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Corrections to the Fermi approximation in neutron-nuclear scattering
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The Fermi approximation is fundamental in the use of thermal-neutron scattering to study solid-
state and molecular physics. It is important to understand how accurate this approximation is.
There have been a number of computations of corrections to the Fermi approximation for model
systems. For some of these, however, the correction has been found to be divergent. This raises
some questions about the validity of these calculations. Here we calculate the first-order correction
to the Fermi approximation through an approach in which the scattering nucleus is replaced by a
boundary condition. It is shown that the first-order correction to the Fermi approximation can al-

ways be made to converge and that the magnitude of the correction is small.

I. INTRODUCTION

The problem of neutron scattering from chemically
bound nuclei is usually treated by the Fermi approxima-
tion, i.e., the first Born approximation plus the Fermi
pseudopotential, '

27rR2
V( r) = a5(r),

where m is the mass of the neutron, a is the bound-atom
scattering length, and the scatterer is assumed to be locat-
ed at the origin. The Fermi approximation is designed to
give the correct, experimentally determined scattering
length for neutron scattering from a free nucleus in the
limit of zero neutron energy.

The first-order correction to the Fermi approximation
has been the subject of several studies during the past four
decades; ' these studies have given some divergent re-
sults for this term. This is a direct result of the zero-
range potential (1), which is used to describe the interac-
tion, and creates doubts about the validity of the estimates
of the magnitude of this term which have been calculated
to be small. Of course, had the real potential been used,
the results for the correction terms would be finite. How-
ever, such computations are not possible. The question
remains however, whether one can develop a reasonable,
finite series of approximations for a zero-range potential,
i.e., treating the nucleus as a boundary condition on the
neutron wave function.

In this study we use a modified version of the zero-
range interaction potential to develop a consistent method
which leads to the convergence of the first-order correc-
tion term for all systems. This approach is then applied
to some specific systems which have been studied earlier.
Here we treat neither resonant scattering nor multiple
scattering. These have been dealt with extensively by oth-
er authors. '

II. NEUTRON-NUCLEAR INTERACTION

The T matrix is determined by the solution of

T =V+ VGT,

where

G =(E Ho+i@)— (4)

where E is the total energy of the system and Hp is its
Hamiltonian in the absence of neutron-nuclear interac-
tions. A series expansion for T can be written as

T=(1—VGo) ' g [(VG —VGO)(1 —VGO) ] V
s=p

where

or

Gp —— Pn
+i@

2Pp

T =Tp+ T&+ T2+
where

To=(1—VGo) 'V

and

solution for a potential of the form of Eq. (1). A number
of authors have suggested the use of a different pseudopo-
tential to replace the Fermi pseudopotential;

V(r)= a5(r) r . (2)
m Br

For this potential the Schrodinger equation does have a
solution. It is noted that Eq. (2), acting on a nonsingular
wave function, gives the same result as the Fermi pseudo-
potential, but acting on a singular wave function of the
l/r type, it removes the singularity.

III. SCATTERING (T) MATRIX EXPANSION

Consider neutron scattering from a single, bound nu-
cleus. It is clear that the Schrodinger equation has no etc.

Ti ——(1—VGo) '( VG —VGO)(1 —VGo) ' V (9)
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The first term in this expansion gives the Fermi pseu-
dopotential approximation. Consider a neutron, scatter-

ing from a single, free nucleus. Using the pseudopotential
for the interaction between the neutron and the nucleus,
the Hamiltonian for this system in the center-of-mass
frame is

+ I'(rn —rx» (10)
2p

where p is the reduced mass of the neutron and the nu-

cleus with masses m and ml, respectively, and r„and r~
are the vector positions of the neutron and the nucleus,

respectively. %e have for this system

T = V+ VG)T
where

—1

6 (12)
2p

and where E is the total energy of the system. %'e are in-
terested in determining off the energy shell results for
Te' 'n. That is, we need this for cases in which E does
not equal Ill k /2p. It can be shown that the matrix ele-
ments of T are exactly given by

