Classical anharmonic oscillators: Rescaling the perturbation series

Kalyan Banerjee, Jayanta K. Bhattacharjee, and H. S. Mani

Department of Physics, Indian Institute of Technology, Kanpur 208016,

Uttar Pradesh, India

(Received 6 February 1984)

A solution to the classical anharmonic-oscillator equation of motion $\ddot{x} = -x - \lambda x^{2n-1}$ is obtained by rescaling the perturbation series. The resulting series involves a coupling constant that remains finite for $\lambda >> 1$ and thus converges rapidly for all λ .

Classical anharmonic oscillators with Hamiltonian

$$H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda}{2n} x^{2n} \text{ (for } n = 2, 3, 4, \ldots)$$

exhibit "regiming" in that for $\lambda \ll 1$, the frequency ω of the motion can be perturbatively estimated as $\omega \simeq 1 + O(\lambda)$, while for $\lambda >> 1$, $\omega \simeq \lambda^{1/2n}$. Perturbation theory for these oscillators becomes convergent after the removal of the secular terms^{1,2} (using, e.g., the Lindstedt procedure) but the perturbation series in powers of λ is not capable of yielding the exact scaling behavior of $\omega(\lambda) \simeq \lambda^{1/2n}$ at large λ . This feature is common to a variety of problems in both classical and quantum mechanics.³ We show that the effectiveness of the Lindstedt procedure can be greatly improved by rescaling the perturbation series by a function of the coupling constant λ which has the correct limiting $\lambda \ll 1$ and $\lambda \gg 1$ forms. This involves the introduction of a rescaled coupling constant $\overline{\lambda}$ which remains finite as $\lambda \rightarrow \infty$. Perturbation theory in powers of $\overline{\lambda}$ yields good accuracy at low orders for all λ . First, we consider the quartic anharmonic oscillator for which the exact solution is known in terms of elliptic functions. This allows a direct numerical comparison of our global approximation with the exact answer. The general anharmonic oscillators are treated subsequently.

The equation of motion for the quartic (n=2) anharmonic oscillator is

$$\ddot{x} + x = -\lambda x^3 \quad , \tag{1}$$

which has the exact solution

$$t = \frac{1}{(1+4\lambda E)^{1/4}} \left[K \left(\frac{a^2}{a^2 + b^2} \right) - F \left(\cos^{-1} \frac{x}{a}, \frac{a^2}{a^2 + b^2} \right) \right] \quad . \tag{2}$$

Here $F(\theta, \phi)$ is the elliptic integral of the first kind, $K(\phi) = F(\pi/2, \phi)$; E is the energylike constant of motion:

$$E = \frac{1}{2}x^2 + \frac{1}{2}\dot{x}^2 + \frac{\lambda}{4}x^4 , \qquad (3)$$

and

$$b^{2}, a^{2} = \frac{1}{\lambda} (\sqrt{1 + 4\lambda E} \pm 1)$$
 (4)

The frequency of the motion is

$$\omega = \frac{\pi}{2} \frac{(1+4\lambda E)^{1/4}}{K[a^2/(a^2+b^2)]} \quad .$$
 (5)

As can be easily checked from the properties of K(x), the

frequency ω behaves as $1 + O(\lambda)$ for $\lambda \ll 1$ and like $\lambda^{1/4}$ for $\lambda \gg 1$.

To implement the rescaling procedure we introduce a renormalized frequency ω_0 and write the equation of motion as

$$\ddot{x} + \omega_0^2 x = -\lambda \left(x^3 - \frac{3}{2} \langle x^2 \rangle x \right) \quad , \tag{6}$$

where

$$\omega_0^2 = 1 + \frac{3}{2}\lambda \langle x^2 \rangle \quad , \tag{7}$$

$$\langle \cdots \rangle = \frac{1}{T} \int_0^T (\cdots) dt$$
, (8)

