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The two-photon decay mode of hydrogenic atoms from an arbitrary state (n ~, l&, m &) to an arbi-

trary state (n2, 12,m2) is studied within the framework of nonrelativistic quantum mechanics. In the

dipole approximation, these decay rates, which involve infinite summation over intermediate states,

are derived exactly via a general second-order matrix element obtained by Kelsey and Macek and an

implicit technique introduced by Dalgarno and Lewis. The results are expressed in terms of hyper-

geometric functions. For transitions n ~s —+n2s, our results reduce to those of Klarsfeld whose start-

ing point is the Coulomb Green s function. For transitions to the ground state, an alternative ex-

pression involving a simple one-dimensional integral is presented. The decay rate of the 2s meta-

stable state of atomic hydrogen is calculated as an illustration of the method. The result,
1/v. =8.2284 sec ', agrees with Klarsfeld. For transitions of n&s~ls and n~d~ls (n~ &3), the

transition rates exhibit interesting and unexpected structures. In particular, "zeros" are found in the

two-photon emission spectrum indicating that two-photon emission is not possible at certain fre-

quencies. Physically, these "zeros" are the result of destructive interference between the radiating

dipole terms associated with the sum over intermediate states. In addition to the emission spectrum

the expected coincidence signal between two detectors monitoring the two photons simultaneously

emitted during a two-photon transition is calculated as a function of the angle between the detectors.

The angular distribution for the n jd —+1s transitions is shown to be significantly different from the

n&s —+1s transitions. Finally, a possible experiment is suggested to test the results presented in this

paper.

I. INTRODUCTION

The possibility of a two-photon process, which proceeds
via intermediate states, was first pointed out by Mayer' in
1931. Breit and Teller applied this theory to the case of
the 2s~ls transition in atomic hydrogen and found that
double photon emission is the most probable radiative de-
cay mode, and is therefore the principal cause of the de-
cay mechanism of the interstellar 2s hydrogen atoms.
They also found that the mean lifetime r corresponding to
this mode of decay can be bracketed by the relation
6.5 (1/r(8. 7 sec '. Later, more detailed calculations '

were carried out which involved term-by-term numerical
evaluation of the infinite summation over intermediate
states in the second-order matrix elements responsible for
the decay. In particular, Shapiro and Breit found that
the decay rate for the metastable 2s state of a hydrogen-
like atom of atomic number Z, 1/r, is equal to 8.226Z6
sec ', which corresponds to a lifetime of 1.9 msec for the
case of He+. However, these conclusions could be modi-
fied ' due to the possible existence of a nuclear or elec-
tronic dipole moment which would produce a nonzero
one-photon decay mode for the metastable hydrogenlike
atom. Therefore, a careful study of the properties of this
state is useful in the search for new fundamental interac-
tions.

In connection with this interest and in view of experi-
mental success in two-photon-absorption and ionization
experiments, a series of theoretical papers has ap-
peared on how to perform exactly, within the framework
of nonrelativistic quantum mechanics, the infinite sums in

the second-order matrix elements responsible for various
multiphoton processes. For the decay transition, the nu-
merical result of the two-photon decay rate of metastable
hydrogenic atoms, viz. , 1/r=(8. 2283+0.0001)Z sec
obtained by Klarsfeld' is believed to be the most accurate
one 6'19 Recent calculations 21'22 including all relativistic
and retardation effects and all combinations of photon
multipoles, give a very small correction in the case of
low-Z hydrogenlike atoms. In addition, the two-photon
decay rates of the singlet and triplet metastable states of
heliumlike ions have also been calculated using variation
procedures by Drake, Victor, and Dalgarno.

In a recent paper Kelsey and Macek used the implicit
technique ' to obtain a simple reformulation of a closed-
form expression for a general second-order matrix element
for hydrogen. While equivalent expressions have been de-
rived' ' ' employing various representations of the
Coulomb Green's function, the mathematics involved is
quite cumbersome. Although the work of Kelsey and
Macek is very important and useful, it has not received
enough attention. One of the purposes of this paper is to
show that the elegant results of Kelsey and Macek and the
powerful implicit technique can be employed to study the
two-photon decay mode of a hydrogenlike atom from an
arbitrary initial state (n i, l i, m i) to an arbitrary final state
(n2, l2, m2). As a result, the two-photon transition rate is
expressed in terins of repeated parametric differentiations
of hypergeometric functions. The results we have ob-
tained are equivalent to those of Gazeau, ' but the starting
points are quite different. Gazeau used powerful group-
theoretical techniques whereas we have used simple alge-
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bra. However, as one proceeds to higher n&, these calcu-
lations become impractical. For instance, in the case of
the 3s —+2s transition, there is only one investigation' re-
ported so far and it required the evaluation of ten hyper-
geometric functions. Thus, another purpose of our paper

is to derive an alternative expression involving only a sim-
ple one-dimensional integral for transitions to the final s
state. This method is then applied to study the n&s~ls
and n&d +—ls transitions for n& up to 6. Atomic units
will be used unless otherwise stated.

