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Nonperturbative dynamical-group approach to screened Coulomb potentials
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In this paper we consider screened Coulomb potentials of the Yukawa type and treat them using a

scaling variational method based on the SO(2, 1) subgroup of the full SO(4,2) dynamical group of the

point Coulomb problem. In this formulation the tilting angle is treated as a variational parameter

and the relevant matrix elements of the Yukawa potential can be expressed as matrix elements of an

analytically continued finite SO(2, 1) transformation of the parabolic type. We calculate the energy

eigenvalues, wave functions (essentially scaled Coulomb wave functions), and normalization factors.

Our energy eigenvalues are more accurate than those found by the analytic perturbation theory of
McEnnan et al. , while the normalization factors are less accurate. Thus our method may be con-

sidered as complementary to the analytic perturbation theory.

I. INTRODUCTION

The problem of screened Coulomb potentials is of un-

questionable importance in the physics of atomic phenom-
ena. Such potentials have been studied using many tech-
niques, both numerical and analytical. These include
WKB methods' and various types of perturbation
theory. In particular, McEnnan et al. have developed
an analytic perturbation theory for screened Coulomb po-
tentials that can be expanded in the form

V(r)= —(a/r)[1+ Vier+ V2(Ar) +V3(ir) + ],

where A.=az' is a small parameter characterizing the
screening. The coefficients are chosen to give rapid con-
vergence and to give a good approximation to realistic nu-
merical potentials on the interior of atoms where A,r (1.
McEnnan et al." consider mainly two types of potentials
namely the simple Yukawa potential

V( r) = —(a/r)exp( —A,r),

where A, is taken as the Thomas-Fermi radius, and the
Herman-Skillman potential which is expressed as a sum
of Coulombic and Yukawa potentials as

V(r)= ——[Z '+pe ' +(1—g —Z ')e "' ] .
r

(1.2)

The parameters g, pi, and p2 are obtained from least-
squares fits to the Hartree-Fock-Slater data given in Ref.
5. Upon expansion of the exponentials in Eq. (1.2) the
coefficients Vk of Eq. (1.1) may be determined so that the
perturbation method of Ref. 4 may be applied. We shall
follow the authors of Ref. 4 and refer to Eq. (1.2) as the
Herman-Skillman (HS) potential and note that the values
of the coefficients in Eq. (1.2) may be found for various
values of Z in their paper.

In the present work we wish to present an approach to
these screened Coulomb potentials based on the well-

known SO(4,2) dynamical group of the Coulomb prob-
lem. In fact, the dynamical-group method has previously
been used to treat the Yukawa potential in the context of
algebraic perturbation theory. ' The present method,
however, is nonperturbative. It consists of two essential
features. First, since the potential is spherically sym-
metric we need utilize only the SO(2, 1) subgroup of
SO(4,2) and in this formulation the matrix elements of the
Yukawa-type potential can be expressed as a global
SO(2, 1) group eleinent. The second feature is related to
the so-called "tilting" transformation that relates between
the physical states and the group states which are the
basis of the relevant unitary irreducible representations
(UIR) of SO(2, 1). In configuration space this transforma-
tion amounts to a scale transformation. In the point
Coulomb problem, the tilting angle is usually fixed by the
requirement that the coefficients of the nondiagonal terins
in the eigenvalue problems should vanish. However as we
have shown elsewhere, ' this angle may be treated as a
variational parameter. This leads to a group theoretical
formulation of what has been called the scaling variation-
al method (SVM)." We shall use this method here to ob-
tain the energy eigenvalues, wave functions (essentially
scaled Coulomb wave functions) and normalization fac-
tors for bound states of both the Yukawa and HS poten-
tials. The continuum states will be discussed elsewhere.

