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Photon statistics of radiation scattered by relativistic electrons
in an interfering electromagnetic field
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The statistical properties of radiation emitted in a scattering process between a relativistic electron

beam and two interfering crossed laser fields are discussed, when the radiation system is coupled to
a reservoir (electron-beam system). The conditions to obtain anticorrelation effect are presented, and

the presence of super-Poissonian statistics, when the short-time approximation is adopted, is shown.

I. INTRODUCTION

The scattering between a relativistic electron beam and
two interfering laser beams has already been discussed. '
The emitted photon flux has been shown to be increased,
when some "angle conditions" are fulfilled, if electrons
are bunched. The bunching effect is produced by a pon-
deromotive force which creates an "electron grating"
from which light is scattered in the Bragg directions.

In the following the statistical properties of backscat-
tered radiation in the electron rest frame (ERF) are stud-
ied when the radiation system is coupled to a "reservoir"
(electron beam). Anticorrelation effects are found to
occur between scattered modes; super-Poissonian statistics
also occurs in each emitted mode when the short-time ap-
proximation is adopted.

In the radiation field the following modes are con-
sidered: two incident modes at nearly the same frequency
(in the ERF) (modes li and 2i which are the interfering
incident modes), and two backscattered modes (ls and 2s)
at nearly equal frequency co, (the scattering is a quasielas-
tic one in the ERF). When the phase difference between
modes 1s and 2s is zero, the emitted intensity is higher;
this means that the scattered field also interferes.

The coherent state technique and the q-c number
correspondence have been employed, working in the
Schrodinger picture with the generalized Fokker-Planck
equation for the antinormal quasidistribution function.
The factorial moments are derived from the solution of
the Fokker-Planck equation. Losses are not accounted
or.

the field, under the Markov approximation.
We study the problem in the electron rest frame, in

which the scattering is a quasielastic one, in two cases:
(a) small gain, i.e., the difference between number of

emission and absorption processes is very small and
(b) high gain, in which the number of emission process-

es is greater than the number of absorption processes.
The total Hamiltonian H„, describing the interaction is

given by

Ht. t =Ho+a
where Hp is the free Hamiltonian, i.e.,

(2)Hp ——Hg +H, ,

where H/= gk, gaia kak is the free radiation Hamiltoni-

an, and

Af A Af A+a z, a&;+a 2,a2;)+c.c. , (4)

He + g g (c pncpn dpnd pn )
n p

is the free Hamiltonian of the electron system in second
quantization, where c and c are fermion creation and an-

A fnihilation operators, for fixed spin value, and d and d
are antiparticle operators. g is the sum on the momen-

tum and g„ is the sum on the total number of electrons.
The interaction Hamiltonian for the scattering in the in-
terfering field is given by

{P)Af
Hing g g ~ tn mn( Is li+ &s 2i

l, m n

II. MASTER EQUATION

In the following we suppose that an accelerated electron
beam can be considered as a reservoir in which the in-
teraction with the radiation system produces transitions
between the two electron states. %'e can consider the elec-
tron beam a reservoir if we assume that the electron beam
is not fully monoenergetic, but has an energy spread 4E
(in the hypothesis of b,E,&„»AE„d, see Appendix A).
The statistical properties of radiation are obtained from
the motion equation of the reduced density operator for

where l and m are electron states, and E'' ' is the transi-
tion matrix element. We remember that for the photon
momentum uncertainty in an interfering field, each one of
the products c Ic a,a; gives a nonzero contribution to
the scattering probability (the photon momentum uncer-
tainty makes sure of the momentum conservation law in

the scattering). ' Introducing the new variables At;,
=(a&;,+a2;, )/v 2 and A2;, (a», a——z;, )/~—2 that
satisfy the standard commutation rules, the interaction
Hamiltonian becomes

30 1353 O~1984 The American Physical Society



1354 BERTOLOTTI, SIBILIA, PERINA, AND PERINOVA 30

(2)wf
IIini = g g fIK c IncmnA 1sA li ~

l, m n

and
~

K' '
~

is the transition probability (2), n is the
electron density in the m state, nI is the electron density
in the i state, Ai;, ——A;, . Equation (7) is equivalent to
what is obtained in the optical region in the scattering be-
tween radiation and an atomic system.

