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A quantum-mechanical linear-response formalism is used to calculate the frequency shift and life-

time of an excited atom near an arbitrary flat interface. The results depend on the frequency-

dependent atom and field susceptibilities, and in the vicinity of an interface can be expressed in

terms of the appropriate Fresnel reflection coefficients; the contributions from surface excitations

are easily identified. As examples, we consider an atom above a metal and a dielectric waveguide.

I. INTRODUCTION

Recent work on the behavior of atoms and molecules at
surfaces has led to a renewed interest in quantum electro-
dynamics in the presence of an interface. ' Two stan-
dard problems, the lifetime and frequency shift of an
atom in an excited state near a perfectly conducting sur-

face, have a long history which we will not review here.
The usual solution' involves quantizing the radiation
field through mode expansions appropriate to a half-space
of vacuum bounded by a perfect conductor. Although
showing in detail the effect of the conductor on the radia-
tion field, this approach is algebraically complicated and
does not clearly exhibit the similarity of this problem
with, for example, that of an atom in the presence of
another atom, rather than a surface. Further, the general-
ization to a dielectric or even a waveguide surface is not
straightforward.

An alternate approach, presented by McLachlan, ' in-

volves casting expressions for the lifetimes and frequency
shifts in forms involving correlation functions that appear
in linear-response theory. These results have a transpar-
ent physical interpretation and in principle can be used
with any model for the neighboring surface (or neighbor-
ing atom). A related approach by Agarwal ' was applied
to an atom in the vicinity of a surface, but his results were
shown to have quantum-mechanical inconsistencies. 4 As
well, Agarwal's results are not of a form that can be easily
generalized to, say, an atom in the presence of a mul-

tilayer geometry.
The difficulty in using a linear-response formalism lies

in calculating the field susceptibility functions for surface
geometries. Mehl and Schaich described the effects of
the surface by introducing complex impedances. In this
paper we show that the surface effects of interest depend
only on the appropriate Fresnel coefficients and that, in

particular, the contribution of any surface excitations can
easily be investigated since they are signaled by poles in
those coefficients. By constructing expressions for level
shifts and lifetimes in terms of Fresnel coefficients, we
obtain a more general formalism than those of earlier au-
thors; we can treat multilayer geometries using, if re-
quired and desired, results from microscopic theory for
the response of the surface to electromagnetic fields. %'e
demonstrate our methods by calculating the lifetimes and

II. TRANSITION RATES AND FREQUENCY
SHIFTS IN THE DIPOLE APPROXIMATION

%e consider an atom interacting with the radiation
field through the interaction Hamiltonian' '

KI= p D(ro) (2.1)

where p is the dipole operator of an atom at position ro,
and D(r) is the transverse displacement field. In writing
Eq. (2.1) we neglect multipole moments of the charge dis-
tribution higher than the electric dipole; we have also o-
mitted a term involving the transverse part of the micro-
scopic polarization field, which only leads, in the low or-

frequency shifts of atoms near a metallic surface and near
a dielectric waveguide. Vfe also recover the now well-

known expressions for the lifetimes and frequency shifts
of an atom above a perfect conductor, ' in a manner that
is simpler than most other derivations and that displays
the relation of this ideal model to more realistic problems.

The organization of the paper is as follows. In Sec. II
we briefly show how lifetimes and frequency shifts may
be written in terms of frequency-dependent atom and field
susceptibilities. As have most earlier workers, ' we re-
strict ourselves to cases where charge overlap between the
atom and the surface can be neglected. Since this part of
the formalism has been developed earlier, we refer freely
to results in the literature and only outline the derivation,
casting the final expressions in a form that is suitable for
our further use. We work with the multipolar form of the
interaction Hamiltonian' and keep only terms due to di-

pole transitions, although this restriction could be easily
removed. In Sec. III we outline the Fresnel coefficient
method of calculating the field susceptibilities for surface
geometries. Our final results for lifetimes and level shifts,
which are applicable to an arbitrary interface, constitute a
significant generalization and simplification of earlier ex-