II. THEORY

The probability per second for the spontaneous two-photon emission of a hydrogenic atom from an arbitrary state
(n l, ll, m l) to an arbitrary state (n2, 12,m2) with one photon in the frequency range dv' at v' (with unit polarization vec-

tor e ' and photon momentum k ') is, ' ' in the nonrelativistic dipole approximation,

2"Hv'v"' n2, 2, m2 6'r n n E".r nj, ],m]

En En] +Ev'

(n2, 12,m2
I
6 ".r

I
n)(n I

E' r
I nl, ll, m/)

+
En En +Ev"

n&

2

dv

av

where v" is the frequency (with unit polarization vector E" and photon momentum k ") of the second photon which is,
in turn, related to v' by

(E„, E„,)—
V +V 2'

l l

n n
4m' .

The "av" in Eq. (l) is the average of the relative angle of e ' and e "over all orientations if the polarization is not detect-
ed. Because of the well-known dipole selection rule, A (v') is nonvanishing only for b, l =l2 —l, =0 and +2. The total
transition rate is obtained by integrating the spectral distribution A (v') of the two photons over all possible frequencies.
Thus,

(E„—E„)/2m
T ] "2

ili 1

—
2 0

~
212 2, |li 1(v )dv

7

n2l2m2, n&l&m|+ n212m2, n&j|m& ) d&
n2 n&

(3)

with

and

n2, 2, m2 E'.r n n E" r n], ],m$p1
n212m2, nilimi E E +En n n&

v'
(4)

n2, 2,m2 E".r n n 6' r n], ],m]P2
n2 l2 m2, n i l i m i

n n n1 v

In Eq. (3) we have used a new variable
r

(5)

x =4+v' l

n

l

ni

The sums over n in Eqs. (l), (4), and (5) run over all hydrogen wave functions, including both continuum and bound
states. We now proceed to derive analytic expressions for P with E„representing E~ or E&., respectively.

We rewrite Eqs. (4) and (5) as

A. General case: state (ni, li, mi) to state (n2, l2, m~)

Pn~l2m2, n ilimi ak'
&n2 ~2 m21e' ''

In &&n
I

e' '
I

n&, I&,m, )' ak-.
I k'=0, k"=0

(6)
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where

E=E„,—E„~o .

The initial and final bound-state wave functions can be written as

= &(p, a)e ""+'" (8)

Here &(p, a) is the differential operator which generates the corresponding wave functions when operating on the ex-

ponential in Eq. (8) above. Thus

Apg
Pn2lzmz nlllmI

=
Bk' ak" ~2(1142~ a2)~1(1141~a 1)~

p&
——1/n 1, p&

——1/n&, ~

- a,=a,-o,

where we define

with

e ""e'"' n n e'"' e ""
E—E„

(10)

pl ——k "+a)

pg
——k' —ag . (12)

In order to evaluate M which involves an infinite sum over intermediate states, Kelsey and Macek first introduced an
auxiliary function

~ (r ~n)(n (e "
~e "'")

xp, r=~~ E En n

which in turn is a solution of the inhomogeneous differential equation

(13)

(H —e)x(pi r)= —e ' e (14)

where II is the nonrelativistic Hamiltonian for hydrogen. Since the inhomogeneous term singles out direction pi in

space, Kelsey and Macek wrote the Hamiltonian in parabolic coordinates and found the solution with the series-

expansion method. Thus,

M=(e "'
~e

' ~x(pi r))

—2 7TX p
a a p

—0

~P dP D,D 2(E,E 4X—, . )p+F—,F p
(15)

where

X=v' —2m=
1

' 1/2

+2Ev
7l I

D;=(X+@;)+P;,
E =X — —P2 2 2

Fg ——(X—p;) +P;,

Equation (15) is actually Eq. (25) in Ref. 24 using the fol-
lowing substitution:

p=(E,E2 —4X'p, .p2)/D, D»
r'=F

1F2/'D1D2,

p+(p2 ~2)1/2

u2 =P (P' y')'", -—
Eq. (15) becomes

~=—2 mX4 8 8
~Pi ~82

1
X dpp-&-'

D1D2(u 1 u2)—
dpp g(. . . ) ewigf d —g(. . . )0 2 sinn/

Defining

1

1 —Qip

1

1 —Qpp
(16)
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The integral oveI p may be done immediately via '

