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The theory of infrared and anisotropic Raman spectra of diatomic molecules dissolved in inert
solvents is reexamined without any ad hoc factorization of rotational-vibrational correlation func-
tions. The total correlation function is expanded into a series. Its leading term represents the simple
product approximation and its higher-order terms the successive corrections. An order-of-
magnitude estimation of corrective terms is presented. They prove to be small, in weakly interacting
van der Waals solutions at least, and their spectral effects by no means conspicuous.

I. INTRODUCTION

The theory of infrared and anisotropic Raman spectra
of molecular liquids is usually based on the assumption
that the total correlation functions may be factorized into
their vibrational and rotational factors. ' Constructed in
this way, the theory provides a satisfactory description of
a vast body of infrared and Raman data; see the review
papers in Refs. 3 and 4. In spite of its success, this as-
sumption should be investigated. In fact, vibrational de-
grees of freedom are coupled to rotational and translation-
al degrees of freedom of the liquid sample through the
angle- and position-dependent intermolecular forces and
through the angular-momentum-dependent intramolecular
forces. As, in turn, rotational and translational degrees of
freedom are coupled to each other, one concludes that vi-
brational and rotational motions are necessarily correlated
unless there is no vibrational relaxation. The product ap-
proximation, its validity, and its limitations thus merit a
careful study.

In spite of its importance, this problem has been exam-
ined only by a limited number of authors. The first paper
in which the separability of the total infrared correlation
function into its vibrational and rotational factors was
questioned is that of Van Woerkom et al. Their theory
employs the generalized cumulant expansion method and
rotational motions are described by the isotropic rotation-
al diffusion model. This theory indicates that the product
approximation introduces errors arising from inadequate
correlations of a given oscillator at several time points.
Similar conclusions were also reached by other authors.
Later, Lynden-Bell calculated vibrational relaxation times
in infrared, isotropic, and anisotropic Raman spectra of
pure liquids by employing the Redfield theory well known
in NMR; separation of vibrational and rotational motions
was avoided. Then, supposing rotational motions to be
slow in the time scale of interest, she showed that the
three relaxation times are different from each other.
More recently, Wang and McHale and McHale calculat-
ed the lowest two spectral moments of the isotropic and
anisotropic Raman and of the infrared spectra of a pure

liquid without postulating the separability of the
rotational-vibrational correlation functions. They predict-
ed the first moments of the three spectra to be different;
this effect was termed as the noncoincidence effect. How-
ever, as shown recently by Bratos and Tarjus, ' the major
part of this effect is obtained even if separability is as-
sumed. Finally, Levesque, Weis, and Oxtoby" presented
a molecular dynamics simulation of liquid HC1 and tested
the validity of the product approximation directly. They
found that the total and the product correlation functions
coincide within the accuracy of the molecular dynamics
simulation. Unfortunately, no systematic analysis of this
problem has yet been published.

The purpose of the present paper is to reexamine the
theory of infrared and anisotropic Raman spectra of a di-
atomic molecule dissolved in an inert solvent by avoiding
any ad hoc factorization of the rotational-vibrational
correlation function. The total correlation function is ex-
panded into a series. Its leading term is shown to be the
simple product correlation function whereas higher-order
terms appear as successive corrections to this simple prod-
uct approximation. These corrections are small and their
spectral effect by no means spectacular. For a prelimi-
nary account of this work, see Ref. 12.

II. GENERAL CONSIDERATIONS

A. Basic formulation

The system under consideration is a diatomic molecule
dissolved in an inert solvent formed by X molecules. The
following model is used to investigate the problem. (i)
The active molecule is executing quantum-mechanical vi-
brations described by the free molecule vibrational coordi-
nate n. The vibrations are coupled to the remaining de-
grees of freedom of the system through an angle- and
position-dependent intermolecular potential. (ii) The ac-
tive molecule as well as the solvent molecules execute sto-
chastic reorientations and translations. The active mole-
cule is characterized by its polar angles e,p and by its
center of gravity coordinates R whereas the solvent mole-
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cules are characterized by their Eulerian angles 8; and by
their center of gravity coordinates R;, i =1,2, . . . , ¹ (iii)
Collision-induced pI'occsscs arc absent. Under thcsc con-
ditions the Hamiltonian of the system can be written

6,„,(t) =Tr{P(0).P(t) )

{n (0)n (t) F2O{8(0))F20(8(t))) . (2b)
SIr BP
3 Bn

H(n, t)=(p /2p+ ,'kn —+,fn—+ . )+V(n, t),

where V(n, t) represents the solvent-solute interaction.
For justification of this approach, see e.g., Ref. 13.

