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Formulas are derived for the differential and integral cross sections associated with laser-induced

excitation transfer. The theory is patterned closely after our recent treatment of laser-induced

chemi-ionization. It is found that cross sections specific to single-photon absorption are proportion-

al to the square of the cosine of the angle between the laser polarization and the initial relative velo-

city of the two colliding atoms. The distortion by a laser of the cross section for an elastic scattering

event also is treated. Finally, a cross-section formula is derived for a collision-induced two-photon

absorption, mediated by a single intermediate electronic state.

I. INTRODUCTION

The theory presented here is an extension to nonioniz-
ing events of our recent analysis' of laser-induced
chemi-ionization. It is applicable to the atomic collisional
processes represented schematically by the equation
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and called laser-induced association (LIA) and laser-
induced excitation transfer (LIET), respectively. The laser
frequency co is assumed not to be resonant with any elec-
tronic transition of the two reactant atoms A* and B.
Consequently, photoabsorption or simulated emission as
indicated in (1.1) only can occur during the brief interval
when the electronic state of the A" Bpair is undergoi-ng a
collisional distortion. Although events falling into the
category LIET can take place during large impact param-
eter collisions, our principal concern is with situations
where the interactional distortions of one or both of the
colliding atoms are too large to be treated perturbatively.

Figure 1 shows three typical situations. In each case
R„(co)denotes the internuclear separation at which the
"resonance condition, " fuo=Ef(R) E;(R), is satisfied. —
In the first of these examples either LIA or LIET can
occur, depending on whether the total energy

E'"=Nlco+E;( oo )+E(= p „;/2p)
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(1.2)

for LIA and LIET, respectively, is equal to Ei" or Ez".
It also is possible for collision-induced stimulated emis-
sion to occur, thereby transforming a colliding A-B* pair
with relative kinetic energy Ez into the product species
A.' and B with a final relative kinetic energy equal to E2.

The pair of electronic energy curves depicted of Fig.
1(b) provides an example where only LIET and the in-

verse, stimulated emission event can occur. Finally, the

A+8

A +B

A*+e

I

I

R „~((gal)

R,a(cu }

FIG. 1. Three examples of situations where laser-induced ex-
citation transfer and/or laser-induced association could occur.
Ei and E2 of (a) indicate two different values for the relative ki-
netic energy of A* and B:Ei"——El+%co and Eq" ——E2+Aco are
the corresponding total energies. RL, (Ei) and RL(E2) are the
classical turning points associated with the two different ener-

gies, specific to the relative orbital angular momentum L. Fi-
nally, R, (co) denotes the internuclear separation at which the
Bohr condition %co =Ef(R)—E;(R) is satisfied.
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curves in Fig. 1(c) are shaped so that the "photoresonance
condition" can be satisfied at two distinct internuclear
separations. The theory presented in Sec. II is applicable
to single-photon events occurring at either of these points.
Curves similar to those of Fig. 1(c) are commonplace,
familiar examples being the ionic and covalent potential
energy curves of the hydrogen halides and the two lowest
lying singlet states of H2. When the curves are shaped as
they are in Fig. 1(c), multiple-photon processes also can
occur, with sequential absorptions and stimulated emis-
sions taking place at R, &

and R,2. A classical path theory
already has been developed for events such as these: its
quantal analog is presented in Sec. III. A second multi-
photon process treated in Sec. III is the sequential absorp-
tion of two photons, proceeding through an intermediate
state.

II. COLLISION-INDUCED, SINGLE-PHOTON EVENTS

this state are given by the expressions P;( r
~
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respectively. Here and henceforth, R denotes the internu-
clear vector separation and r the aggregate of electronic
spin and position variables. Single brackets (

~
& and (

~
)

signify electronic or nuclear configurations whereas dou-
ble brackets (

~
&& and ((

~
) refer to the composite.

