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Classical anharmonic oscillators: Rescaling the perturbation series
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A solution to the classical anharmonic-oscillator equation of motion x = —x —Ax " is obtained by re-

scaling the perturbation series. The resulting series involves a coupling constant that remains finite for

A. )) 1 and thus converges rapidly for all P.

Classical anharmonic oscillators with Hamiltonian

xH=P + + x "(forn=2 3 4, . . . )
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x+x = —Xx

which has the exact solution
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Here F (8, @) is the elliptic integral of the first kind,
E (P) = F (rr/2, @);E is the energylike constant of motion:

exhibit "regiming" in that for A. (& 1, the frequency co of
the motion can be perturbatively estimated as
ru = 1+0 (X,), while for A. » 1, cu = A.

'~2". Perturbation
theory for these oscillators becomes convergent after the re-
moval of the secular terms' (using, e.g. , the Lindstedt pro-
cedure) but the perturbation series in powers of X is not ca-

pable of yielding the exact scaling behavior of co(X) = X'~2"

at large X. This feature is common to a variety of problems
in both classical and quantum mechanics. We show that
the effectiveness of the Lindstedt procedure can be greatly
improved by rescaling the perturbation series by a function
of the coupling constant A. which has the correct limiting
A. &( 1 and X && 1 forms. This involves the introduction
of a rescaled coupling constant A. which remains finite as

Perturbation theory in powers of A. yields good ac-
curacy at low orders for all P. First, we consider the quartic
anharmonic oscillator for which the exact solution is known

in terms of elliptic functions. This allows a direct numerical
comparison of our global approximation with the exact
answer. The general anharmonic oscillators are treated sub-
sequently.

The equation of motion for the quartic (n =2) anhar-
monic oscillator is

frequency co behaves as I+O(X) for A. « 1 and like A.
'~4

for A. && 1.
To implement the rescaling procedure we introduce a re-

normalized frequency cop and write the equation of motion
as

x + ru 0
'x = —Z (x' ——', (x') x )

where
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T being the period and (x ) is to be determiend self-
consistently. The factor 3/2 comes from the fact that
(x~) =3(x2) 2/2 for a simple harmonic function. By con-
struction the right-hand side of Eq. (6) is expected to be
small for all values of X. To find the renormalized frequen-
cy we first set the right-hand side of Eq. (6) equal to zero.
This yields the zeroth order approximation to the solution

cop= 1+ 4 Xa2 (10)

Besides Eq. (10), the frequency coo and the amplitude a are
also related through the first integral of motion E [Eq. (3)]:
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where h. =A.a /coo. To O(X) Eq. (11) can be inverted to
yield

a = (1+—t62)
2E
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xp = a cos ~pt

In this approximation Eq. (7) yields the frequency-
amplitude relation

E=—x+ —x +—x2 ~ 4
2 2 (3)

The self-consistent frequency is now obtained from Eq. (10)
by eliminating the amplitude a:

and

b, a = —(41+4AE +1)2 2=1
~20 ——~ (1+ [1+6zE (1++,7) ]"']

where A. , as a function of A. and E, to the lowest order is
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The frequency of the motion is
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As can be easily checked from the properties of X (x), the

Equations (13) and (14) completely specify the frequency
cuo. As expected coo= I+0(X) for A « 1 and = A.

'~ for
A. &) 1. This approximation for co is within 2% of the exact
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answer given in Eq. (5) for all values of A. .

Having determined the scale factors coo and a, we now de-
fine scaled variables y =x/a and r =coot. Equation (7) now
assumes the form

(15)
Xexact
Xapprox

0.0427
0.0616
0.0596

0.0862
0.123
0.120

0.172
0.242
0.239

0.332
0.454
0.449

0.679
0.707
0.703

TABLE I. Comparison of the approximant tEq. (16b)] with the
exact result of Eq. (2) for quartic anharmonicity.

where A. defined by Eq. (14) is our rescaled coupling con-
stant. Note that as A. ~, A. remains finite and approaches
the limiting value ~. Our claim is that the standard

Lindstedt perturbation technique on this equation converges
very fast for all A. . To 0 (X), we obtain

which is the analog of Eq. (10). In terms of the total ener-

gy E = ~x2+~x + (A/2n)x2", we find [see Eq. (12)]

Cd/Q)0 = 1 (16a) 2E I+ A.P(1 —I/n)
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x/a = sin(cut ) — sin(3' t )
32

(16b)

Equation (16a) shows that the secular terms are automati-
cally removed from Eq. (15) at O(X). The frequency to
0 (7) is simply the scaling frequency coo and as stated above
the accuracy is better than 2% for all k. To test the accura-
cy of Eq. (16b) we have tabulated (Table I) x as a function
of t as obtained from it as well as that obtained from the ex-
act solution of Eq. (4). This is done for the value A. =12,
E = 1 which happens to lie in the "boundary layer" between
the two regimes (X «1 and A. » 1) and is expected to be
the most sensitive test of Eq. (16b). The close to 1% accu-
racy supports our claim about the fast convergence of the
rescaled perturbation series.

We now turn to the general anharmonic oscillator
2 2P + x

2 2 2 Pl

2+ gg (18)

with

B=P E 1+ 1 ——pA. 1
2" n

'' 'n —1

Equation (18) can be solved in closed form for
(demonstrated above) and n =3. For other values of n it
cannot be solved exactly but an analytic approximant to the
root, obtained by Newton-Raphson technique, is

with A. =La ~" '~/cu2O. From Eqs. (10') and (12'), we see
that the frequency ~0 satisfies the self-consistency condition

' n —1

cu "=co" +pk E 1+' 1 ——2n 2n —2 BA, 1
0 0 2n

for which Eqs. (6) and (7) become

x+o), 'x= —Z(x'" ' —p(x')" 'x)

and

coo= 1+ph. (x )"

(6')
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AB + I/n (1+kB)'
1 —(1—I/n ) (1+XB )

The scaled coupling constant is obtained from

(19)

where

r(~)r(n+~)2"
~r(n +1) (17)
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As before, if we set the right-hand side to zero, the solution
is x =a coscoot, leading to

1 —(1 —I/n ) (1+PRE" ')
PRE" '+ I/n (1+PRE" ') ' (20)

Note that as A. ~, the scaled coupling constant remains
finite and reaches the value 2" '/p. We can now scale the
x in Eq. (6') by a and t by coo

' and get an equation of
motion analogous to Eq. (15) on which the use of Lindstedt
procedure yields accurate answers at low orders of perturba-
tion theory.
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