pressions. In Sec. IV we recover the well-known expres-
sions'4 s for a single atom above a perfectly conducting
surface. In Secs. V and VI we calculate the lifetimes and
level shifts for a single atom above a metal and a dielec-
tric waveguide, respectively. Specifically, we consider a
sodium surface, a glass surface, and a ZnO/sapphire
waveguide. Our conclusions and the nature of our contri-
bution are reviewed in Sec. VII.
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ders of perturbation theory we consider, to a contribution
to the nonrelativistic free space Lamb shift. '" In first
order, the transition rate from an initial atomic state

~

i )
to a final state

~
f ) is given by Fermi's golden rule,

gp(I) (
(I' (f p D(ro) ~i) I)

~

& I,~

2@~~'iJ,jImGatr(ro ro'too)

iii[1--exp( P—fuoo) ]
(2.5)

where

where 8(t) is the usual unit-step function, we may use the
fluctuation-dissipation theorem ' to rewrite Eq. (2.3) as

)& 5(EF+EI E—i E; )—, (2.2) + OO

G tr(r, r ';0i)= dt G tr(r, r';t)exp(icot) . (2.6)

where capital letters denote eigenstates of the rest of the
total system under consideration, neglecting its interaction
with the atom of interest. Such eigenstates might involve,
and depend on the coupling between, the radiation field,
other atoms, surface excitations, and the like. For con-
venience, we refer to these as "field states. " For simplici-
ty we assume here that the field is in thermal equilibrium
at a temperature T; p (I)=exp( PEr ) l—++exp( 13'),—
with p=(kBT) ', is then the probability that the field is
in state I.

Expressing the 5 function in (2.2) in integral form, we
find

5E, = —— p(B)
DBN( )DNB( )

am ma

(0~N —toB )+ (0im —~a )
(2.7)

The temperature dependence, which appears in the form
of an occupation number, will be important only for
kBT)Acro. Since we are here interested primarily in
atomic transition energies on the order of a Rydberg, we
can set T =0 K in Eq. (2.5).

Turning now to energy-level shifts, we start with the
usual second-order perturbation expression for the energy
shift of the ath atomic level due to the interaction (2.1),

+ 00

Rf —
z

' dt (D ( ro, t)Dti( r0, 0) )P 'PgexP(i root)

(2.3)

where P denotes the principal part. The reduction of Eq.
(2.7) is greatly simplified by introducing positive- and
negative-frequency parts of the field D( r, t),

G p(r, r ';t)= —([D (r, t), Dp(r ', 0)])8(t), (2.4)

where coo (EI E;——) /A, —the Greek subscripts denote
Cartesian components and are to be summed over when
repeated, and p~' = (f ~ p i ), etc. In Eqs. (2.3) and (2.4),
D ( r o, t) is an interaction picture operator, evolving as if
(2.1) were not present, and the angular brackets indicate
an ensemble average. Defining a correlation function

1D (r, t) = — dtoD (r, +co)exp(+inst) (2.8)

and where, as before, the time evolution is in the interac-
tion picture. Going back to the Schrodinger picture in
Eq. (2.7), it is easy to see that terms of the form
(Da ) (Dtr ) will not contribute (cf. Ref. 7), and we
may introduce a 5 function to write

P
B,N, m ~0+ (tOm —~Oa )

(2.9)

=—ImG p(r, r;co)8(+co),
7T

(2.10)

which follows immediately from the definitions of G ti
and D —.Introducing a molecular correlation function,

a'tr(t)= —'(a
I [p (t), pti(0)]

~

a)8(t) (2.11)

and writing down the identity analogous to (2.10) for
a tr(co), we find that for the atom also at T =0 K (ground
state) Eq. (2.9) can be written as

ImG tr(ro, ro,'co)lma B(co')5Eo=- dco dt's
0 0 6)+CO

(2.12)