The electronic state subsequent to photoexcitation is
represented by the ket

~ Pf &=
~ P„~,&. The associated

wave function and energy are Pf(r
~

R ) and Ef(R)
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~
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Our analysis will be limited to the (electronXphoton)
subspace spanned by the orthogonal projection operators

We consider two crossed atomic beams, one of species
2 and one of 8. Focused on the collision region are one or
more single-mode lasers. The Hamiltonian of this system
is taken to be of the form

Q= IA»&&4'»I (IA»&—= I4~& IN&»
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(2.3)

H =T„+H,)+H„+H;„,. (2.1)

Here T„=p „/2p is the relative kinetic energy of the two
atomic nuclei, no distinction being made between the nu-
clear center of mass and that of the entire system. The
operator H, ~ is the sum of the electronic kinetic energies
and of all the Coulombic interactions among the nuclei
and electrons. Spin-orbit interactions are neglected.
H„=g.ficoaj aj is the energy of the free radiation field(s),
with a~ and aj denoting creation and annihilation opera-
tors for photons with angular frequency coJ and linear po-
larization aj. Finally, H;„,is the energy of interaction be-
tween the charged particles and the laser(s). In all of the
applications considered here this operator is limited to the
electric dipole interaction between the laser(s) and the
electrons.

A collision begins with the reactants in an electronic
state (belonging to a single irreducible representation of
C„,) represented by the ket

~ P; & =
~ P„,&. The coordi-

nate representatives of the wave function and energy of
I

with the photon number N' equal either to N —1 (pho-
toexcitation) or N + 1 (stimulated emission). The position
representative of the relevant photon matrix elements of
H j~g are
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Here I is the laser intensity, co =(co,a ), and d = —g,.e r;
is the electronic dipole moment operator. Finally,
LUf (R,co ) is the function [Ef(R ) E; (R )]/fico w—hich
inadvertently was equated to its "resonance value" of uni-
ty in the Appendix (and text) of Ref. l.

The dipole matrix element in (2.4b} can be written more
explicitly as

(&4f(R) ~~ ~ d ~y, (R)&&=(4~/3)'" g Y;.(a),-((y,(R) ~d. ~y, (R)&&
m =0, +1
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with Y~~(a )- and Y& (a ) denoting spherical harmonics
R —+

referred to the internuclear axis (R =R/R) and to a labo-
ratory frame, respectively. d~ =e~ d indicates one of the
body-frame, spherical components of the electric dipole
moment operator and A'~J ~ (R ) =A~J ~ ($,8,0) is a rep-
resentation coefficient of O(3), as defined by Messiah. Fi-
nally, p=pf; ——Af —A; is the difference between the final
and initial values of the quantum number which specifies
the component of electronic orbital angular momentum
parallel to the internuclear axis. The matrix elements

given by (2.5) can differ from zero only if p equals 0 or
+].

The cross sections for LIET are related to the T matrix

rf (E'I E)=«~' (E') l~ag I
++(E)&&

= JdRCp(E'iR) Vg (R, ct) )%g(E~R).
(2.6)

wherein E=(E,K; ) and E '=(E',Kf ). The functions
@p (E'

~
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are the position representatives of the two nuclear
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@p )) is the solution

of the single-channel equation ( Ez PH—P)
~
4p )) =0,

with Ez E—'—", which satisfies conventionally defined
"in" boundary conditions: @p (E'

~

R ) is the correspond-
ingly conditioned solution of the partial differential equa-
tion

E' — — Vg+Tff (R)+ Vf(R) @p(E
~

R )=0 (2 7)
2p

wherein Vf (R ) =Ef(R ) E—f ( oo ) and E' =E [—Ef( oo )

—E~(oo)]+irioi. Tff (R) is a diagonal element of the
Born-Oppenheimer coupling operator
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We henceforth discard all elements of this operator.
The function 4&+(E

~

R ) satisfies the integral equation
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with G& (E)=[Q(Ez+—H)Q] ', Gp+(E')=[P(ET+ H)P] —', and Ez+ Ez+i——0. Finally, @ti(E
~
R) denotes the regu-

lar solution of the differential equation

f2
E — — Vg+ Vi(R) @g(E

i
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which satisfies "out-type" boundary conditions. The notation introduced here will be retained throughout the paper,
with the symbol 4P used for a single, uncoupled channel and with %P =PJV +designati-ng a projection of the "com-

J
piete, " several-channel motion.