To proceed further, the formulas describing the in-
frared and anisotropic Raman processes must be present-
ed. As usual, inflared and anisotropic Raman spectral
densities can be expressed in terms of Fourier transforms
of the following two correlation functions:

6;,(t)={M(0) M(t))

=4' {n(0)n (t) &Io(8(0))&Io(8(t))),BM

In thcsc cqua'tlolls, M Rlld p Rl'c tllc dEpolc InoIIlcI1't RIld
thc anisotI'opic component of thc polarlzability tcnso1,
respectively, of the active molecule and Ft~(8,$) are
spherical harmonics. The correlation functions entering
into Eqs. (2a) and (2b) can be expressed in a compact form
by designating FIO(8) and P20(8) by a unique symbol
F„o(8) where u = 1 for infrared and u =2 for anisotropic
Raman spcctI'R.

The problem then reduces to that of calculating the
components of 6;,(t) and 6,„;(t) corresponding to the
fundamental vibrational transition of the dissolved mole-
cule. It is convenient to start by writing the Heisenberg
equation of motion for the variable n Then. , by neglect-
ing the energy relaxation processes which play a negligible
role in the case of diatomic molecules where vibrational
energy levels are widely spaced, the following formulas
may be obtained "

(«(o)«(t)&.tt(()(o))p. tt(t)(t))) =
(
«I ('«xp(tt«ttt)(p. tt(9(o))p. tt(o(t))«ttp i f, dtt()(tl)

Q(t)= 1

2pQPO
(n =0, t)+ (n =0, t)

fBV Bv
k Bn

whcI'c Q= 1~2. Conceived ln this way~ thc theory can ac-
count for the rotation-vibration correlation effects arising
from intermolecular forces. The correlation effects due to
intramolecular forces are neglected; this point will be
briefly dlscllsscd latcl 111 tllls paper.

B. Series expansion for 6;,(t)»d 6, ;(I}

The potcIltial V(n, t) =—V(n, IR{t)—R;{t)I
(II){t)) is stochastic through the time dependence of the

R,R, g, ,g, (})d and not through its functional
form. Therefore, according «Eqs. {3)»d {4), thc vari-

+„o(8(t)) and n(t) depend stochastically on each
other through the angle- and posltlon-dependent frequen-

cy increment Q{t)=Q(IR(t)—Ri(t) It Iei(t)I)8{t)t(){'(I)).
As 8 collscqucllcc, IIlfrared Rnd Rlllsotl'oplc RR111811 cori'c-

lation functions cannot rigorously be factorized into rota-
tional and vibrational functions. Still, they can be written
in the form

P„(t,O)exp i f dtlQ(tI)

=X„(t)(«xp i f dttp)(tt)

wh««he fun«lon X„(t) ls chosen as to transform Eq. (5)
lllto 811 ldcIltlty. Tllc 1Rst factol' oI1 tile right, -hand side of
Eq. (5) is the standard vibrational correlation function'
whe~eas P„(t,O) denotes the product F„o(8(t))F„0{8„(0)).
X„(t) can be found by (i) expanding the exponential
exp[I fo dtl Q(tl )] IIlto 8 scl'Ics Rlld (11) collcctlllg tllc
terms of the same power in the variable Q(t) The follow-.
ing result may bc Icachcd iIl this way:

oo oo 'n —j.X„(t)= g X„"'(t)= g i f dt, f dt, . f dt„[P„(t,O)Q(t, )Q(t, ) Q(t„)]„,

[P„(t,O)]~ = {P„(t,O) ),
[P„(t,O)Q(t, )]„={[P„(t,O) —{P„(t,O) ) )[Q(t, ) —(Q(t I ) ) ]),
[P„(t,O)Q(t, )Q(t, )]„={[P„(t,O) —{P„(t,O) ) ][Q(t, ) —{Q(t, ) ) ][Q(t, ) —(Q(t, ) ) ]),

(7a)

(7b)

(7c)

6;,(t) and 6,„;{t)thus appear in the form of a series in
Q(t). Its leading term, proportional to

X''(t)(exp i f „t fl(t )dtt

is the well-known product of rotational and vibrational
functions commonly used in the theories of infrared and
Raman spectra of liquids. For economy of language, it
will be said to represent the zero-order theory. The next
terms of the series provide successive corrections of this
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simple product theory. These approximations will be
designated as first-order, second-order, etc., theories. It
must be emphasized, however, that Eqs. (6) and (7) do not
provide a perturbation expansion in powers of an ap-
propriate coupling parameter, e.g., the intermolecular
rotation-vibration interaction potential. In fact, the rota-
tional and the vibrational correlation functions are calcu-
lated with the full Hamiltonian containing rotation-
vibration coupling terms. The rotation-vibration correla-
tion effects are thus present, to an important part, even in
the zero-order theory.