Restricting ourselves to T =0 K as above, a further sim-
plification is possible using the identity

gp(B)D+ (r)Dp (r ')5(co coN+coB—)

N, B

5E0——— Im f de Gati( ro, ro, co)aalu(co) . (2.13)

Second, we apply the following transformation. %"e as-
sume that lim, G tr(t)~0, which, in frequency space
can be guaranteed by the addition of a small negative ima-
ginary part to ~. This serves to lower any poles that sit
on the real axis as well as to bind the integrand of (2.13)
as ~co

~

~oo. Since G tr(ro, ro,'co) and a ti(co) are analytic
in the upper-half plane, we may convert the integral along
the positive real co axis in (2.13) to one along the positive
imaginary axis, giving

fg ce5Eo= — dg G tt(ro, ro, ig)a tr(jg), (2.14)

I

Two final simplifications are possible, which are due to
the fact that GaB and a ti can be identified as susceptibili-
ties for the field and atom, respectively, using linear-
response theory. ' First applying the Kramers-Kronig re-
lations' for a generalized susceptibility to G tr, Eq. (2.12)
reduces to
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5FO = — dg G Is(ro ro ig)ct p(ig)
0

(2.16)

where we have used the fact that susceptibilities evaluated

at imaginary frequencies are purely real. Finally, note
that we are only interested in the part of the energy shift
due to the presence of the surface (and/or other atoms,
etc.). Setting

G p
——G~p+G~p, (2.15)

where G~tt is the vacuum susceptibility, we can identify
the energy shift of interest as

i 1/u~/ ZJ EufVZl1l1lllllE

e=l

&m 8

Returning now to the transition rate given by Eq. (2.5),
it is useful to normalize Rf; to the value it would take if
the atom were in vacuum at T =0, FIG. 1. Interface geometries: (a) arbitrary interface; (b)

waveguide structure, with E & 6~ & E'0.

~ ~

Rg =—pf'p' ImG tt(ro, ro,'coo) . (2.17)

At T =0 K, Eqs. (2.5), (2.14), and (2.16) then combine to
give

Rfi 2 if fi g
o

= 1 + 0 p&z pp ImG~p( ro, ra,'top)
Rfi ARf;

(2.18)

Equations (2.16) and (2.18) form the basis of our calcula-
tions in the following sections.

2

(r, ro', co) = (s sR'+po po Rt')
2~ 80 0+ 0

Xexp[i(28'od+ vo+ R)]

with

(3.4)

III. SUSCEPTIBILITIES ABOVE
AN ARBITRARY INTERFACE

E (r,co)=F (r, ro,'co) p

where p is the amplitude of the oscillating dipole, and

F (R,co)=[(3RR —I)(R icoR )+(I—RR—)co R

(3.1)

To proceed we must evaluate the field susceptibility

G~p near an interface. Mehl and Schaich, in their study
of level shifts near a metal interface, made this calculation
using complex surface impedances. Instead, we keep the
problem in terms of the Fresnel coefficients for the inter-
face. This approach is more direct, since these coeffi-
cients are the ratios of only incident and reflected electric
fields. It also generalizes more readily to complex
geometries. The atomic polarizabilities a~p(co) do not
present insurmountable problems, there being many ana-
lytic theories for their calculation. '3

From linear-response theory, ' ' G &(r, r ';co) can be
identified with the expectation value of the displacement
field at r generated by a classical dipole, oscillating at fre-
quency co, located at r '. Consider such a dipole above an
interface [Fig. 1(a)]. The electric field at position r (above
the interface) consists of direct and reflected contribu-
tions, with the direct contribution given by'

'o ——po+doz,

s =v&(z,
pa+ ——co '(~z+ 8'ok),

vo+ ——v+ 8'oz,

(
—2 2)1/2

(3.5)

D( r, t) =E( r, t)+4~@(t)5(R) (3.6)

Here R' and R~ are, respectively, the Fresnel reflection
coefficients for the interface for s- and p-polarized light.
The decomposition (3.4) expresses the field as a superposi-
tion of plane waves with real wave-vector components in
the plane of the interface; they are propagating or evanes-
cent in the z direction as ~&Co or ~&co. The vectors s
and pa+ specify, respectively, the direction of the electric
vector in s- and p-polarized waves. In the case of p-
polarization the vectors are different for upward (+ ) or
downward ( —) propagating or evanescent waves; the
product pa+pc thus appears in (3.4) because the down-
ward propagating wave is reflected back upward, with a
final upward wave vector v 0+. The phase factor
exp(2iWodo) also appears because of this reflection from
the surface.