The statistical properties of the radiation —two-state-
electron system are described by a density operator P(t)
which satisfies the following motion equation:

Bp 1

~
= .~[Hi.i p]Bt iA

[in the Schrodinger picture (SP)].
We are interested only in the radiation properties, there-

fore we eliminate the reservoir variables (electron system)
obtaining the density operator for the field alone, pf(t).
The motion equation for the density operator may be
described using the Markov approximation and the stan-
dard techniques (see Appendix A).

Thus we obtain the master equation for the reduced
density operator in the SP:

Bpf
[Hf,pf ]

III. FOKKER-PLANCK EQUATION

and

dN
[aq,N] =

Ba J
[N t]= dN

Ba~

r)N BN d N
' a"' a"' ' (a"')' '

dN t tdN dN
J Jg~ (g~)2

Making use of the relations

[u tv, p]=[u t,p]v+u t[v,p],
~ tr t[~~]+[~w]

atilt

[+k u k'] 'Bkk'

+4K([A;A,pf, A;A, ]+[A;A „pfA;A, ])

—4Z([A;A „3;A,pf ]+[pfA;2 „A;A,]),
where

Z =+ 8'i-2 (y/2)——n~(1 n)—
is the number of emission processes, and

K =+ 8'2-i ——(y/2)n (1 nt)—

(7)

P'"'({aJl t» (10)

we obtain the master equation for the normally ordered
operator pf. Now we apply the operator X ' which
transforms the operator function pf into an ordinary
function p'"'(aJ, aJ, t) of the complex variable aJ by re-
placing a& by uj and a J by aj. We must remember that
aJ is the eigenvalue of az in the coherent state

~ {aJI )
representation. Then, making use of the relation

is the number of absorption processes; moreover (see Ap-
pendix A),

where M =4 is the number of modes, we obtain a general-
ized Fokker-Planck equation for the antinormal quasidis-
tribution function 4&~ ( {ajj,t) representing the equation
of the density operator in c numbers:

ac,
'

ae,
' '

ae,
M( a; —c.c. + g egg aq —c.c.

+4(K —Z) 2~A,
~

C~ —2~A;~ 4~+~2,
~

A; +c.c.—~A;~ A, —c.c.2 2

Sa'c„,a'e„.ae„ae„
' '

aA,'aA,' '
aA,'aA, '

aA,
'

', ae, ae, , a'c,—4K A,
' + A, —2[At(

where

g ~ li, 2i, g ~ ls, 2s, A;, =(ai;, +a2;, )/~2 .

Performing the Fourier transform

= f C ({P ],t) +exp( —PJaJ+@'a )d Pz, .
7T j

(12)
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introducing a new variable 8J ——Pz exp(i coJ t), and eliminating the fast oscillations exp( i—coj t), we obtain

ac„({e,j, t)

at
= —(X+Z) 4C„'+(8„+8„)

li 2i
Ca+c c +(Hls+82s) ae + aels 2s

Cg +C.C.

+(81,+82, )(81;+82;) +a a

li 2i

a a+
aOl, a02,

Cg +C.C.

+IC 2(81;+82;)(81;+82;)
a a

ls a82s

a a
a2.

+(eli+82i) + C~+c.c. +4C&
li 2i

+z 2(8"„+82,)(e„+8„) a a

li a82i

a a+
ael; a82;

+ (8„+8„) + C„'+c.c. +4C„'
ls 2s

+(E—Z)
a a

aej, a82,

a a

ael, a82,
C

a a

ael; a82;

a a
ae„ + ae„

+(81;+82;) +a a
a82,

a a
ae„ + ao„

a a
ae„ + ao„ Cg +C.C.

—(81,+82,), +a a

ael; a 2; aOl; a02;

a a
ae„+ a6„ Cg —C.C. (13)

We have used Cz ( {PJ j,t)~Cz ( {HJ j,t) because in the problems involving interactions, these functions exist for all times,
so that they are more convenient than the Glauber-Sudarshan quasidistribution sxsz ~Civ. Now we seek a solution of Eq.
(13) in two cases: (a) small gain, i.e., Z-E and (b) high gain, Z ~~K.