I (c)=
r(b)1 (c —b)

1

X J dtt' '(1 —t)'-' '(1 tx—)

We finally obtain

M=2 mX
Bp) Bpp

1
X [2Fl(1,—g';1 —g";u, )

DlD2 ul —u2

—2Fl(1, —g;1 —g;u2)]

(18)

Thus we have shown that M, its derivatives, and hence

P„,i, , „ i in Eq. (9) may be expressed in terms of

Gaussian hypergeometric functions. Equations (9) and
(18) are equivalent to Eqs. (3.4) and (3.10) in Ref. 19.

8. Special case: state (ngs) to state (n2s)

For s states (al ——0, a2 ——0, p~
——k ", p2 ——k'), all ex-

pressions in Sec. IIA could be further simplified. First,
taking into account the rotational symmetry and transver-
sality of the photon, one has'

Al ~ Agp ()
E

Bk'

+(e' k')(e" k")
~(1' k") a(k .k")2

(19)

here the second term is vanishing in the long-wavelength
dipole approximation. Then we carry out the derivative
with respect to ( k ' k ") in Eqs. (10) and (15), namely,

1

a(k .k-)
P I p

DlD2 —2(ElE2 —4X k ' k ")P+F,F2P k, k „o DfD2 o (1—yP)

D; =(X+P;)'=g 2(P;/+1)',
Pl)(X P2) (Pig —1)(P2$—1)y=

(X+Pl)(X+P2) (Pg+1)(P2g+1)
Therefore we obtain

n, s, n, s =(&'&")[~2(P2)~t(Pl)M„,,„,]„
wllcic wc dcfllm Mn s n s via

a(k k")

(Pit+I) '(P24+I) 'I dI I' '(1 FS» '—8 8
Bpi Bpp

(22)

=2'~k'(2 0' [—(Pit+1) '(P24+1) '2F1(4*2—k3 —4'F)].
~P 1 ~P2

We note that M, defin'ed by Klarsfeld in Ref. 13 as

8 P 8 Pl Pf e 8 I'

is related to our M„,, „,, [Eq. (11)]via

8 (25)
~Pi ~P2

Thus our Eqs. (21) and (22) are exactly the same as Eqs. (3), (4), and (18) in Ref. 13, which were used to calculate the
two-photon decay rate reported in Ref. 14. However, the starting point in Klarsfeld's approach is the Coulomb Green's
fullctloll, Ilot tllc lillpllclt tcchlllqllc.

C. An alternative expression for state (n ~ I~) to state (1s)

If the final state is the ground state, then A„,l, l, (v') via
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2
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is nonvanishing only for l&
——0 (s state) and l& ——2 (d

state). After calculating the angular parts in Eq. (26), we
have

The transition rate A (x) is also called spectral function in
the hterature. Like Eq. (14), we define another auxiliary
function U(r, v),

210 6 r 3»3
Ai, „,I, (v')dv'= CI,

X [Pi, &(v')+Pi, 2(v")] dv',

with

(27)

rR„)(r)(R„)
~

r
~
R„ I )

U(r, v)=g
n En —En, +Ev

with E representing E„or E -. Notice

(32)

2l~+1
PI, =f R &0(r) U(r, v)r dr . (33)

x (~i
2

av

Using the radial Schrodinger equation with the orthonor-
mal and the closure conditions for rR„~(r), we obtain for
U the following inhomogeneous differential equation:

—,', f (1+cos 8)(sin8)d8= —,', , l~ ——0

(1+—,', cos 8)(sin8)d8= „', , 1( ——2
0

(28a)

(28b)

1 dE E
dr p p2

U(r, v)=r R„,~, (r) .

(34)

and

I'r, ,2=

(Rio [
r ~R„&)(R„&

~

r ~R„,~, )

En —En, +Ev

(Rgo [
r

[ R„])(R„y [
r

[ R„,g, )
E„—E„+E„-

1

(29)

(30)

In Eqs. (28) 8 is the angle between the photon momenfa.
Thus

S(p, v) = U(r, v)e r"dr,
0

(35)

which in turn satisfies the following first-order inhomo-
geneous differential equation:

~' r

—E„+E„(2p—1)—p d dS dS
2 "' "

dp dp dp

Instead of using the series-expansion method, we now in-
troduce the Laplace transform of U,

T 1 1

7

1

2 i,,„,I, (x)dx (31)

R r TP'e T.