Since the displacement field is given, in the dipole ap-
proximation, by

3
5( R)I] exp(i coR ) (3 2) above the interface, we have

with R= r —ro and co=co/c. We use the recent work of
Sipe' to write the reflected field as

G~ts(r, ro', co)=F tt(r, ro', to)+4~5 i'(R),

G p(r, ro, co)=F ~(r, ro, co) .
(3.7)

E (r,co)=F (r, ro,'co) p

where

(3.3)
Using the first of Eqs. (3.7) in (2.16), we find the usual re-
sult"
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4oi
I p

fi (3.&)

R'I'=rof,

where

(3.9)

e 8' —e 8'.
r)&— '

EJ Wj +ej WJ

(3.10)

are the surface reflection Fresnel coefficients for s- and
p-polarized light, respectively, and

for the decay rate of an atom in free space. In the rest of
our work we shall only need G ~, for which we require
expressions for the appropriate Fresnel coefficients. As
simple examples, we will assume below that macroscopic
electromagnetic theory can be used to yield good approxi-
mations for those coefficients, but this is not necessary:
Fresnel coefficients have been derived which incorporate
microscopic surface structure. ' '

Consider first an interface between vacuum (ep ——1) and
a material with dielectric constant e~(co). Then R' and
8& are given simply by

where o.=2/do/c. Note that each of the physical limitsc~ oo, $~0, and do~0 correspond to the dimensionless
variable o.~0.

For a more realistic model of a surface, we simply need
use the appropriate expression for e(co) in Eqs. (3.10) and
(3.11). For example, in the following section we shall use
the Drude model for a metal,

2

e(co) =1- Cgp

co(co+i /r) (3.13)

where co& is the plasma frequency and r a phenomenologi-
cal collision time. The integration in (3.4) is still straight-
forward in principle, but must be done numerically.

In the more complicated situation of a multilayer
geometry, the Fresnel coefficients may still be easily writ-
ten down, in terms of the single surface coefficients (3.10).
For example, in the waveguide geometry of Fig. 1(b), we
have

rp'~+r'~~exp(2iW 5)
Rp

1 —r'~pr'~ iexp(2iW 5)
(3.14)

where 5 is the thickness of the waveguide and e its
dielectric constant; ei is now the dielectric constant of the
substrate. Generalizations to even more complicated
structures follow similarly.

W=(eco —Ic ) (3.11)

generalizing the last of Eqs. (3.5). Here, as well as there,
the square root is to be chosen such that Im8;)0,
Re 8; )0 if Im W =0.

For a perfect conductor, rpi ———1 and r~qi ——+1, and
the integral in Eq. (3.4) may be done immediately. We
find

IV. ENERGY SHIFTS AND TRANSITION
RATES: PERFECT CONDUCTOR

As a simple example of our formalism, we first recover
the well-known results for a single atom above a perfect
conductor. Using

G (ro, ro,'jg)=Gyy(ro ro'ig)

=(1+cr+ o 2)e /(gdo)',

On nO2 g Wl GP a Pp
Qi o+g

(4.1)

G"( rp, rp i g) =(1+o )e /(4dp )

Gap(ro ro, i g) =0, a&13

(3.12) for the polarizability of the ground state, where
oi„p ——c0„—cop, from Eqs. (2.16) and (3.12), we immediately
find

q Sj(ri) ——ri sin(g) — cos(g)
1 no 2 m . (1—ri )

Sn.do 2

+g cos(g) — sin(7)) Ci(g)
(1—g )

7l

g i@ i ~
i1 i(g) —.