(a) Small gain (Z-K =p). In this case Eq. (13) becomes

a a= —2p 28; +c.c.+—(81,+82, ) +
at l 2s ls

+c.c.+48;(81,+82, )
a

2

a a
ae„ + ae„ +C.C.

—4fe, f' +
ls a 2s

a a
ae„ + ae„

a2—4(81, +82, )(81,+82, ) „Cg'
ae*, ao,

(14)

where, because the incident field is an interfering one, we
have considered modes as indistinguishable: 81;——82; ——8;.
We seek the solution of Eq. (14) in the form

I

where

gk({HJ j t) = — (~ +»fk 1+It'fk—
C& ( {HJ j,t) =exp g (2p)"fk( {HJ j,t) (15)

where the field is assumed initially coherent. Substituting
Eq. (15) into Eq. (14) and comparing the coefficients at
the same power of p, we obtain a recursion system of
equations for fk.

afk( {HJ j,t)
=gk({HJ j t)

with

+. g (Vlf V2f +Clf C2f )
m+r =k —1

+ g Vlf V2f.
m+r=k —1
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A = —418; I

' +
ls i) 2s

a a
881, 882,

e/e2 ——5] 2,
a a a

V, =48, , V, =(8„+8„) +
l 1s 2s

—4(81, +82, )(81,+82, )
8;BO;

B= 28; +—(81,+82, )
a

i 2 ls 2s

+48;(8„+8„) a

881, 882,

a a+ao„ ao„

a
el+4(81, +82, ) e2,

8

8 8 8
C2 ———8; + el —(81 +82, ) e2,

lg 1) 2g i

The solution of Eq. (15) is given by

fk(IOJ },t) =fk(IOJ },0)+ fo gk( tO/ },t')dt' . (19)

We assume as an initial condition for Cz( IO~ },t) that the
field is in a coherent state

I I(J } & (at the time t =0);
therefore, we have

f (o(OJ},0)= g ( —
I OJ I +OJ gj' Oj'g)—), (20)

j=l~i, j=2~1s, j =3~2s, and fk(IOJ. },0)=0 for
k & 1. With this condition, performing the calculation of
Eq. (19), we obtain the following result, correct for

I p gt
I

& 1 ("short-time approximation, " where t
represents the interaction time):

3

C~(IPJ },t) =exp g (/3J. e ' g —g~e ' g, )

—2ut l+4 IP I

'+3
I P1. 1'+3 IP2. 1'+3Pi.P2 +3P'1 P2 +2P ge 2P'hie'

+ (Pl +P2 )e el (Pl +P2 41 e

4

+ g /ps (P 1g +P2g )e p (Pl s +P2s )42s e

+4P;e 'e '(Pl, +P2, )( —P,". e '+g')( —Pl, e '+gj, —P2 e +g )+c c

2
—l CO —le lC0$ t EC0$t

4
I Pi ( Pl e +gjg P2 e +$2g )( Pl e (is P2se $2g )

—4(P1 +P2 )(Pl, +P2, )( P;e ' g;)(—P;"e ' —+g')]— (21)

where we have used the transformation OJ ~PJ exp(i coj t) and assumed, in a first approximation, col, -co2, ——co, and

c ( IP, },t) =c ( IP, },t) g p(
I P, I

') .
J

To obtain information on the statistical properties of radiation emitted in modes ls and 2s it is necessary to calculate the
factorial moments. The first factorial moment gives some information on the mode intensity

then

= &a, (t)a, (t) &,
') Cilia(IPJ}, t)

BPi8( —/3i ) (p,. ) =o
(22)

& ~i.&=141.1'+utI:814
I

'+6 —2141. 1'—(k.C~+&~.&2. )&

& ~2*&=142 I '+Ã(814;
I
'+6 —2142*1'—(k1,4~. +0'1.42. )I

(23)

(24)

where each gj is proportional to the field amplitude (at the time t =0). We observe that if the scattered field is initially
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in a vacuum state, we have

(w, )=(w„)=8pt(Ig; I'+o) .