From Eqs. (33)—(35), one sees that

(36)

with Pr ——2
dS dY

(37)

and

x =4mn&v'/(n, —.1)

(n f —1)!4 ~4 6x (1 x) (Pl ~+P~ 22' n "c'
1

(31')

(31")

where Y is the solution of the following equation:

p po +2(2p ——1)Y=2F„~ (p)

with

po ——2( E„,+E„)—
(38)
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and

F„& (p)= —f R„,(, (r)r e ~"dr

' (/2n( —(
( n +1)J

n', , () (2),. n&

(j+1)(j+2)(j+3)(j+4)
(p+ 1/n, )'+' (39)

(j+3)(j+4)(j+5)(j+6)
n) (p + I /n ( )J +

[(n ( —4)(n (
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' —2
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In Eqs. (39) and (40) (a)J is the usual Pockhammer sym-
bol 32

The whole problem is reduced to solving Eq. (38) and
finding the values of Y(p) at P =1. P( can be obtained

immediately via Eqs. (37) and (38):

P(, —— , [F„,(,(1)—Y(1)]4
1 —Po

(41)

We choose p, in the neighborhood of po with 1 &p) &po.
The value of Y(p) can be obtained via Taylor-series ex-
pansion and Eq. (38); thus,

Y(p() = Y(po)+ g Y' '(po)(p( po)"—, , kt

with

P., (,(po)
Y(po)=

2po —l

and

2E' '
(p ) —(k'+3k)Y' "(p )

Y(k)(p )
2[(k+2)po —1]

(42)

(43)

Equation (38) has, then, no regular singular point for
p &p(. By using the integrating factor method, ' the
solution of Eq. (38) can be shown to be

'
1/po

Y(1)=
i+So (1—po)'

1/po
S +no

2+nl P P —Po 8p
P1 11 P —Po

1/po
2 2 z p)+po+ (p( po-

p( po—Y(p. ) . (45)

In Sec. IIA we have shown that the probability per
second for the spontaneous two-photon emission of a hy-
drogenic atom from an arbitrary state (n(, 1(,m() to an ar-

The integrals in Eqs. (45) and (31) can be numerically
evaluated by employing the usual Gauss-Legendre quadra-
ture method.

III. RESULTS AND DISCUSSION

bitrary state (nz, l2, m 2) can be expressed in terms of re-
peated parametric differentiations of hypergeometric
functions. The resulting expressions are rather complicat-
ed for arbitrary (n(, l),m() and (n2, l2, mq). For n(s-n2s
transitions, all the theoretical results in Sec. IIB are quite
compact in terms of hypergeometric functions. Neverthe-
less, for large n, this gives rise to a huge number of hyper-
geometric functions, resulting from differentiations, mak-
ing calculations very cumbersome.

In Sec. IIC we have presented an approach which is
simpler to carry out and less prone to numerical error. If
the final state is the ground state, one is able to evaluate
the angular parts first. Using' the implicit technique, the
evaluation of infinite summations involving radial matrix
elements is replaced by the solution of an inhomogeneous
differential equation. The solution, easily found with the
use of Laplace transforms, is expressed as a one-
dimensional integral representation involving simple func-
tions. Since F« is rather simple [see Eqs. (41) and (42)],
all the computations are also rather simple. To demon-
strate the simplicity and utility of this approach, we have
considered the two-photon decay of a metastable hydro-
genic atom (n( ——2, l( ——0). For this case, Eq. (41) reduces
to

F20(p) = —12v 2 p —2

(p +0.5)
The integrals in Eqs. (47) and (31) are calculated, using a
20-point Gaussian quadrature, in less than 0.25 sec on the
AMDAHL 470 V5 computer at the University of Arkan-
sas. Our result, I/v=8. 2284 sec ', agrees with the work
of Klarsfeld, ' who used expressions identical to Sec. IIB
involving hypergeometric functions.