0 n

1sin(g)+ —cos(q)
'9

cos(g) ——sin(i) ) Ci(g)
7l

(4.2)
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for the correction to the Lamb shift of the ground state
due to the presence of the conductor. Here g =2m„odp/c,
p ~~

and p z refer, respectively, to the components of the
matrix elements parallel and perpendicular to the surface,
and Si(x) and Ci(x) are the standard sine and cosine in-

tegral functions

dran' and Agarwal; it, as well as the more general expres-
sions for decay rates in the following sections, may also be
derived from a purely classical calculation.

V. ENERGY SHIFTS AND TRANSITION RATES:
METAL SURFACE

Si(x)= f dy,
p y

Ci(x) = —f dy .
X y

(4.3)

The result (4.2) agrees with Barton. 4

From (4.2) we can easily recover the London electro-
static limit by letting g~O; this gives

(4.4)

The short-range limit here varies not as dp, as in the van
der Waals energy shift of two nearby atoms, ' but as d
whereas in the two-atom problem the dipole induced in
the second atom due to the fluctuating dipole in the first
is proportional to dp p, here the induced-image dipole
moment in the metal is given by +p,' the back interaction
of the induced image or polarized atom introduces an ad-
ditional factor of dp

The long-range limit of (4.2) can be found by an asymp-
totic expansion following Barton, or, more simply, using
a method of McLachlan's based on the form of (2.16).
The exponential decay in G ~( rp, rp', ig) [Eq. (3.12)] allows
us to set (=0 in the polarizability appearing in Eq. (2.16),
as dp —+ oo,' an immediate integration then gives

5Ep ———
~ app(0),

AC p

8+do
(4.5)

the Casimir-Polder expression for this geometry.
The transition rate is also easily obtained. Using the

imaginary part of G ~(rp, ro;cp„p) [Eq. (3.12) at real fre-
quency] we find a transition rate from an excited state to
the ground state given by one of

R sin(g) cos(g)
Ro &3 &2

=1+3

(4.6)

R ii 3 cos(g) 1 1+ —— sin(g)

depending on whether the matrix element p " is perpen-
dicular or parallel to the surface. The short-range (g~0)
result gives R =2R and R ~~ =0, as expected from image
theory. The image of a dipole perpendicular to the sur-
face points in the same direction as the dipole, leading to
a radiation reaction field at the dipole equal to twice its
usual value, and thus to emission at twice the usual rate.
The image of a dipole parallel to the surface points in the
direction opposite to the dipole, leading to a reaction field
which cancels that of the dipole, preventing any radiation.
The result (4.6) agrees with Power and Thirunamachan-

%e now turn to the more realistic problem of an atom
above a metal surface. Here, for simplicity, we study the
energy shift of an oscillator atom, ' where the polarizabil-
ity in the ground state is given by

(Rc) ac ~o
ap(co) =

(mc')(mo) ~o' —cp'
(5.1)

g 6Ep

i6COp

—4fKO @CD

7TIC

[2G (rp, ro, ig)+G (rp, ro, ig)]dpfX
p I +coo

(5.2)

where G~p(ro, ro, ig) is obtained by combining (3.7),
(3.9)—(3.11), and (3.13). The short-range limit, g &&1, is
given by

5Ep 3 f—— dg . app(if),
12mdo o & & +1 (5.3)

while for the long-range limit, g &&1, we take the polari-
zation and dielectric constant at zero frequency (cf. Sec.
IV), giving

—A'capp(0)
5Ep ——

8ndp
(5.4)