The second factorial moment is

((~wj)'& =
~p,'( —p,')'

a2C„( [p, I, t)

aP, a( —P,') (i j}=0

therefore

= (a jt'(t)a j2(t)) —(a j(t)aj(t))

& (~was)'& =16pt
I k~ I

'I
I &» I

'—p«2 I 0» I
'+(k»4»+~»&2s)] I (27)

&(~W»)'&=16Pt Ig; I'I I42s I' —Pt[2I52s I +(glsg2s+41sg2s)]I, (28)

we have, in fact,
((aw, )')

g (2)(())
& w, &'

(30)

Usually the quantity g' ' —1 & 0 is the basis for the defini-
tion of antibunching, though it reflects only instantaneous
photon anticoincidence. In a more correct way the quan-
tity [g' )(0)—1] gives information on the corresponding
photon counting distribution. In fact, some authors use
the Fano factor F„(T) = ( (b,n) ) I( n ) to define the
super-Poissonian [F„(T)&1] or sub-Poissonian [F„(T)
& 1] character of the photon counting distribution, and
write

F„(T)=1+ [g' '(0) —1]=1+g
(n) (2) ((b.Wj) )

(31)

again in the "short-time" approximation and neglecting
the "second-order term" (pt) . The second factorial mo-

ment given by Eq. (26) corresponds to the quantum-
mechanical normalized (second-order) intensity correla-
tion function (normally ordered and time ordered) at r=0.
If we define5

(2) (I(t)I(t +1 ) )
g 7

where M represents the number of degrees of freedom
(number of modes). When M&0 we have a correspon-
dence between antibunching-bunching and sub-
Poissonian —super-Poissonian statistics. In the following
we consider only the situation at ~=0, i.e., we consider
only the behavior of g' )(0). From Eqs. (27) and (28) and
from the short-time condition (ptg& 1), it is not possible
to observe sub-Poissonian statistics (g' ' —1 &0) and each
mode exhibits a super-Poissonian statistics. In the case in
which only one stimulating field is present (

I g), I &0,
I $2, I

=0), we have for the integrated intensity

& Wis & =
I his I '+P«814(

I

'+ 6—2
I 4 is I

'»

and for the second factorial moment

(33)

The same result is obtained for the mode 2s when

I g» I
&0 and

I g„ I
=0. However, as is easy to verify,

the statistics does not greatly change, with respect to the
case of Eqs. (27) and (28).

The other second factorial moment is given by

(awj sw„) =
apja( —p,')ap, a( —p;) (t)j}=o

() C~([Pj),t) () C~(IPjI, t)

BP ()( —gj) ()Pk()( —Pk) (P ) =0

=(a j(t)a k(t)aj(t)ak(t)) —(a j(t)aj(t))(a k(t)ak(t)), (34)

which for scattered modes gives

&&wi.&w» &=+8pt Ia I '(r»P»+ui. P2, ) (35)

factor, anticorrelation between the scattered modes is pos-
sible and it depends on the phases of the fields.

Finally we have between incident and scattered modes

in a short-time approximation and for small intensity
values of stimulating fields

I
g'»

I
and

I g2, I. Because the
terms gz are given by gz

——
I gj I

e ', where yj is the phase

& ~Wi ~Wi, 2s &=—16Pt
I kr I

'«[41,2s (4s +g» )]
(36)
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&(aw„)'& =o,
(aw„sw„) =o.

(37)

which shows that positive correlation can exist between
the incident and scattered modes when the phase differ-
ence between the two scattered modes is
m/2 & yi —yz & 3m l2. In the case of spontaneous emis-
sion (

I gi z, I
=0) we have from Eqs. (27), (28},and (35),

((sw„)') =o,

These relations correspond to having scattered modes with
stabilized amplitudes. It is also interesting to inspect
the behavior of the "normalized variance"
((hwi z, ) ) I( Wi z, ) (corresponding to the F„—1 factor
of Ref. 5) for each emitted mode. This quantity can as-
sume the value zero for coherent field, —1 for "Fock
state, " or a value proportional to the mean number of
photons in the mode, in the case of chaotic field.