(13)+
where X =(2pE/fi ) for a potential of the form of Eq.
(2), even off the energy shell. Comparing Eqs. (8) and (6)
with Eqs. (11) and (12), it becomes clear that the matrix
elements of the transition operator To are given by the
E~O limit of (13), or

Therefore, the matrix elements of the first term in the
scattering matrix expansion (5) give the Fermi approxima-
tion, and this is obtained by taking the exact limit at
E~O off the energy-shell T-matrix elements correspond-
ing to a free nucleus between the initial and final states of
the system. It is of interest that this first term (the Fermi
approximation) is independent of p. Therefore, p does
not have to be the reduced mass of the neutron and the
scatterer as proposed by others and it may be chosen at
our convenience. %"e will choose this parameter so that
the convergence of the first-order correction term is as-
sured and call it po.

IV. FIRST-ORDER CORRECTION
TO THE FERMI APPROXIMATION

Let us now compute the first-order correction to the
Fermi approximation for several model systems. We be-
gin by considering the problem of a neutron, scattering
from a single bound atom (or more exactly froln a single
bound nucleus). The Hamiltonian of the atom, including
the binding potential, will be denoted by Hz. %e label
the eigenfunctions of p„/2m and H„as

(p„'/2m)e ' "=E,e

H, 4, (r„)=E,y, (rx),

where the indices I and j identify the intermediate states
of the neutron and the nucleus, respectively. We also de-
fine the total Hamiltonian of the system in the absence of
neutron-nucleus interaction

ik' ~ r„ ik ~ r„, 2~ i(k —k') r~ae
Pl

(14)
Ho p„/2m +Hg——.

Taking matrix elements of Eq. (14) between atomic states
will result, in the Fermi approximation,

The first-order correction transition operator is given by
Eq. (9). The matrix elements of Tl are determined by in-
cluding the set of intermediate eigenstates of Ho,

2

(»g &Pf I
e ' "

I k, &&0, I
e ' "

I AJ &«gv —Gol»
m

1

and

A kI6 )
—E —E- — +i@J 2m

Since the first term of the T-matrix expansion series is in-

dependent of po, we may therefore choose this parameter
at our convenience. %'e will choose it so that the conver-
gence of the first-order correction is ensured.

A. A particle harmonically bound in a finite mass

(19)

The question of existence and convergence of the first-
order correction term has been the subject of a number of
studies. Now, we will consider this problem. Our
analysis will be based on the following central argument.

Ill tllls scctloll wc collsldcl' scattering f10m a Illlclcus
bound, harmonically, in a molecule of finite mass. %'e as-
sume that the neutron interacts only with the scattering
particle and not with the rest of the molecule which we
will call the binding particle.

Let us defme some center-of-mass variables before we
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proceed to do the calculations for this system. m1 is the
mass of the scatterer. mz is the mass of the binding parti-
cle. M =m1+m2 is the total mass of the molecule. r1 is
the vector position of the scattering particle. r2 is the
vector position of the binding particle. p1 ——m, mz/(m1
+ mz) is the reduced mass of the scatterer and the bind-

ing paNicle. r = r1 —r 2 is the relative coordinate.

R=(m1r1+mzrz)/M is the center-of-mass coordinate.
V, (r) is the interaction potential binding the scatterer.
P;(r ),Pf(r) are the initial and final states of the scatterer
in relative coordinates. k, k are the initial and final
wave vectors of the neutron. l,j,s are the indices corre-
sponding to intermediate states of the neutron, the scatter-
er, and the center of mass. p1, p2 are the momenta of the
scatterer and the binding particle. p=p1+p2 is the
momentum of the center of mass. p = ( m z p,
—m1pz)/M is the relative momentum.