The limiting results (5.3) and (5.4) agree with those of
McLachlan and Mehl and Schaich. From Eq. (5.3) we
see that the level shift for an atom near a metal is less in
magnitude than that for an atom above a perfect conduc-
tor (where @~ad). In Fig. 2(a) we compare the shift for
an oscillator atom above a perfect conductor with that for
the atom above a sodium surface [taking fun~ =5.89 eV,
A/r=0. 13 eV (Ref. 19)]; the long- and short-range re-

gimes are apparent.
To now consider the decay rates from an excited state

of an atom above a metal surface, we write Eqs. (2.18) and
(3.8) in the form

12do=1+ ImG (rp, ro'cop),

(5.5)

R II 12dp=1+ ImG~(ro, ro, cpo),

where %cop is the (unperturbed) energy difference between

where cop is the 1s-2p transition frequency, mc is the rest
energy of an electron, and a the fine-structure constant.
Since the leading term in the shift, as do~0, varies as
do, we consider the dimensionless shift g Mp/ficop as a
function of g, here defined as g=2coodp/c. Combining
(2.16) and (5.1) we find
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FIG. 2. Energy-level shifts: (a) correction to the level shift of
the ground state of an oscillator atom, with a 2p-1s transition
energy %coo——2 eV, due to the presence of a surface. For Na we
let Ac@~ =5.89 eV and fi/~=0. 13 eV. For a perfect conductor we
let fuo~=10' eV and iri/&=0. Here i1=2copdjc where d is the
distance between the atom and the surface. (b) Same as in (a)
but for a 10.2 eV transition above a glass (@=1.69) surface and a
ZnO/sapphire waveguide (e =4.08, e~ ——3.13, eo ——1.00).

the initial and final states. In evaluating (5.5) numerical-
'

ly, care must be taken in dealing with the pole that ap-
pears in the Fresnel coefficient r~zi [Eq. (3.10)] for a metal
surface. The pole appears at

1/2

(5.6)

and signals the presence of the surface-plasmon excita-
tion; the well-known dispersion relation for surface
plasmons in the r~ oo limit is shown in Fig. 3(a). A sim-

ple method is to remove the pole in the integrand of Eq.
(3.4) and evaluate its contribution analytically; the rest of
the integrand is a slowly varying function of ~ and its nu-
merical integration is straightforward.

In Figs. 4(a) and 4(b) we compare the decay rates for an
atom above a perfect conductor with those for an atom
above a sodium surface. In the latter case we have fixed
the transition frequency at cop/co& ——0.7, which is just
below cop/co& =1/v 2 [see Fig. 3(a)], and guarantees near
resonance with large-~ surface plasmons. However, re-
gardless of the value of cop chosen, the rates over a metal
show a divergence as g —+0 which is not present for the
perfect conductor. We can understand this classically by
noting that the dissipation in the metal —manifested by an
imaginary part in the dielectric constant —will cause the
image dipole to have a component out of phase with the
real dipole, and therefore out of phase with the near field
of the dipole. The near field, therefore, does work on the
image dipole in this simple picture, which physically de-
scribes the dissipation occurring near the surface, and pro-

FIG. 3. Dispersion relations: (a) surface-plasmon dispersion
relation in the collisionless Drude model; co~ is the bulk plasmon
frequency. (b) Waveguide dispersion relation. The upper
asymptote is the bulk light line co=ca'/~@i,' the lower is the
waveguide light line co =ca/~e

vides a decay mechanism for the atom. Since the near
field diverges as r~O, so does the rate at which the ener-

gy can leave the atom. We note that this divergence is not
directly connected with the surface-plasmon excitations; it
would exist for any surface with dissipation and therefore
a complex dielectric constant, even if the material were an
essentially dispersionless dielectric. The shoulder in Fig.
4(b) at i)-3 arises as the finite, image theory result for a
perfect conductor is surpassed by this divergence. If the
dissipation is removed (r~cc), the shoulder becomes
more pronounced and [except for cop/co~=i/v 2] the
rates remain finite at all il.