In the case of small gain we have (when
I g, I

z&0)

&(~w»)'& &(~wzs)'& 16pt
I ki I

'I:
I ki, zs I

'—2s«
I ki, zs I

'+
I &i'll&~ I }]

14 i, zs I
'+p«81kt

I

'+6 —214i,zs I

'—21&is I l&zs I
)

(38)

With the hypothesis

14'»1=14zs I

=
I Cs I v is=ezs

1~pt 14 I

' « I O' I

'
&t4 & 1

the previous equation becomes

((aw„)'& &(a w„)')
(w„) (w„)

16pt
I g; I

1+Spt

(39)

Being that this quantity is greater than zero, we have in
the used approximation and in the small-gain regime that
the scattered modes tend to exhibit a super-Poissonian
statistics.

(b) High gain (Z &K}. Using the same considerations
as in the case of small gain, we obtain a solution of Eq.
(13) (see Appendix B}. The factorial moments are now

and

& wi. &=(
I kis I

' —4zt [21kis I
'+(4z ks+ kzs41s }+

I ki I
'[Vis(kis+ kzs }+mls(mls+ P2s }—21k' I

'] ] )

& w &=( lk. I' —4 t [2 lk. I'+(4' 4»+4.C'. )+ l4 I'[4.(4»+4, )+4,(g', +g', )]—2
I g; I

'j),

I &i I'(
I &is I' —4zt[14is I +Cis4zs+4isP~s+14i I [Ci.(4is+Czs)+Cis(4»+C~s)] —214; I']),

&(~wz. ) &=16zt lk I
( Ik. I

—4zt[ lk. I +Pi.k.+ki.Cz. + I k I [Pz.(ki. +k.)+k.(Pi. +Pe. )]—214; I l) .

(40)

(41)

(42)

(43)

In this case also, from Eqs. (42) and (43) and from the
short-time condition (zt

I g~ I & 1), it is possible to verify
that scattered modes exhibit a super-Poissonian statistics.

In the case in which only one stimulating field is
present we have the following expression for the integrat-
ed intensity and for the second factorial moment

(10„1~0,14„1=o):
and

& ~Wi, ~ WZ, & ~t 1614';
I
'(Pisk. +ksPZ. »

(AWhwi z, )=—8zt
I g; I

Re[(~ zs(gi, +pi z, )],

(46)

fields are present. Moreover, again in the short-time ap-
proximation, the correlation between modes 1s and 2s is

(
I 0» I

&»nd Ik. I
=o»

& wi. & =[14i. I

'—8z«
I ki. I

'—
l k I

')] (44} (47)

(45}

We observe also that in the case of high gain, the charac-
teristics of the super-Poissonian statistics do not greatly
change with respect to the case in which two stimulating

where the incident and the scattered modes exhibit an-
ticorrelation depending on the field phase. In the case in

V i. =mz
16zt

I g; I
«

I
g', I, zt

I gz I
&1, we have the following

expression for F„—1:
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&(aw, „)')
(w, „)

16zt Ig; I'
(4 Ik, 2, I

'+414;
I

' Ik, 2 I

'—2
I 0 I

')
1 —4zt

I Ci,~ I'
(4&)

Being this quantity greater than zero, the field exhibits a
super-Poissonian statistics. In the case of high intensity
of the stimulating field, Eq. (48) also becomes proportion-
al to 16zt, and each of the scattered modes exhibits a
super-Poissonian statistics. When a spontaneous scatter-
ing occurs ( I

g'»
I
=

I $2, I
=0), from Eqs. (45) and (47) we

have

IV. CONCLUSIONS

We have shown how a method usually employed in the
statistical study of optical processes can be applied to a
system involving free electrons. We remember that this is
possible if the energy spread of radiation is smaller than
the energy spread of the electron beam.

It is interesting to observe that the statistical properties
of emitted radiation, as expressed by the value of the
second factorial moment, are connected to the strength of
the interaction and its time duration. The technique used
allows one to discuss sub- or super-Poissonian statistics.