volve the spherical harmonics I'„0(8) and the frequency
111clcIllcIlt 0( jR—R j [O" j 8 p). It 1s collvcnlcIlt to
proceed as follows. (i) The solvent-solute interaction po-
tential V(n, t) is expressed as a sum of all possible pair in-
teraction terms between the active molecule and solvent
molecules. (ii) The energy of interaction U between the ac-
tive diatomic molecule and ith solvent molecule can be ex-
panded into a series of spherical harmonics Y~I (8,$)

u(n, R—R;,8;,8,$)= g g hII(n, R—R;,8;)Ft'I(8,$) .

III. CALCULATION OF CORRELATION FUNCTIONS

A. Dynamic variaMcs

According to the preceding section, the calculation of
the infrared and anisotropic Raman correlation functions
requires the determination of the one-time, two-time,
three-time, etc. , correlation functions. These functions in-

l

Truncated at an appropriate level, this expansion provides
a good description of intermolecular forces. The familiar
expressions for the short-range repulsion, the long-range
dispersion, and the dipole-dipole interaction forces may
serve as an illustration:

h =&4mee

h» V2n/——3, jsin8;e ' —3sin8;e '[cos8;cos8„-+sin8;sin8„-cos(P; —P;)]j,DD
» » » »

»

h 10 ——&4n/3 I j cos8; —3 cos8„- [cos8;cos8„-+sin8;sin8„-cos(p; —p; )]j,DD PP»

P'» I » f »

(1lb)

DD
h1 I ———v'2m/3 I [sin8;e ' —3sin8„-e '[cos8;cos8-„+sin8;sin8„-cos((»„- —p;)]j,

P»
» » » »

where r; =
~

R—R;
~

is the distance between the two molecules and (8;,P;) and (8„-,$„- ) are the polar angles of the dipole

moment of the ith solvent molecule and of the vector r; =R—R;, respectively; all other symbols have their usual mean-
ing. ' (iii) The solvent-induced frequency increment 0 may be written in a form similar to that of Eq. (8). One finds

l
«[R—«. j [8 j 80)=X g gtI,([R—«j [8 j»i*~(8 0» (12)

1 A, =—1
r

gg(lR —R; j, j8;j)=
2p

f BhtI 8 hII.
2

(n =O,R R;,8;—)+ (n =O,R R;,8;—)
k Bn

' nI

The above analysis allows a proper selection of the
dynamic variables of the problem. According to Eqs. (6),
(7), and (12), these variables are the spherical harmonics
I'I'I (8,$), including F„o(8), and the functions

gtI( j R—R j, f 0" j ). The former enter into both Q(t) and

p (t,O) and describe the reorientations of the active mole-
cule. The latter contain informations about rotational-
translation motions of the solvent particles.

B. Equation of motion

A major difficulty of the present theory is to study
correlation functions containing several times and involv-
ing the many dynamic variables VII (t), gtI(t) The diffi-.
culty may be overcome by collecti. ng all the p variables
goo(t), gtI 1+0(t), XII I&0(t) in a column matrix U(t) and
supposing U(t) to obey the simple Langevin equation:

I U(t)+F(—t),
dt

(14)

where I is a constant p)&p transport matrix and F(t) a
Gaussian random force. U(t) is thus a Gaussian process
as are all variables following a simple Langevin equation
with a Gaussian random force. ' So it is with the various
variables goo, g~~ ~+o, F~'~ ~+o. As a consequence, the
three-time, four-time, etc., correlation functions occuring
in the calculation are all reducible to products of one- and
two-time correlation functions.

The use of the simple Langevin equation (14) may be
questioned. It is justified, however, whenever molecules
execute diffusionlike motions; free rotationlike motions
are of no interest in the present context where intermolec-
ular rotation-vibration correlations are investigated. If
desired, the theory can be improved by assuming that
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either [U(t),dU(t)ldt] or [U(t),dU(t)ldt, d U(t)ldt ],
etc., satisfy a simple Langevin equation; extended dif-

fusionlike motions are usually examined in this way.