Figure 1 shows a plot of the spectral distribution func-
tion A(, 2,(x) as a function of x. The variable x was de-
fined in Eq. (3) and is proportional to the emission fre-
quency v'. This curve is also in agreement with that pre-
viously reported. ' In particular, A(, 2, (x) goes to zero,
as expected, when either of the emitted photon frequencies
goes to zero (v' or v" =0) and is a maximum when the two
emitted photons have the same frequency (v'=v"). In
Fig. 2(a), however, we present a new result. In this figure
the spectral distribution function A(, 3,(x) is plotted as a
function of .x. Obviously, there are several interesting
features present in the plot of A(, 3,(x) which were not
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FIG. 1. Spectral distribution function A ~, 2,(x) as a function
of x. The variable x is the single-photon frequency v' relative to
the two-photon 1s to 2s transition frequency. The units of
A i, 2,(x) are sec ' and physically the transition rate per unit fre-

quency where the unit frequency is taken to be the two-photon
2s to 1s transition frequency.

FIG. 3. Spectral distribution function A i, 4,(x) as a function
of x. The variable x is the single-photon frequency v' relative to
the two-photon 1s to 4s transition frequency. The units of
A &, 4,(x) are sec ' and physically the transition rate per unit fre-
quency where the unit frequency is taken to be the two-photon
4s to 1s transition frequency.
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FIG. 2. (a) Spectral distribution function A ~, 3,(x) as a func-

tion of x. The variable x is the single-photon frequency v' rela-
tive to the two-photon 1s to 3s transition frequency. The units
of A i, 3,(x) are sec ' and physically the transition rate per unit
frequency where the unit frequency is taken relative to the two-
photon 3s to 1s transition frequency. (b) Functions Pp &(x) and
Pp 2(x), defined in Eq. (31), as a function of x.

—105

FIG. 4. (a) Spectral distribution function A i, 3d(x) as a func-
tion of x. The variable x is the single-photon frequency v' rela-
tive to the two-photon 1s to 3d transition frequency. The units
of A i, 3'(x) are sec ' and physically the transition rate per unit
frequency where the unit frequency is taken to be the two-
photon 3d to 1s transition frequency. (b) Functions P2 &(x) and
P2 2(x), defined in Eq. (31), as a function of x.
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TABLE I. Positions of the first minimum on the high- and low-frequency side of x =
2 (or v'=v")

for the n is ~1s transitio'ns. Quantities in parentheses are powers of 10 by which the numbers are mul-

tiplied.

Transition

3$~1$
4s —+1$
5s ~1$
6s ~1$

x

0.2197
0.2627
0.2807
0.2902

Low-frequency side
v' (sec-')

6.421(14)
8.089(14)
8.861(14)
9.227(14)

0.7803
0.7373
0.7193
0.7098

High-frequency side
v' (sec ')

2.281(15)
2.273(15)
2.271(15}
2.269(15)

10 4d-1s

10

4O- i

2o

o 0.5

present in the corresponding plot of A i, 2,(x) in Fig. 1. In
particular, A i, 3,(x) exhibits an infinity or resonant
behavior at x =0.15625 and 0.84375. Physically, this
behavior is due to a resonance between a photon with the
frequency corresponding to the 3s to 2p transition and
another photon at the frequency corresponding to the 2p
to 1s transition.

In addition to this resonant behavior, we note a second
interesting feature, which is the zero behavior at
x =0.21970 and 0.780 30. Two-photon decay is not pos-
sible at these frequencies. In order to gain further insight
into this unusual prediction, we have plotted Po &

and Po 2

[see Eq. (31)] separately. As can be seen in Fig. 2(b),
A ]g 3g (x ) goes to zero because the value of Po i (x ) exactly
cancels Po z(x) when x =0.21970 and 0.78030. Physical-
ly, the phase change in the radiation terms associated with
the intermediate resonance makes this destructive interfer-
ence possible. Similar behavior is seen in A 1, 4,(x), which
is plotted in Fig. 3. The additional zeros, however, are
now made possible by the phase difference between the
resonant dipole terms. For example, the phase difference
between the resonant dipole terms at x=0.05185 and
0.20000 make possible the destructive interference at
x =0.07000. Such minima have been predicted and ob-
served in two-photon absorption spectra where they
have been referred to as "transparencies. " Similar results

TABLE II. Transition rate for n is ~1$ at x =0.5 or v'= v".
Quantities in parentheses are powers of 10 by which the num-
bers are multiplied.

Transition
V=V =V

(sec ') (A}
A (v)

(sec 'GHz ')

have been found for A&, 5,(x) and A&, s,(x). The first
zero observed to the high- and low-frequency side of
x = —, (or v'=v") is listed in Table I. On the other hand,
only the infinity or resonant behavior is observed in
A|, 3~(x), which is plotted in Fig. 4(a). In this case,
Pz &(x) and P22(x), shown in Fig. 4(b), do not cancel
despite the phase change which occurs in the resonant
terms. The possibility of zeros in A| 3g(x) exists on the
low-frequency side of the resonance at x =0.15025 and
on the high-frequency side of the resonance at
x =0.843 75 but are prevented from occurring by the res-
onance terms at x =0 and x = 1.