In Sec. II we review the formulation of the Coulomb
problem in terms of the generators of the dynamical
group SO(2, 1) and the relevant representations. We also
present our formulation of the SVM. In Sec. III we derive
the energy functionals for the screened Coulomb poten-
tials and in Sec. IV our numerical results are given and
compared to those of Ref. 4. As wi11 be seen, our calcula-
tions for the energy levels are superior to the analytical re-
sults of that paper while the normalization factors are
somewhat less accurate. A brief discussion concludes the
paper and an appendix is included to summarize some re-
sults from the theory of SO(2, 1) representations as dis-
cussed by Bargmann. '
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II. SO(2, 1) THEORY AND THE SCALING
VARIATIONAL METHOD 1s

Now for the point Coulomb problem the Hamiltonian

H = —,'p —a/r,The SO(2, 1) lie algebra consist of the generators Kp,
E&, and E2, the commutation relations

(2.9)

[K),Kz] = —iKp,

[K2, Kp] =iK|,
[Kp, K;]=iK2,

and the Casimir invariant

Q =Kp —K) K2 .—2 2 2

(2.1a)

(2.1b) Q(E)
i @)=0, (2.10)

(2 1c) where

Q(E) =r(H E)— (2.11)

(2.2) and
~

0') is a physical state. Using Eqs. (2.4) we have

where a =Za. To use the generators of Eqs. (2.4) the
eigenvalue problem must be written as

The eigenvalues of Q we shall denote as k(k —1). The
relevant UIR's employed here are the so-called positive
discrete series &+(k) where k )0 and the compact gen-
erator Eo is diagonal as

Kp
~
n, k) =n

~

n, k)

Q(E)= —,(Kp+Ki) —E(Kp —K, }—a . (2.12)

(2.13)

To remove the nondiagonal operator K&, one performs the
tilting transformation so that Eq. (2.10) becomes

n =k,k+1,k+2, . . . .
where

2.3

In the case of the Coulomb problem SO(2, 1) generators
have the following realization

(2.14)

Kp ——,'(rp +r)—,

K, = —,
' (rp2 —r),

(2.4a)

(2.4b)

Q(E, 8)=e 'Q(E)e

,'e (Kp+K—))—Ee (Kp —K|)—a . (2.15)

E2 ——r p —i.
Upon calculating the Casimir operator one finds that

(2.4c) The transformation of Eq. (2.15) has been accomplished
through the use of the Baker-Hausdorff-Campbell formu-
las

Q=Kp —Ki —Kz2 2 2

=L]+L2+L3
L2

(2.5)

8@2 iOK&
e Eoe =Eocosh8+E~ sinh0

—'8K2 'OE~
e E&e =Eosinh8+E]coshO .

(2.16a}

(2.16b)

where the L; are simply the generators of the SO(3) sym-

metry group. Since L has eigenvalues 1(1+1),Eq. (2.5)
leads to the identification

k(k —1)=l(l+1) (2.6)

(n, l, m
~
n, l m ) =~f$ g~r/~fg ~ (2.7)

and the completeness relation [in the SO(2, 1) subspace)

whose solutions are k = —l and k =l +1. However only
the second root leads to a UIR so the first must be dis-
carded. We therefore may label the group states (basis of
the UIR) as

~
n, l +1) but we shall simply write them as

~
n, l ). We actually have here a decomposition of the full

dynamical group SO(4,2) as SO(4,2) 0SO(3) SO(2, 1)
which may be interpreted as a separation of variables into
spherical polar coordinates. We thus shall include the az-
imuthal quantum number m in our definition of the

group state, i.e., i
n, l, m ). It will be demonstrated shortly

that the number n is in fact the principle quantum. We
must also point out that these states satisfy the ortho-
gonality relation

Now with the choice of 8=in(V —2E ), Eq. (2.15) be-
comes

Q(E,8)=V' 2EKp a— — (2.17)

so with
~

0') =
~
n, l, m ) (a group state), one obtains from

Eqs. (2.3) and (2.13) E„=—a /(2n ) the Coulomb energy
levels. Note that the tilting angle depends on the level in
question and in fact becomes 8„=In(a/n).

Alternatively we may use the group states
~

n, l, m ) and
Eq. (2.5) and write

( n, l, m
~

Q(E, 8)
~
n, l, m ) =0

to obtain the energy functional

(2.18)

E„(8)= , e ——e-2e ~ e
n

(2.19)

Setting dE„(8)/d8=0 we obtain 8„=ln(a/n) and
E„(8„)= a /(2n )—as before. This method of treating 8
as a variational parameter is just the scaling variational
method since E2 is essentially a generator of scale
transformations.