APPENDIX A

(( W») ) =0,

((aW„)')=0,

((hW(, b, W2, ) )=0,

(49)

We have a radiation field coupled to a reservoir (free-
electron system), and we wish to study the statistical prop-
erties of the radiation field. By using a standard tech-
nique, we can write the master equation (to second order
in the perturbation theory) (in the interaction picture) for
the reduced density operator

2 2~~
P -n, NpN r p I~

yL

where

~(= f f dwd~mf(~i)f(~m)Q I~pi(xn)I'

(50)

(51)

(see Appendix A) and Mz,.(x„) is a matrix element; n, is
the total electron density in the beam (10' cm ); No is
the number of incident photons per cm sec (10
cm sec '); A,;=A,, (in the ERF) are the incident and
scattered wavelengths, respectively; and N is the fringe
number.

With the values, in the laboratory frame, A,;=0.5p and
N-10 (fringe number) (for interfering angles 8=5'), in
the ERF we have

p —1 sec ' and pt, ( &zt, )-10 (52)

The short-time approximation is
I ptg~ I

& 1 and therefore
we must have Igj I

&10', corresponding to a photon
flux of about 10 photons per second. Because we have
an incident photon flux of (in photons per second)

n —10 (53)

corresponding to a stabilized amplitude of scattered
modes.

An idea of the coupling parameter can be obtained
from Ref. 2. In the laboratory frame the interaction time
is t -L/c, L being the interaction length. In the ERF it
is t, =yt (y=E/mcz). If y=10 and L —1 cm, then
t, -3&&103&&10 9-3)&10 6 sec. The coefficient p(-Z)
(in the ERF) is

—(Q pfQ —pfQ Q )&-1

(Al)

where the Q terms contain the field operators, i=1,2,
j=1,2, and 8'—J is the reservoir spectral density.

Equation (Al) is obtained in the Markov approxima-
tion: the interaction time (t —to) is

t, «t —tp «y
where y is the damping time of radiation field and t, is
the "reservoir correlation time. " The terms S;=J. are given
by

8') 2
—— te' ' K' ' X„C)„Cm„C)„Cm„

l, m n

(A2)

where b,co=cot co~ and—gt is the energy sum, and

8', = f dte' "'gg IIC(2'(x„) I'(c(„c „c(„c„);
l, m n

(A3)

because the energy distribution of the electron system is a
continuous one

g ~ f "~tf(~i) f d~~f(~~»
1,m

the term
I g; I

is

I g I,'-3x 10'.
II 1,2 f f ~d~td~mf (cot )f (cow )

(A4)

Therefore, in this case, the short-time approximation is a
good approximation, and some of the predicted effects
can possibly be observed. where

+ y I~(2)( ) I2(
1'
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I= f"e""'d~,
0

w*,
, ]= f f Id~id~ f(~[)f(~ )

(A5)

(A5), we observe that

(c tie „ci c „}=n,(l —n ),
( ciggc ppgggc 7gcgpg„) =n ( I —ni)

)& g ~

K]2](x„)
~

'(ci„c t „c)~„c „) .

If we consider the fermion operators in Eqs. (A4) and

so if / states are higher (in energy) than I states we can
think of the electron system as a tw'o-level system. In this

way the W] 2 terms represent the emission processes and
8'q ~ the absorption processes.

APPENDIX B

Using the same considerations as in the case of small gain, we obtain as a solution of Eq. (13),
C]v(I(}JI t}~c]v(IÃ1 I t»

3

C~(tpII, t)=exp g (pjgj'e ' pj'g —e

—zt [{pls+p2s}e ( p]se +pcs p2se +f2s }+cC.

+ECiP t —EM. t
+4( —p e ' —g;)( —p;'e '+g,*}

2 t —ECO& t +im t +iso t
+Vis+Ass}( pise ' —p2 e ' ——g], —g2, )

+Ed'& t +ECOg t —ECiP t —EEsP t
+( pi k] p2e g2 }( ge g] —p2e —g2 }

\

+4pi (pls+p2s}( pte +g )( p]se '
p2, e ' +—g*„+gz )s+c.c.

+E~t t —E67.t +EAP8 t +l d)g t —EQ7 t —lCO t
+4p;e '( ge —'+g')( pi, e ' —4— p2 e —4—}(—p],e '+gj, p2, e '+g—z }

\

+C.C.—4(pls + p2s )e '
( —gj' +/is+/ps p2se

—ECO t +l 6) ~ t
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