Although the zero behavior is not observed in A i, 3(j(x),
this is not a characteristic of d~s transitions. For exam-
ple, A &, &~(x) does exhibit zero behavior, as seen in Fig. 5.
In this case the zero is made possible by the phase differ-
ence associated with the resonant dipole terms. For exam-
ple, the phase difference between the resonant dipole
terms at x =0.051 85 and 0.20000 make possible the des-
tructive interference at x =0.10600.

It is interesting to note that even though both n &s~ls
and nid~ls transitions display zero behavior in their
emission spectrum they do not coincide in frequency.
This can be seen directly, for example, from a comparison
of Fig. 3 with Fig. 5. Since similar results are expected in
the two-photon absorption spectrum, in principle, it is
possible in an experiment to choose v' and v" such that
the ls~nid transition is preferentially excited over the
ls~nis transition or vice versa (see Tables II and III).
For example, if we choose in an experiment
v'=0. 642 14)& 10' sec ' and v"=2.2807)& 10' sec ' or
the corresponding wavelengths v'=4671. 9 A and v"
=1315.4 A, then A3, t, (x) will be zero while A3(f ]g(x)
will be nonzero. As a result, the 3d level will be preferen-
tially pumped.

FIG. 5. Spectral distribution function A &, ~(x) as a function
of x. The variable x is the single-photon frequency v' relative to
the two-photon 1s to 4d transition frequency. The units of
Ai, ~(x} are sec ' and physically the transition rate per unit
frequency where the unit frequency is taken to be the two-
photon 4d to 1s transition frequency.

2s —+1$
3s ~1$
4s ~1s
Ss —+1s
6s ~1$

1.2330(15)
1.4614(15)
1.5413(15)
1.5783(15)
1.5984(15)

2431
2051
1945
1899
1876

8.638(—6)
1.779(—6)
6.410(—7)
3.026(—7)
1.672( —7)
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2.p
TABLE III. Transition rate for n],d —+1s at x=0.5 or

v'= v". Quantities in parentheses are powers of 10 by which the
numbers are multiplied.

CO
UJ
Oz
LU

O
O

0
O] p
Cl
LLI

N

X
K0z

normalization

point

Transition

3d —+ 1$

4d —+ 1$

Sd —+1s
6d ~1s

v=v =v
(sec ')

1.4614(15)
1.5413(15)
1.5783(15)
1.5984(15)

i=A, =A,
(A)

2051
1945
1899
1876

3 (v)
(sec ' GHz ')

6.717(—6)
3.685(—6)
2.084(—6)
1.268( —6)

ANGLE

FIG. 6. Angular distribution function as a function of the an-

gle between the two simultaneously emitted photons. The curve
indicates the expected coincidence signal between two detectors
monitoring v' and v", respectively, as a function of the angle be-
tween the detectors. Interestingly, the expected coincidence sig-
nal for the n&d~ ls transitions is shown to be significantly dif-
ferent from the more well-known result for the n &s ~1s transi-
tions.

but a= —,', for n&d~ls transitions.
In conclusion, we have presented several new results

which will be interesting to test experimentally either in
emission or in absorption experiments. Unfortunately,
two-photon absorption experiments will require tunable
vacuum ultraviolet photons which are presently difficult
to obtain with the large flux needed to excite a sufficient
number of hydrogen atoms for detection. However, exci-
mer lasers may make such experiments more feasible in
the future.

In addition to the emission spectra, we also report on
the angular distribution expected between the two photons
resulting from a two-photon transition. That is, we have
calculated the expected coincidence signal between two
detectors monitoring v' and v", respectively, as a function
of the angle between the detectors. The result is predicted
by Eq. (28b) and plotted in Fig. 6. The predicted result
for n &s~ ls transitions is in agreement with that expected
by others, ' ' however, we have also presented a new re-
sult shown in Fig. 6. In particular, the angular distribu-
tion for n&d~ls transitions is plotted and shown to be
significantly different from the n &s ~ ls result. Although
our result is new, it is in agreement with the more general
result of Yang which predicts an angular correlation of
the form 1+a cos 0 for dipole-dipole transitions. As seen
in Eq. (28), the parameter a=1 for n&s~ls transitions
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