The partial wave expansions of the two nuclear wave functions appearing in the T-matrix formula (2.6) can be written
as

.-L
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with radial amplitudes Ff and F; (overbars are used to draw attention to certain complex valued functions) which are
regular at the origin and exhibit the asymptotic forms
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with K =(2pE/A )'f and K'=(2iJE'/R )'/ . In terms of these functions the transition matrix becomes
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The quantity V& ——V„(R,co) appearing here is defined by the same formula (2.4b) as Vf;(R, co ) but with a.d replaced
with d&

——e&.d. Also,

(F
i V~ i

G)—:f dR F*(R)V~(R,co)G(R) .

We now select the direction of the laboratory polar axis to coincide with that of K =KK; and introduce the (Franck-
Condon related) approximation,

i e '(Ff [VqfF;)=ie ' (Ff fV'qfF; ), (2.14)
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(2.15)

that the heavy-particle orbital angular momentum is unaltered by the photoabsorptive event. [Previous studies ' have
shown that the heavy-particle angular momentum is strictly conserved only for laser intensities below certain critical
values, typically of the order of 10 GW/cm . This is not of great concern to us here, however, because the present theory
loses its appropriateness at field intensities which are sufficiently large to produce significant distortions of the electronic
states; cf. Sec. IV.] The T matrix then assumes the much simpler form

1/2
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The differential cross section for LIET now can be
written as

dof; (E) (2~)~=g
dSCf
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The corresponding integral cross section for LIET is

H fu„[2
Bp(E)cos 8E (2.20)

X g (21+1)Bi(E)Pi(cos8f ) cos 8~ (2.17)
I =0

with g; denoting the statistical weight of the initial state
and where 8f is defined by cos8f Kf K;. T——he energy
(and co )-dependent coefficients B are given by the formu-
la

Bi(E)=(1+5ip) g [Fi(L L +1)+Fi(L +1L)] (2.18)
L =0

I

4P (E„~R ) = YI. M (R )R 'Ff (E„~R) (2.21)
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Before we examine these results more closely let us con-
sider LIA as well. Thus the transition matrix element
specific to laser-induced association into the bound molec-
ular state with energy E„andwave function

1/2
1 2I '+1
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and the associated cross section is
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L' L' L'The radial wave function Ff (E„~R) and the corresponding energy E„aredetermined by the eigenvalue problem
T

Q2 d2 L I I

(2.24)

We have argued above that the collision-induced photo-
absorptive and photoemissive events only occur at inter-
nuclear separations which satisfy the Bohr-like frequency
condition Rco=Ef(R) E;(R). However, —it is clear from
our analysis that the photoelectronic process is not the
source of this condition, as was implied in Ref. 3. In-
stead, the requirement that %co be equal to the difference
of adiabatic electronic energies is a Franck-Condon condi-
tion arising from the fact that (in the semiclassical limit)
the product of nuclear wave functions occurring in the
matrix elements (Ff (E')

~
V&(R,pi)

~
F; (E) & and

(Ff(E„)
~

&&(R,m) ~F; (E)& has a point of stationary
phase at the internuclear separation for which
Aco=Ef(R) E;(R). When th—e circumstances are such
that no point of stationary phase exists, the resonance
concept fails and the value of the corresponding nuclear
matrix element [of V&(R,co)] is likely to be very small.
Transitions occurring at separations which do not con-
form to the resonance conditions are accompanied by
changes of the nuclear kinetic energy.