However, there is a divergent effect due specifically to
the surface plasmons. Even in the absence of dissipation,
if r)~0 the rates diverge for the special transition fre-
quency cop/co& ——I/v 2. This occurs because of the infin-
ite density of states of surface plasmons in this model at
that frequency [see Fig. 3(a)]. As q~O, the evanescent
part of the field [Eq. (3.3)] from the dipole at values of
cc~co can couple the atom into more and more of these
decay channels. This divergence was noted years ago by
Morawitz and Philpott. We emphasize here that it
occurs only if cop/co~=i/v 2 although, of course, if
cop/co~ is near I/V2 the coupling with surface plasmons
will lead to an increase in the decay rates over their values
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low one s and one p mode to exist. In neither case is there

a "dissipation divergence, " since we have taken all dielec-

tric constants to be real. For glass, the rates remain small,

as there are no surface excitations. The presence of
waveguide modes as surface excitation decay channels

enhances the decay rates for the waveguide geometry, as
did surface plasmons in the metal-surface example. The
magnitude of the rates are smaller here than in the sodi-

um calculation, partly because of our choice of the
waveguide material: the pole strengths for the waveguide
modes are proportional to (e~ —1) ', and ZnO gives a
fairly large e~ =4.08. Further, though, it is important to
note that there is nothing analogous to the "surface-
plasmon divergence" in the example of a waveguide: the
dispersion relation for the waveguide modes [Fig. 3(b)]
does not yield an infinite density of states of surface exci-
tations at any frequency. Thus, although surface
plasmons and waveguide modes can affect certain
attenuated-total-reflection experiments in a similar way,
since they can lead to similar pole strengths in the respec-
tive Fresnel coefficients, they affect the decay of excited
states of atoms above the surface in quite different
manners.

Additional calculations show that, although increasing
the thickness of the guide allows more decay channels to
exist in the form of more waveguide modes, there is little
effect on the transition rates. This occurs partly because
the wave number of a given mode increases as the
waveguide thickness is increased; the component of the
field which couples into that mode is thus more evanes-
cent and, for a given atom-surface distance and a given
mode, the coupling will be less as the waveguide thickness
increases. Further, the pole strength of a given mode de-
creases as the waveguide thickness gets well beyond the
cut-off thickness for that mode, decreasing the intrinsic
strength of the coupling. Finally, from Eq. (3.14), we
see that for large tc, the magnitude of the image dipole in
the waveguide decreases with an increase in the waveguide
thickness.

VII. CONCLUSION

with, an arbitrary interface. The essential point is to con-
struct expressions for the level shifts and decay rates in
terms of the appropriate response functions of the inter-
face, which here involve the Fresnel coefficients. This
separates the intrinsic physics of the decay rate and level
shift from the physics of the particular interface under
consideration. The first of these is embodied in our gen-
eral expressions; the second, insofar as it is important for
our results, resides in the Fresnel coefficients, the poles of
which signal and describe the contributions of any surface
excitations of relevance. For any new surface or general
interface of interest, only the new Fresnel coefficients
need now be supplied. The decay rates and level shifts
immediately follow; the general calculation need not be
undertaken again.

As specific examples, we have considered atoms above a
metal surface, using the simple, but not totally unrealistic
Drude model, and atoms above a glass surface and a
waveguide in the dissipation-free limit. We have shown
that, because of their qualitatively different dispersion re-
lations, surface plasmons and waveguide modes have
qualitatively different effects on the decay rates of nearby
atoms.

In this paper we have treated only the problem of one
atom or molecule above an interface, but McLachlan has
shown that the linear-response formalism (Sec. II) can be
simply extended to treat two or more bodies. Combining
this with the field decomposition of Sec. III, it is easy to
recover the Lamb shift of two atoms above a perfect con-
ductor, as calculated in a more direct but algebraically
more complicated approach by Power and
Thirunamachandran. ' The details of such matters we
here defer, as we plan to discuss the physics of many
atoms above arbitrary interfaces in future publications.
%e here merely note that recent experimental and
theoretical' interest in problems of this sort suggests that
general formalisms of the type we have developed here
will be of some use. In particular, the extension of this
formalism to treat level shifts of excited states is an out-
standing problem which we plan to address.
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