Now the group states
~

n, l, m ) are related to the physi-
cal states

~
n, l, m ) via

~n, l)(n, l
~

=1.
n =1+1

(2.8)
(2.20)
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(n, l, m ~r ~n, l,m)=1,
where r =Ko —K&. This becomes

(2.21)

where ~„ is a normalization constant. These states are
normalized according to

e 'f (r)e '=f[e (Kp —K&)] . (3.4)

( n, l, m
~

Q(E, O)
~
n, l, m ) =0 . (3.5)

We now find the energy functional using the group
states to write

1=~„(n,l, m
~

(Kp —K&)
~
n, l, m )e

—8„=~„e "n (2.22)

We obtain

—ae-~(K —K )E~(8)=—,e ——e ( nl e ' '
~

n l),

2l+1 (n+1)!
(2l + 1)! (n —l —1)!

1/2

X ~F&(l + 1 —n, 2l +2,2r) I'~~(5, p), (2.23)

where ~F~ is the confluent hypergeometric function. The
physical wave functions will be, by Eq. (2.20), scaled
group functions. Scale transformations are generated by
r V' such that

exp[(lnP)r V]f(r )=f(Pr ) . (2.24)

Since iK3 —1=r V we have, by Eqs. (2.20) and (2.23)

which yields ~„=e "In F. or e "=a/n we have ~„
=a'")n.

In configuration space the group states are realized as

ql„(~ ( r ) = ( r n, 1,m )

a P
gC Ilc (3.7)

The SO(2, 1) algebra has the 2X2 realization K~ ——ioz/2,
Kq —— io ~/—2, and Kp ——cr3/2 where the cr3 are Pauli ma-
trices. Thus we have

Kp K] —
p (cT3 i o q)

where the azimuthal quantum number has been
suppressed in the last term. This term may in fact be con-
sidered as an analytically continued diagonal matrix ele-
ment of a finite SO(2, 1) transformation. It may be ex-
pressed in terms of the Bargmann functions given in the
appendix. But first we need to find the corresponding
matrix elements a and p of the 2X2 nonunitary represen-
tation.

We consider the SO(2, 1) transformation
—t'y(, KO —Ki )G=e

(r )=(r
~
n, l, m )

1/2
e 2'+' (n + l)!

(2l + 1)! (n —l —1)!

1/2
I —1

2 1 —1

and therefore we easily obtain upon expansion

(3.8)

~n 1 —e "rX(e "r)'e ' "&F&(i+I n, 21+2—;2e r),
(2.25)

—i y(,KO —K1 )
e

1 i y/2 i y /—2
iy/2 I—

+i@�/2

(3.9)

where we have taken ~„=e "~ In ' . If we set

e "=a/n the 0'„~ (r ) are just the hydrogenic wave func-
tions.

III. SCREENED COULOMB POTENTIALS

We consider first the case of the simple Yukawa poten-
tial where

(3.1)

ga= 1 ——e, a*=1+—e
2

'
2

P= —e, g'= ——e
2

'
2

(3.10)

Therefore the energy functional of Eq. (3.6) may be writ, -

ten in terms of the Bargmann functions as

This falls into the category of a parabolic SO(2, 1)
transformation. ' Upon making the analytic continuation

y —ice-' we find that

With Q(E}=r(H E) and with r =—Kp K& we have— E„((0)= —,
'

e ——e V„'+ '(a, P),
n

(3.11)

Q(E) = —,(Kp+K ) ) —E(Kp —K ( }

—a exp[ —A, (Kp —K&)] .

We perform the tilting transformation to obtain

A(E, B)= , e (Kp+K() Ee —e(Kp K,)——

—a exp[ —A, e (K'p —K, )],

(3.2)

(3.3)

E„~(9)=—e ——e 1+—e
2 n 2

—28

where a and P (and a* and P") are given by Eqs. (3.10).
As seen from the form of V„'+' in the Appendix Eq.
(3.11) may be written

where we have used the fact that for any function f ( r)
which has an expansion polynomial in r =Ko —K&

X zF~(i+ I n, n —l, l; —,A, e —) . (3.12)—
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The energy functional for the HS potential of Eq. (1.1)
is determined in an entirely analogous fashion. One has