The Schrodinger equation for this system may now be
written as

@(R) iK ' R (25)

with

g2
(26)

2
2

27TR

jls
( 11/

(

! 1 1I! )

&& (+J (
e

(

11/; )(Gji —Goio) (27)

where

WKj l
A' k

G. = E — —E- +lE
2M j 2m

The first correction to the Fermi approximation for this
system is given by

p2 p2
+ — +V, (r) %(r,R)=E+(r,R) .

2M 2P1

We look for solutions such that

%(r,R)=!)1!(r)4(R).

(20)

(21) and

Ak1
Golo —— — +i@

2po
(29)

Using (21) in (20) we find two equations describing the
system in the center of mass and relative coordinates

P(r)= QP;(r;),

2M
by@(R) =Ei!4(R) (22)

where r1 ——x, r2 ——y and r3 ——z in cartesian coordinates,
and P; is the wave function of a linear harmonic oscillator

and

6„+V, (r) C&(r) =E„P(r),
2P1 where

H„(r;/6; ),
i 1)1/2

p /2$
l l

( )
—1/4(g )1/2

l

where the total energy of the system is given by

Equation (22) has a plane-wave solution of the form

(24)

1/2

Carrying out the sum over s and l we find'

(30)

27rh2 2

T, ;=— g J J d rd r'e ' " ' 'P*(r)P (r)e'
m

r re fr &re
J

iaq.'
~

r —r'~
iaZ 1 r —r '1 (2tu /m)8

a r —r'
2po/m

cx r —r' (31)

mM
p

I

C= (K+ k),
M

1/2

", (E E, ) "(K+—k)'—

(32)

and

cz=m2/M .
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For thermal-neutron scattering ( k=0) from a proton ( m =m i ), harmonically bound in a molecule of total mass M, (31)
reduces to

a r —r' (33)

where we have assumed the center of mass of the proton
and the molecule to be initially at rest (E=O), and

1/2
~ (E E)—

and

3

isa= —P 2 g n;/b;
1/2

(36)

and the f's are defined as before. Also

f2 3

E~ =E„,„„,= g (n;+ —, )/b;
pp

(35)

where

M —m

M+m

1/2

where p~ is the reduced mass of the proton and the rest of
the molecule

m (M —m)
pp =

Also,

q; =exp( 2P r—lb; ) .

Carrying the sum over j, it is found '
(37)

a r —r'

iK.a~ r —r '~

(~) e(~/) P / Po™
j=p

21+q;
2(1—q; )b;

4ql

1+q;
b;v m(1 —q; )'~.

5(r —r ')
m

(38)

Substituting (38) into (33) and carrying out the integrals we find '
8 sruti' ' I 2pp

T, ;=— f d +[4 +2b;(1—q;)] ' — (16 ) (39)

From Eq. (39) it follows that the integral over r appears
to diverge in the region of small r. To investigate the
behavior of the integral in this region, we expand q; in
powers of r and keep only the first two terms, i.e.,

q;=1- 2rP
(40)

b;

Representing the integrand in (39) by the symbol I we
find that in the limit of r~0,

pp m2 —3/2 (43)

B. Ideal Gas

From Eq. (42) we can derive the condition for the conver-
gence or the first-order correction to the Fermi approxi-
mation when the mass of the binding molecule approaches
infinity since limM p'=m,

(41)

In order for T, to converge, it is necessary that the coeffi-
cients of r ~ in (41) be equal. This means

In this section we consider the case of an ideal gas, i.e.,
a single free nucleus with mass mi at position rz. We
will derive the first-order correction to the Fermi approxi-
mation and discuss the conditions for the convergence of
this term. For this system

2ppp=p

—3/2

(42)
Substituting this into (18), we arrive at

(44)
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2m62
g 3 i q f - r & i ( k I

—k '
) r

a d I'a re e
Pl

i q ~ r& —iq '
~ r & i q. - r & i( k —k&). r & i(k —kI). r &&e ' e ' e ' e e i GJI —Go~), (45)

fi ki
G.I ——E —E.— +i eJ 2m

(46)

Gol ——( R—k( /2po+i e)