T being the period and $\langle x^2 \rangle$ is to be determined selfconsistently. The factor 3/2 comes from the fact that $\langle x^4 \rangle = 3 \langle x^2 \rangle^2/2$ for a simple harmonic function. By construction the right-hand side of Eq. (6) is expected to be small for all values of λ . To find the renormalized frequency we first set the right-hand side of Eq. (6) equal to zero. This yields the zeroth order approximation to the solution

$$x_0 = a \cos \omega_0 t \quad . \tag{9}$$

In this approximation Eq. (7) yields the frequencyamplitude relation

$$\omega_0^2 = 1 + \frac{3}{4}\lambda a^2 \quad . \tag{10}$$

Besides Eq. (10), the frequency ω_0 and the amplitude *a* are also related through the first integral of motion *E* [Eq. (3)]:

$$E = \frac{1}{2}\omega_0^2 a^2 \left(1 - \frac{3\lambda a^2}{16\omega_0^2} \right) = \frac{1}{2}a^2 \omega_0^2 \left(1 - \frac{3}{16}\overline{\lambda} \right) \quad , \tag{11}$$

where $\overline{\lambda} = \lambda a^2 / \omega_0^2$. To $O(\overline{\lambda})$ Eq. (11) can be inverted to yield

$$a^{2} = \frac{2E}{\omega_{0}^{2}} \left(1 + \frac{3}{16} \overline{\lambda} \right) \quad . \tag{12}$$

The self-consistent frequency is now obtained from Eq. (10) by eliminating the amplitude a:

$$\omega_0^2 = \frac{1}{2} \left\{ 1 + \left[1 + 6\lambda E \left(1 + \frac{3}{16} \overline{\lambda} \right) \right]^{1/2} \right\} , \qquad (13)$$

where $\overline{\lambda}$, as a function of λ and *E*, to the lowest order is

$$\overline{\lambda} = \frac{\lambda a^2}{\omega_0^2} = \frac{8E\lambda}{(1+\sqrt{1+6\lambda E})^2} \quad . \tag{14}$$

Equations (13) and (14) completely specify the frequency ω_0 . As expected $\omega_0 \simeq 1 + O(\lambda)$ for $\lambda << 1$ and $\simeq \lambda^{1/4}$ for $\lambda >> 1$. This approximation for ω is within 2% of the exact

30 1118

Having determined the scale factors ω_0 and a, we now define scaled variables y = x/a and $\tau = \omega_0 t$. Equation (7) now assumes the form

$$\frac{d^2 y}{d\tau^2} + y = -\overline{\lambda} \left(y^3 - \frac{3}{2} \left\langle y^2 \right\rangle y \right) \quad , \tag{15}$$

where $\overline{\lambda}$ defined by Eq. (14) is our *rescaled* coupling constant. Note that as $\lambda \to \infty$, $\overline{\lambda}$ remains finite and approaches the limiting value $\frac{4}{3}$. Our claim is that the standard Lindstedt perturbation technique on this equation converges very fast for all λ . To $O(\overline{\lambda})$, we obtain

$$\omega/\omega_0 = 1$$
 , (16a)

$$x/a = \sin(\omega t) - \frac{\overline{\lambda}}{32} \sin(3\omega t) \quad . \tag{16b}$$

Equation (16a) shows that the secular terms are automatically removed from Eq. (15) at $O(\overline{\lambda})$. The frequency to $O(\overline{\lambda})$ is simply the scaling frequency ω_0 and as stated above the accuracy is better than 2% for all λ . To test the accuracy of Eq. (16b) we have tabulated (Table I) x as a function of t as obtained from it as well as that obtained from the exact solution of Eq. (4). This is done for the value $\lambda = 12$, E = 1 which happens to lie in the "boundary layer" between the two regimes ($\lambda \ll 1$ and $\lambda \gg 1$) and is expected to be the most sensitive test of Eq. (16b). The close to 1% accuracy supports our claim about the fast convergence of the rescaled perturbation series.