E„I(8)=—e ——e [Z '+/V„'+„'(a~, P~)
2 n

Pi 2 g, P&2
CX) 2= 1 — e, CX) 2= 1+ e

2
' ' 2

P12 g ~ P12 g
P1 2= e P~i 2=—

2
'" 2

(3.14)

where

+(1—g —Z ') V„'+„(a2 P2)] (3 13) Therefore the energy functional of Eq. (3.13) may be writ-
ten

E„I(8)=—e ——e Z '+g 1+ e
1 2g a g p)
2 n 2

—2n
r

2F& l+1 n—, n ——l, l; —„p&e
2 —2g

—2n

+(1—g —Z ') 1+ e2' 2F~ l + 1 n, n ———I 1;—,p2e
2 —2g (3.15}

Applications will be considered in the next section.

IV. APPLICATIONS

Here we apply the results of Sec. III to the particular cases studied in Ref. 4. That is, we give the energy levels, wave

functions, and normalization factors for the 1S, 2S, and 2P states for both the Yukawa and HS potentials for various Z
values.

The energy functionals for these states are given from Eqs. (3.12) and (3.15) for the Yukawa potential as follows:
' —2

E~o(8)=—e —ae 1+—e (4.1a)

E20(8)=—e ——e 1+—e2g a g A, g
20 2

E (8)=—e ——e 1+—e2g a g A, g
2 2 2

4
2

e
—282'

—4

(4.1b)

(4.1c)

and for the HS potential as follows:

E (8)=—'e —ae Z '+g 1+ e2'
' —2

+(1—g —Z ') 1+ e2'
—2

(4.2a)

8)
E2p(8) ——,

' e ——e Z '+g 1+ e
2 2

4

1+ e "+(1—g —Z ') 1+ e2' 2'
—4

2e 2g2'

(8) & 28 a e8 Z —i+g 1+ ~

e
—8

' —4

+(1—g —Z')1+ e'2'
4

(4.2b)

(4.2c}

For the case of the Yukawa potential A, is taken as the
Thomas-Fermi radius 1.13aZ'~ and for the HS potential
the p&, p2, and g are taken from Table II of Ref. 4. In
Fig. 1 we give some selected examples of the 0 trajectories
for the energies.

In Table I we give our scaling factors e "' which mini-
mize the energy functionals of Eqs. (4.1) and (4.2). We
have included for the sake of comparisons the point
Coulomb scaling factors e "=a In In Table .II we

present our scaling variational results for the energy levels

along with the numerical and perturbation analytic results
of Ref. 4. We also include results when e is set to its
point Coulomb value a/n in Eqs. (4.1)—(4.2). The results

obtained in this way are in fact what one would obtain by

expanding the exponentials, in the potential and doing the
equivalent of first-order perturbation theory on each term
then summing. Indeed, if we set e =a in Eq. (4.1a) we
obtain upon binomial expansion

EI0————a +Ra ——k +. . .1 2 3
2 4

(4 3)

which contains the first two terms of the perturbation
series for the ground state. '

Our results for energies are uniformly more accurate
than those from the analytic perturbation theory of Ref.
4. We note however that in both our results and those of
Ref. 4, the 2S states in general have the highest fractional
error.
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FIQ. 1. Examples of energy as a function of e . The 1s level is for Z =13 while the 2s and 2p are for Z=36.

Table III contains our calculated normalization factors.
From Eq. (2.25) these factors are

(2e n&)(1+3/2)8 1/2

(2l +1)!
(n +l)!

2n (n —l —1)!Nnl =

where the point Coulomb factors are
I +3/2

1 (n + l)!
(2l + 1)! 2n (n —l —1)!

2aC
N„I ——

1/2

(4.5)

TABLE I. Scaling factors e for the point Coulomb and

screened potentials.

As seen from the tables, our normalization factors calcu-
lated from the scaling technique, while exhibiting the
proper behavior, do not have the accuracy of those of

R„l(r)=r e ' "
&Fl (l + 1 —n, 2l +2;2e "'r ) .