Carrying out the integrals we find

2
2vpR2

Substituting

a (2~)6+5(q,.+k( —k'+qf)5(q +k —k( —q. )(G( —Gol) .
jl

(47)

(48)

and

', J'd'k, ,
(2n. }

2m'
a (2m) 5(q; —qf+k —k')

Pl

A'
qJE-

2Pl I

2

(q;+k —q ) +i@ —1
2m J

2

(q;+k —qj) +i@
2p

(50)

The sum over j can be carried out with the result

l

this case the high-energy mtermedjate wave functjon of
the scatterer are plane waves,

a ( —i%a)(2~) 5( q; —qf + k —k ') .

From Eq. (13) the matrix elements of the T matrix for an
1dcal-gas spstcII1 arc exactly glvcn bp

P;(r)~e "
The terms in the brackets ( ) in (18) are of the form

(55)

a (2m. }'5(q;—qf + k —k '), (52)
1+iEa

and for To f'rom Eq. (14}

= 2~'
Tof; a(2m ) 5( q——; —qf + k —k '} . (53}

(56)

Comparing Eqs. (51), (52), and (53) it is clear that Tof;
aIld Tjfg arc thc flist and second terITls 1Q thc cxpaIls1OIl
of Tf;.

Tf; —— (1 i%a+. . . )(2m) 5—(q; —qf+k —k ') .2'lTR a
Pl

C. Particle bound in a Anite potential

Next, we move on to consjder the case of neutron
scattering from a nucleus bound jn a finite potential. ln

ThCSC lntCglalS appI'Oacl1 ZC10 at high valuCS of gj and kI,
unless

qj+kI ——0 .

Substituting this condition in (18) with

EJ-
2Pl I

(6 )
—Go)) becomes
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fi A'

E — + qj. +l6
2m] 2m

which is equal to

1

Rqj +is
2pp

(58)
The choice of a finite potential to represent the bound

nucleus more realistically resembles the actual systems at
high energies, since at higher energies the bound particle
acquires sufficient energy so that its kinetic energy greatly
exceeds the binding potential energy and the scatterer can
be considered to be free.

1

Aqj
+lE

2p

1

f2 2
qj +is

2pp

(59)

pp=p (60)

where p is the reduced mass of the neutron and the
scatterer

mm&p=
m +m)

(61)

This choice causes Eq. (59) to go to zero at large values of
qj which are the values that can cause divergence and
thus are those that we are concerned with.

Therefore it is clear that the condition for convergence of
the first-order correction to the Fermi approximation for
neutron scattering from a nucleus bound in a finite poten-
tial is

V. COMPARISON WITH OTHER STUDIES

So far we have studied the first correction term to the
Fermi approximation for three specific models. Our
method is based on the expansion method described by
Eq. (5) with the value of po chosen at our convenience,
since the first term in that expansion, which is the Fermi
approximation, is independent of po.

We have studied thermal-neutron scattering from a par-
ticle bound in an infinitely heavy molecule by choosing a
harmonic oscillator wave function to represent the bound
scatterer. This is similar to the case considered by Breit
and Zilsel where they claimed that the first-order correc-
tion term converges. We found this to contradict our re-
sults which indicates that the first correction term
diverges unless we choose pp ——2 m, with m being the
mass of the neutron, as opposed to Breit and Zilsel's
choice of p, o ——m/2. In further reviewing their work it be-
comes clear that in going from their Eq. (3.1) to their
(3.2), i.e., from, respectively,

exp[ —(g+ (' )(1+q„)/2(1—q„)+2q„gg'/(1 —q„)]
1/2 p ( 1 &)1/2

5(r r') exp—( —
~

r„r'
~

/4r)—
2 7

3/2 l7

to

f(r ) g (4T„) '/ exp[ (x q„x—) /4T—„]—exp( —
~
r» r~

~

/8w)/(8—r) / dr

with

4T„=4r+u„(1—q„)

Their change of variable

7 —+27

was only made in the second term in the integral (3.1).
This led to the elimination of the divergent terms in the
limit of r~O and is clearly wrong.

