and 5f'(t) may develop cuts in the
complex plane in addition to the expected poles. In seek-

ing solutions of the type given by Eq. (21}we are consid-

ering only the contributions due to the poles of the
Laplace-transform variables. This is equivalent to assum-

ing that the contributions from the cuts decay in time
and, therefore, do not give rise to instabilities.

We now produce explicit expressions for the functions
M and 3F that appear in Eqs. (23). It is convenient to
start from the plane-wave limit in which the function W
takes the form

( ) ( +n(x +g(m x4 n x'
(1+4 +x )(ax +bx~+c)

(Al)

study of the chaotic regime and of the routes to chaos in

quantum optical systems. In the case of the free-running
laser we were not able to demonstrate the existence of pa-
rameters that would lead to an instability for the nontrivi-

al steady-state solution, in line with the results obtained in

Ref. 4(b) for the resonant case.
In general, we bebeve that the instability problem in-

cluding transverse effects is not just an extension, or gen-

eralization, of the plane-wave theory, but rather an in-

dependent study of its own. In fact, there are examples of
plane-wave instabilities that disappear in the Gaussian

case and instabilities that are absent in the plane-wave

limit and which arise in the context of a full two-

dimensional model. The present lively interest in insta-

bility effects in quantum optical systems and especially in
their experimental realization requires on the one hand
further developments of the present theoretical investiga-
tions, and on the other, the identification of suitable ex-

perimental tools (one might like to call them "transverse
spectroscopy") in order to pin down the role of the radial
profile on these and related phenomena. It is likely that
only simultaneous advances along these lines will lead to a
satisfactory understanding of most unstable behaviors in
quantum optical systems.

The various symbols on the right-hand side of Eq. (Al}
are defined as follows:

—2

m (
——— iv(1+id}(1 —iv},

2
(A2a)

n) ——y i —(1+i')(cr& i o2)
2

+(1+6, )Iy —v(v —5)

+i [v+ y(v —iI), )]j(1 i—v) (A2b)

a=y (1+v ),
b =2y(cr &+o zv),

2 2 ~
C =0'&+02 ~

where

o, = —v (y+2)+y(1+6 ),
o.z ——v( —v +1+6 +2y) .

The function 9P instead takes the form

(A3a)

(A3b)

(A3c)

(A4a)

(A4b)

where

(1+6 +x )(ax +bx +c)
(A5)

m2 = — [2+ vX+i(v —2b, )](1—iv),
2

(A6a)

nz — (cr( ——iop)[2—+vb, +i (v 2i( )]—,
2

e2=o

(A6b)

(A6c)

Note that abc, ar, e real, while m;, n;, and q; (i =1,2) are
complex.

In the case of the Gaussian intensity profile, by taking
into account the radial integrals we obtain

M(v, x,b„y)= J,
dpi'(('")(v,

p'~, h, y),1

—2(R/wo)
x e

(A7a)

X
xz8F(v, x,b„y)=,J,dpp(~")(v, p'~', &,y),—2(R /wo)x e

where the functions M( '( v,p', b„y) and 8P ' '( v,
p'~, b„y) that appear on the right-hand side of Eqs. (A7)
are obtained from Eqs. (Al) and (A5), respectively, by set-
ting x =p.

Thus, from Eqs. (A7a) and (Al) we obtain the follow-
ing explicit expression for W:

q, =(1+6, }(o( io2—)Iy v+—vs+i [v+y(y —5)]j;
(A2c)
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M(v, x,h, y) = A ~in
1

x
1+6 +x

1+5 +.x exp[ —2(R /wo ) ]

Bj
1n

2Q

ax4+bx2+c
ax exp[ —4(R/wo) ]+bx exp[ —2(R/wo) ]+c

+ Ci—bB) 2 2ax +barctan
(4ac b—)

' (4ac b 2)1/2

2ax exp[ —2(R/w) ]+barctan
2 1/2(4ac b)— (AS)

where

(4ac b'—)'"=27'
I
~&v—~21 (A9)

and A &, B~, and C~ are solutions of the linear system

aA&+B~ ——m»

The explicit expression of x A(v, x,b„y) is given again by
Eq. (AS) with A~, Bt, and C& replaced by A2, B2, and
C2. These are solutions of a linear system which is for-
mally identical to the one in Eqs. (A10) except for the re-
placement of mt, n~, and q~ by m2, n2, and q2.

bA, +(1+6, )B,+C, =n),
cA)+(1+5 )C) ——q) .

(A10)
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