For the 1s and 2s states considered these are

,~io,
u, p(r) =re

~2o
u2p(r)= re ' '( 1 —e ' r)

(4.6)

(4.7a)

(4.7b)

~niwhere the e "' are taken from Table I. As seen in the fig-
ures, the scaled wave functions have the same general
behavior as the perturbed wave functions of Ref. 4.

McEnnan et al. They are typically accurate to the
second decimal place.

Finally in Figs. 2 and 3 we note the effect of the scaling
on the shape of the unnormalized radial wave functions
u„l(r) =rR„l(r) where

Yukawa

HS

Z

13
36

79

13
36

79

Point
Coulomb

0.094863
0.262 697
0.131348
0.131 348
0.576 474
0.288 237
0.288 237
0.094 863
0.262 697
0.131348
0.131 348
0.576474
0.288 237
0.288 237

Screened
Coulomb

0.092 462
0.260 822
0.118788
0.120335
0.574964
0.277 692
0.279 167
0.092 039
0.259 860
0.115733
0.116916
0.573 829
0.272 191
0.273 958

V. DISCUSSIONS

The method and results given in this paper may be in-
terpreted as complimentary to analytic perturbation
theory of McEnnan et al. in Ref. 4. That is to say the
group theoretical scaling variational method presented
here yields generally more accurate energy eigenvalues
while the perturbation theory apparently yields more ac-
curate normalization factors.

Our results are actually subject to further improvement
by the application of perturbation theory. This may come
about in the following way. In forming the energy func-
tionals of Eq. (3.12) only the diagonal matrix elements of
the SO(2, 1) transformation are used. We may therefore
think of the off-diagonal terms as giving rise to perturba-
tions. The first-order correction will of course be zero so
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TABLE II. Bound-state energy eigenvalues (in keV) for the Yukawa and HS potentials as a function of n, l, Z. The analytic and
numerical results are from Ref. 4. (Quantities in parentheses denote factors of 10.)

HS

Z

13
36

79

13
36

79

1

1

2
2
1

2
2
1

1

2
2
1

2

Numerical

—1.488(0}
—1.424(1)
—1.692(0)
—1.566(0)
—7.495(1)
—1.250(1)
—1.225{1)
—1.544(0)
—1.413(1)
—1.833(0)
—1.676(0)
—7.404(1)
—1.237(1)
—1 ~ 199(1)

Variational

—1.488(0)
—1.424(1)
—1.696(0)
—1.561(0)
—7.495(1)
—1.251(1)
—1.225(1)
—1.543(0)
—1.413(1)
—1.840(0}
—1.670(0)
—7.403(1)
—1.238(1)
—1.198(1)

Coulomb
scaled

—1.486(0)
—1.424(1)
—1.662(0)
—1.534(0)
—7.495(1)
—1.248(1)
—1.223(1)
—1.541(0)
—1.413(1)
—1.787(0}
—1.625(0)
—7.403(1)
—1.213(1)
—1.193(1)

Analytic

—1.484(0)
—1.424(1)
—1.615(0)
—1.504{0)
—7.495(1)
—1.245(1)
—1.221(1)
—1.535{0)
—1.412(0)
—1.563(0)
—1.479(0)
—7.403(1)

1.212(1)
—1.180(1)

Fractional
error

0.000 34
0.008 2
0.002
0.003 1

0.000027
0.000 8
0.000 24
0.000 52
0.0
0.038
0.006 1

0.000 12
0.000 8
0.00092

2

V(r) = — [1+(1+ar )e ']
r

(5.1)

for one electron of the helium atom in the field of the oth-
er and the nucleus. To apply the dynamical-group
method we must multiply by r to get

the first nonzero correction term is actually second order.
As this will be negative our energy eigenvalues will im-
prove and also, we expect, our normalization factors. In
Ref. 10, we considered the simpler problem of the
Coulomb potential perturbed by the confining potential
A,r (A, &0) in just this way. The application of this
method to the screened Coulomb potentials will be dis-
cussed elsewhere.

Finally, we mention that our method is applicable to
more general cases of screened potentials. Consider for
instance the potential

[rV(r)]T —— e[—1+(1+ac er)e ' '] .