The wave function %~(E
~

R ) and the associated set of
radial amplitudes F; (E

~

R) are dependent on the laser in-
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tensity and on its polarization as well. This dependence
could be explored by working with the Schrodinger equa-
tions (analogs of those derived by Bieniek and by Saha,
Dahler, and Nielsen' for field-free and laser-induced
chemi-ionization) satisfied by these functions. These
Schrodinger equations involved nonlocal operators
descriptive of the effect of the laser on the projection of
the nuclear motion in the incident channel. Instead, we

Tf (E'
I
E )=Tf' (E'

I E)+5Tf;(E '
I
E )

with

Tf;"(E'I E)=«~;(E ) IPag
I e,+(E)&}

and

(2.25)

(2.26)

use the integral equation (2.9) and obtain from (2.6) the
formula

(2.28)

5 Tf (E '
I
E )=« @p (E ')

I (Pag) Gg ( QaP) Gp+ (Pag) I vg (E ) )) . (2.27)

The "distorted-wave" (DW) transition matrix Tg is exact to the lowest order (I' ) in the laser intensity. It only in-
volves nuclear wave functions which satisfy single-channel wave equations with local potentials. All of the higher-order
effects contained in 5Tf; can be computed iteratively (but probably not convergently), order by order in I. Thus

5Tf;(E'I E)=f fdEIdE'2(E' E'~&+—iO) '(E Ez+—iO)

XTg (E'I E'))Tg; (E'(
I
E2)Tp (E2

I
E)+O(I ),

where the tilde attached to a T matrix such as

Tf (E'IE}=fdi c'~(E'IR)'Vf « ~ )@g(EIR)

(2.29)

indicates that both nuclear wave functions are conditioned
by "out" boundary conditions. The classical interpreta-
tion of the term displayed explicitly in (2.28) is of a col-
lision during which there occur two photoabsorptions
and one stimulated emission. The phase of this contribu-
tion to 5Tf; will differ from that of Tg and so can pro-
duce an interference term of order I in the cross section.

III. EXAMPLES OF COLLISION-INDUCED,
T%'0-PHOTON PROCESSES

It has just been demonstrated (at the end of the preced-
ing section) that the theory of this paper is applicable to
processes involving the absorption and/or stimulated
emission of several photons. Here two further examples
of multiphoton processes will be examined: (i) pairs of ab-
sorptive and emissive events which result in laser-induced
distortions of cross sections for elastic scattering and (ii) a
sequential, two-photon absorption facilitated by an inter-
mediate electronic state.

T;; (E '
I
E ) = Tg~g

"(E'
I
E ) +5T;g (E '

I
E )

where

(3.1)

Ti; "(E'
I
E )fd R @g(E '

I
R )' V; (R )4'g (E

I
R ) (3.2)

is the field-free (FF) value of the transition matrix for
elastic scattering. Here 4~(E'

I
R) is the plane-wave

function (2vrR) exp(iAK '.R ) and, as before,
@+(E

I
R ) denotes the wave function governed by the

Hamiltonian operator —(R /2p)V'R+ V;(R). The laser
Q

2 2

produces the additional T-matrix contribution

A. Field effects on elastic scattering

It was mentioned earlier in connection with Fig. 1(c)
that it is possible, from a classical point of view, for (an
alternating sequence of) resonant absorptions and stimu-
lated emissions to occur at two distinct internuclear
separations, the net effect being an elastic collisional en-
counter. It also is possible for a pair of these photoevents
to occur near a single resonance separation, the first as the
particles approach one another and the second as they fly
apart. In either case it is to be expected that these paired
photoevents will produce changes of the elastic cross sec-
tion which are dependent on both the intensity and polari-
zation of the laser.

To investigate this effect we retain the two-state model
of the preceding section. The T matrix for elastic scatter-
ing then can be written in the form

5 Tg (E '
I
E ) = « eg (E ')

I
(gaP) Gp+ (E2 )(Pag) I

'ug (E ) ))

=fdE "(E2 E"+iO) 'Tf (E—'
I
E")Tf;(E"

I
E) (3.3)

with Ez(&)=&—[&f(DD)—&;(oo)]+%co. Here Tp is
defined as before, (2.26), and,

Tfj (E"
I
E )=fdR@p (E"

I
R )*Vf;(R, a) )pg (E

I
R )

(3.4)

involves the wave function 4&+(E
I
R ) which satisfies the

integral equation (2.9).
The lowest-order approximation (proportional to g to

5T;; results from replacing Tf;(E"
I
E) in (3.3) with the
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DE
corresponding distorted-wave matrix T f; (E "

I
E ). The

po1arization dependence of the resulting cross section is
the same as that for the case treated in Sec. III B and so
will not be discussed separately here.