We now turn to the general anharmonic oscillator

$$H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda}{2n} x^{2n}$$

for which Eqs. (6) and (7) become

$$\ddot{x} + \omega_0^2 x = -\lambda (x^{2n-1} - \beta \langle x^2 \rangle^{n-1} x) , \qquad (6')$$

and

$$\omega_0^2 = 1 + \beta \lambda \langle x^2 \rangle^{n-1} , \qquad (7')$$

where

$$\beta = \frac{\Gamma(\frac{1}{2})\Gamma(n+\frac{1}{2})2^n}{\pi\Gamma(n+1)} \quad . \tag{17}$$

As before, if we set the right-hand side to zero, the solution is $x = a \cos \omega_0 t$, leading to

$$\omega_0^2 = 1 + \frac{\beta\lambda}{2^{n-1}} a^{2n-2} , \qquad (10')$$

TABLE I. Comparison of the approximant [Eq. (16b)] with the exact result of Eq. (2) for quartic anharmonicity.

1119

t	0	0.0427	0.0862	0.172	0.332	0.679
x _{exact}	0	0.0616	0.123	0.242	0.454	0.707
x _{approx}	0	0.0596	0.120	0.239	0.449	0.703

which is the analog of Eq. (10). In terms of the total energy $E = \frac{1}{2}\dot{x}^2 + \frac{1}{2}x^2 + (\lambda/2n)x^{2n}$, we find [see Eq. (12)]

$$a^{2} = \frac{2E}{\omega_{0}^{2}} \left\{ 1 + \frac{\bar{\lambda}\beta(1 - 1/n)}{2^{n}} \right\} , \qquad (12')$$

with $\overline{\lambda} = \lambda a^{2(n-1)}/\omega_0^2$. From Eqs. (10') and (12'), we see that the frequency ω_0 satisfies the self-consistency condition

$$\omega_0^{2n} = \omega_0^{2n-2} + \beta \lambda \left\{ E \left[1 + \frac{\beta \overline{\lambda}}{2^n} \left[1 - \frac{1}{n} \right] \right] \right\}^{n-1}$$
$$= \omega_0^{2n-2} + \lambda B \quad , \tag{18}$$

with

$$B = \beta \left\{ E \left[1 + \frac{\beta \overline{\lambda}}{2^n} \left(1 - \frac{1}{n} \right) \right] \right\}^{n-1} .$$

Equation (18) can be solved in closed form for n=2(demonstrated above) and n = 3. For other values of n it cannot be solved exactly but an analytic approximant to the root, obtained by Newton-Raphson technique, is

$$\omega_0^{2n} = \frac{\lambda B + 1/n \left(1 + \lambda B\right)^{1 - 1/n}}{1 - \left(1 - 1/n\right) \left(1 + \lambda B\right)^{-1/n}} \quad . \tag{19}$$

The scaled coupling constant is obtained from

$$\overline{\lambda} = \lambda (2E)^{n-1} \left(\frac{1 - (1 - 1/n)(1 + \beta \lambda E^{n-1})^{-1/n}}{\beta \lambda E^{n-1} + 1/n (1 + \beta \lambda E^{n-1})^{1-1/n}} \right) .$$
(20)

Note that as $\lambda \rightarrow \infty$, the scaled coupling constant remains finite and reaches the value $2^{n-1}/\beta$. We can now scale the x in Eq. (6') by a and t by ω_0^{-1} and get an equation of motion analogous to Eq. (15) on which the use of Lindstedt procedure yields accurate answers at low orders of perturbation theory.

Phys. 17, 121 (1976).

³For an application of the rescaled perturbation series to the quangree of freedom system see Chapter 2 in A. H. Nayfeh and D. T. tum anharmonic oscillator, see K. Banerjee, Proc. R. Soc. London, Ser. A 368, 155 (1979); W. E. Caswell, Ann. Phys. 123, 153 (1979).

¹For various perturbative techniques of the conservative single de-

Mook, Nonlinear Oscillations (Wiley Interscience, New York, 1979), Chap. 2.

²C. R. Eminhizer, R. H. G. Helleman, and E. W. Montroll, J. Math.