Then we need

(5.3)

The second term is expressed as a Bargmann function as
before while the third term can be evaluated by using the
completeness relation of Eq. (2.8) to write

( n, l
~

re ' '
~

n, l )

(n, l
~

r
~

n', l)(n', l
~

e ' "~ n, l) . (5.5)
n'=1+ 1

(n, l
~
[rV(r)]T

~
n, l) =—e (I +(n, l je ' "~ n, l)

+ae (n l
i
re ' 'i n I))

(5.4)

r V (r) = —e [1+(1+ar)e ~"] . (5.2
From the Eq. (2.3) and that

Applying the tilting transformations, the right-hand side
becomes

&~
~
n, &) =~„I

~
n+ 1,l)+b„q

~

n —1,l),
~here

(5.6)

TABLE III. Bound-state normalization factors for the Yukawa and HS potentials as a function of
n, l, and Z. (Quantities in parentheses denote factors of 10.)

Yukawa

HS

13
36

79

13
36

79

Numerical

5.692( —2)
2.674( —1)
8.618(—2)
6.306( —3)
8.731(—1)
2.982( —1)
4.905( —2)
5.664( —2)
2.663( —1)
8.394( —1)
6.008( —3)
8.714(—1)
2.923( —1)
4.758( —2)

Variational

5.623( —2)
2.644( —1)
8.188(—2)
5.800( —3)
8.719(—1)
2.926( —1)
4.755( —2)
5.585( —2)
2.649( —1)
7.874( —1)
5.397( —3)
8.694( —1)
2.840( —1)
4.536( —2)

Analytic

5.711(—2)
2.674( —1)
8.933(—2)
6.582( —3)
8.731(—1)
2.999(—1)
4.937( —2)
5.699(—2)
2.665( —1)
9.200( —2)
6.628( —3)
8.715(—1)
2.981(—1)
4.861( —2)

Fractional
error

0.012
0.011
0.16
0.080
0.0014
0.051
0.031
0.014
0.0053
0.21
0.10
0.0023
0.087
0.047
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a„t= —,
' [(n l—)(n +l+1)]'

b„t = —,
' [(n +l)(n —l —1)]'

we obtain

(n, l ~re
' ' "~n, l)

(5.7a) the form

(5.7b)
(KO+Kl )

e

lg1+ +i y/2
2

+iy/2 1+
2

(A3)

(n, l
~
[rv(r)]T

~

n, l &

= —e [1+(1+e an) V„+„

—ae e(a„t V„'++I „+b„tV„'+ t „)]. (5.9)

I+1 I+I 1+1
n Vn, n ant Vn+1, n brit Vn —l, n

where the V„'+„' are the appropriate Bargmann functions.
Altogether then we have

V(G)
i
n, k) = g V„"„(a,P) i

n', k),
n'=k

where

(A4)

Comparison with Eq. (Al) yields a and P.
%e have used in this paper only the unitary irreducible

representation &+(k) where basis states
~

n, k ) diagonal-
ize Xo as is Eq. (2.3) and the eigenvalue of the Casimir
operator Q is k (k —1). A transformation G in this space
has the action

This result may be used in Eq. (3.11) to obtain the corre-
sponding energy functional.

APPENDIX

V„„(a,P) = (n', k V(G)
~

n, k ) .

For n' & n we have

(A5)

In the elementary 2X2 representation of the three-
parameter group SO(2, 1)-SU(1,1) the generators are real-
ized as K& io2/——2, X2 —— itr~/2, an—d Eo crs/2 ——where
the o.; are Pauli matrices. In this representation a finite
transformation may be written in the form

Vk ( P) g (~e) n n—Pn
' —n' —

X zFt(k n, 1 —n ——k, 1+n' —n; P*I3), —

(A6)

~here

where

7 (A 1)
1 I (n'+1 —k)l (n'+k)

I'(1+n' n) I—(n+1 —k)l (n+k)

1/2

detG =a*a—g'P= 1 (A2)

for a and P complex numbers. K~ and K2 generate hy-
perbolic subgroups of SO(2, 1) while Ko (the compact gen-
erator) generates an elliptic class of subgroups. ' The
combination Ko+K~ generates the parabolic subgroup of

and for n'&n

V ( P) g ( 4)—n —n( P+)ll —5

X qF~(k n', 1 ——k n', n n'+—1—; 13'P) . —

(A8)
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