B. Sequential, two-photon absorption

2ii ~~2

2

P~ =
I yi.N'. N") &O~,N'. N"

I

—=
I
» &11

P2 =
I
P»N' 1»"& & &2»—

' 'N"
I
—= 12—& & 21 (3.5)

P, =
I
y3, N' —1,N" —1&&C 3,N' —1,N"-11—= 13&&31

The second example to be considered is a collision-
induced two-photon absorption, facilitated by an inter-
mediate electronic state. The analysis is reduced to its
essentials by adopting a model consisting of three elec-
tronic states labeled 1, 2, and 3 in order of their increasing
electronic energy. These energies can be imagined to vary
with internuclear separation according to one or another
of the two schematic representations of Fig. 2.

Although we shall treat the case of two lasers with fre-
quencies and polarizations co'= (co,a ') and co"= (co",a "),
the theory is equally applicable when the two absorbed
photons are generated by a single laser. The critical
feature is that state 1 comes into "radiative resonance"
with 2 at a separation 8,' and 2 into resonance with 3 at
R,". The Hamiltonian is the sum of H =T„+H,~+H„
and H'=H;„, with H„and H;„,both consisting of two
parts, one specific to each of the two lasers.

In order that the two transitions 1~2 and 2—+3 be di-
pole allowed, the parities of states 1 and 3 must be equal
to one another and opposite to that of state 2. Thus a
direct transition from 1 to 3 is dipole forbidden. The two
allowed electric dipole transitions connect the
(electron&&photon) subspaces associated with the three
orthogonal projection operators

Ril R i RI'

FIG. 2. Schematic depiction
clear separation of the energies
sidered in Sec. III B.

Rii Rl
r r

of the variations with internu-
of the three-state system con-

R

Accordingly, the state vector 14)) is the direct sum of
three components I+I )) =P~

I
0')) which satisfy the cou-

pled equations

(ET—H ] $ )
I

q'] ))=H ]2 I
'p2 )),

(ET—H„)
I
+2» =H2)

I
'll) »+H23

I
'P3))

(ET H33)
I
+3» =H32

I +22»

(3.6)

wherein Hqq PJHPI an——d Hjk =PJH'Pk, jQk.
What we need are solutions of these equations, desig-

nated by the symbols 1+J+(E))), specific to the initial
electron-photon state 11) and to beam conditions charac-
terized by the vector E=(E,E ). The corresponding value
of ET is E+E&(oo)+N'fico'+N'Vuo". Let Q and P be
defined as equal to P, +P2 and P3, respectively. The T
matrix for the collision-induced two-photon absorptive
event then can be related to the solution

I
4+(E ) )) by the

formulas

T3i(E'
I
E)= «@~«')

I
PHQ

I
q'+(E) &&

= &&@3 (E') IH32 I
P2'(E) &&

= «+3 (E )
I H32lET H22 H23G3 (E )H321 H211+i'(E) » . (3.7)

The last of these has been obtained by using Eq. (3.6) to relate 1%2+ )) to
I

%~+ )). A second result that can be obtained
from (3.6) is the integral equation

I
+i «)»=

I
+i'(E)»+Gi+«)H»lET H22 H23G3+(E )H32] H211q'i'(E)» (3.g)

for 1%~+(E))).
The two kets 1@t (E ) &) and 143 (E'))) denote appropriately conditioned solutions of the single channel equations

+

(Er HJJ )14J )) =0 whic—h are specific to E=(E,E ) and E'=(E',E '), respectively. The corresponding wave functions
satisfy the two Schrodinger equations

and

E — — Vg+ Vi(R) @i(E
I
R ) =0

2p
(3.9a)

2p
"