In his work Ekstein represented the bound proton in a
highly excited state by a plane wave. His results indicate
that the second term in the scattering matrix expansion al-
ways diverges unless the scatterer is attached to an infin-
itely heavy molecule. However, a plane-wave representa-
tion does not apply to a harmonic oscillator binding prob-
lem, since for the harmonic oscillator the average kinetic
energy equals the average potential energy. Furthermore,
a closer look at his calculations indicates that he has omit-
ted the factor a in Eq. (31).

Next we consider Davydov and Mel*Nichenkov's work.
They concluded that the first correction to the Fermi ap-

I

proximation always diverges if the scatterer is bound by a
harmonic oscillator wave function and it always converges
if it is bound in a finite potential where high-energy states
are represented by plane waves. Davydov and
Mel'Nichenkov used for the harmonic oscillator

pp=m/2,

and therefore they found divergent results for the first-
order correction term to the Fermi approximation. They
also used the same value for pp when studying finite po-
tentials and obtained convergent results for this case.

VI. MAGNITUDE OF THE CORRECTIONS

There have been several studies of the magnitude of the
first-order correction to the Fermi approximation for
scattering of slow neutrons from nuclei. In all these
studies the magnitude of the first-order correction has
been calculated to be only a fraction of a percent. Breit,
who stated the problem of slow neutron scattering in
terms of a boundary condition and its equivalent integral
equation, calculated a first-order correction to the Fermi
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approximation which he estimated to be 0.1%. Breit and
Zilsel, using a three-dimensional harmonic oscillator
model, found the correction to be about 0.3% for zero-
energy neutrons. Zilsel, Darling, and Breit extended this
work to neutron energies of 0.3 and 0.5 times the molecu-
lar level spacing and again found corrections of about
0.3%. Another study extended the calculations to in-
clUdc ncUtIon cIlcI'glcs Up to 15 times thermal cncI'gy.
They found, again, the Fermi approximation to be accu-
rate to within 0.3%.

In this study, after establishing new conditions for the
convergence of the first correction term, it seemed desir-
able to conduct a numerical calculation of this term and
to estimate its magnitude. However, after looking closer
at the problem it is clear that such an undertaking is un-
necessary. The general way of performing these numeri-
cal calculations is to replace the sum over the intermediate
states of the scatterer by its first few terms, i.e., replacing
the sum over j in (31) (with M~ os and p'~m) with the
first one or two terms of the sum. To get an idea of the
magnitude of each term on the right-hand side of (31) we
substitute the sum over j by the first term, i.e., say the ini-
tial state P;. We also take the final state Pf to be equal to
the initial state. Since for thermal neutrons

we substitute the two exponential terms by unity. Of the
two terms in the bracket on the right-hand side of (31),
only one need be considered; for simplicity, we take the
second term. With these in mind the magnitude of the
quantity associated with the second term in the brackets
in (31) is given by

the corrections to be =10 . Therefore, a change in the
sccoIld term caused by Us1ng

instead of the value used by others

would not effect the order of magnitude of the correction
resulting from the substraction of the two terms in Eq.
(31). Therefore we agree with the previous studies insofar
as the magnitude of the first-order correction is con-
cerned.

VII. CONCLUSIONS

From the results of this study it may be concluded that
a zero-range potential approach can be taken to develop a
consistent method of dealing with the first-order correc-
tion to the Fermi approximation which will lead to con-
vergent results for this term for all systems. Our ap-
pmach has been based on the substitution of the scattering
nucleus by a boundary condition, which leads to the re-

placement of the Fermi pseudopotential by a new pseudo-
potential to describe the interaction, and the use of an ex-

pansion for the scattering matrix other than the Born
scr1cs.

The results indicate that by the consistent application
of this method, convergent results can always be obtained
for the first-order correction to the Fermi approximation.
Furthermore, they confirm previous results that indicate
the corrections are small.
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