V2~+ V3(Z) e3(E I
R)=0

with E'=E —[E3(oo ) —E~( oo )]+%co'+%co".
The distorted-wave approximation to the T matrix of (3.7) can be written in either of the two forms

(3.9b)
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T, (E '
r
E )= ((4 (E ')

i

II' 6+ (E")H',
i
4,+(E ) ))

dEp E"—Ep+~0 'Tpp E' Eg Tp) Ep E (3.10)

with E"(E)=E —[Ez(ae ) —E~( oo )]+%co'. This approximation to Tz~ is proportional to I' I"': the corrections of
lowest order are proportional to I' I" and I'3 2I i/2

The differential cross section for this two-photon absorptive process is directly proportional to ) Tz&(E'~ E) (
and

this, in turn, is proportional to cos Ha—=(a'E )z. Its dependence on the polarization a" is somewhat more complex.
However, the corresponding integral cross section has the uncomplicated functional dependence

E T3] E E —Q cos ~ b]+ b] —bo cos 0~ (3.11)

with a =
~

u „~/4(4~) . To simplify the formulas for b p and b& as much as possible we assume that the single-photon

T matrices appearing in (3.10) depend very weakly on the "intermediate-state" energy Ez. The only significant contribu-

tion to the integral then will be that associated with the imaginary part i m5—(E" Ez —) of the propagator
(E" Ez +—i 0) '

Th. is approximation discards off-energy-shell contributions to Tq, and produces the formulas

bJ
——g (2L + 1) '

( q3z(E'
~

E")
) g qz~ (E"

~
E)qz& (E"

~

E)'aj (L',L") (3.12a)
I. I I LII

with

q'J(E'
~
E)=(2l +1)(F$(E')

~ &„..
~
+J'(E) &exp[i(ziJ' —g,')],

a p (L',L")=A p (L')A p (L"),

tz i (L',L")= —,[A i (L')A i (L") +A i(L')A i(L")'],

(3.12b)

(3.12c)

(3.12d)

AM(L')= g(2J+1) 0 0 M M fdR %~'P(R )AM' q (R ) .
J

(3.12e)

The Franck-Condon principle (treated in Sec. II) leads us

to expect that the cross section for this two-photon pro-
cess will be large only if there are two separations R,' and
R„"(as depicted in Fig. 2) which satisfy the resonance
conditions fko =Ez(R„) Ei(R„) an—d fko =Ez(R„)
—Ez(R„"). Among the many processes similar to that
considered here is a three-photon absorption from one
state to another (of opposite parity) which is enabled by
hao intermediate states.

IV. CLOSING REMARKS

In all of the examples examined in this paper our
theory has proved itself capable of dealing quite efficient-
ly with the contributions to the various cross sections
which are of the lowest nontrivial order in the laser inten-
sity. This is true for collision-induced two- and three-
photon events as well as for collision processes which in-
volve the absorption of but a single photon. However, the

theory is not structured optimally to deal with higher-
order terms in the laser intensity. This shortcoming is
closely related to what might be identified as a second de-
ficiency of the formalism, namely, that the cross sections
have been defined in terms of transitions from one field-
free electronic state to another. Both of these issues can
be dealt with at once by recasting the theory in terms of
the dressed states which actually exist within the laser
spot, rather than in terms of the field-free, bare states
used in this and two closely related papers' on laser-
induced chemi-ionization. A dressed-state analog of the
theory presented here has been developed and will be com-
municated separately.
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The corresponding nonlocal interaction occurring in the theory
of laser-induced chemi-ionization is associated with excitation
to a continuum (ionized) state. In Sec. II of Ref. 1 a pro-
cedure was presented by which this nonlocal interaction could
be replaced with an approximate local interaction hV —

2 I
with 6V and I, respectively, denoting the shift and width of
the initial state. An analogous approximation is applicable to
LIET and/or LIA provided that the electronic final state in
question can be identified with a set of closely spaced Ryd-
berg states. One then replaces the projection operator I' of
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(2.3) with where p(,ef ) =def /df is the Rydberg analog of the density of
continuum states that occurs in Ref. 1