However, this additional effort does not seem to be justi-
fied at the present time when precise experimental data
are still missing.

l

Rod. = g Dj."j,«)Y(j,
A,'= -I

(I)

A, '= —I

(15a)

(15b)

C. Symmetry considerations

The exact Hamiltonian of a liquid sample is invariant
under rotations of the reference frame, i.e., under the
operations of the full three-dimensional rotation group.
This is also true for the approximate Hamiltonian of
Eq. (1) as well as for the probability densi-

ties p(IR —R,' 'I, IO~ I, (9 ',p ",t ), jp(IR "—R,' 'I,
Io( )I g(l) y(1) I . IR(2) R( )I Io( )I (9(2) y(2) I
This rotational invariance is just the mathematical state-
ment of the isotropy of an ordinary liquid sample. The
existence of these symmetry elements permits a further
simplification of the problem. Indeed, considering the ro-

tational invariance of the intermolecular potential V and,
hence of the frequency increment Q, one may readily
show that the functions I gj2 I and I Y12 I, A, = —1,
—(1 —1), . . . , 1, form bases for the same irreducible rep-
resentation of the rotation group; any rotation Rn of the
reference frame transforms gled and YI2 according to the
formulas

=51152)j ( YIO(tl )glp(t2) ~ (17c)

According to these expressions, the system of p coupled
equations (14) splits into a number of independent simple
Langevin equations associated with the functions IgooI
and with the pairs Ig,p, Y)OI, I g2p, Y2pI, etc. The com-

plexity of the calculation reduces correspondingly.

D. Theoretical expressions for 6;,(t) and 6„;(t)

The final formulas for the infrared and anisotropic Ra-
man correlation functions G;,(t) and G,„;(t) may readily
be deduced from the above analysis. More specifically,

f
one has to calculate the quantities (exp[i dt)Q(t))]),
X„' '(t), X„"'(t), X„' '(t), . . . , u =1,2 by employing
methods sketched earlier in this paper. The procedure
contains the following elements. (i) The vibrational relax-
ation function is expressed by employing the cumulant ex-

pansion technique:

where D ~ ~ represent the signer rotation matrices.
Then, using Eqs. (15a) and (15b) and applying usual argu-
ments of group theory, one can deduce the following set
of equations:

(16a)

( gl2 ~ 510520(gpp ~

(Y12,(tl ) Yl'2, '(t2) ~ 5ll"52( —2,')( 1) ~ YIO(tl ) Ylp(t2) )

( g12(t) )gl 2. (t2) ) =5115)j( 2, )( —1)"(glp(t) )glp(t2) ), (17b)

Yll). (tl)gl')V(t2)) (gl'iL'(tl)YII (t2)~

t
exp i f dt, Q(tj) =exp[A(t)], (18)

t
A(t)=i f dt, (Q(t, ))+i' f dt, f dt ((2Q(t, ) —(Q(t, )))(Q(t2) —(Q(t2))))+ (19)

(ii) The Gaussian property of the dynamic variables is used in calculating successive terms of A,(t) and X„(t) Then, ap. -

plying Eqs. (16) and (17), one obtains the following formulas:

A( I) =i + g (21+ 1)(gjp Yl())
4'll I (+0)

t)
+i f dt, f dt2 Cgg'(t, t2)—

(21+1)[C~'(t 1 t2 )Cy~y~(t) t2 )+C~'(t)—t2 )—C~'(t) —t2)]—
I (&0)

t
X„"'(t)=if dt j[C~'(t t))Cy'y"'(t) )+C—y'y"'(t t) )C~'(t) )], —

f f
X„"'(t)=i'f dt, f dt2[C~,"'(t t, )Css'(t, t, )C,',"'(—t, )+C~'(t —t, )C~'(t, —t ) 2C~(t )2—

+C~'(t t, )C„'„"'(t, t, )C~'—(t, )+—C,',"'(t t, )C~'(t, —t, )C~'(t—,)],

(21a)

(21b)

(21c)

where u = 1,2. In these expressions, Czg'(t) denotes the autocorrelation function of the variable [gpp(t) —(gpo ) ] whereas

C~'(t), C~~'(t), and C'~ (t), 1&0, denote the correlation functions built on the variables gl 0(t) and Ylp(t), 1&0. The fact
that only Cgz'(t), C~~) (t), and C~"(t) enter into XI ', X')", XP', etc. , and generate corrections to G;,(t) is a consequence

of the symmetry, i.e., of the isotropy of the liquid sample. The same statement applies, mutatis mutandis, to an anisotro-
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pic Raman spectrum. (iii) The calculation of various two-time correlation functions involves the diagonalization of 1&(1
or 2X2 transport matrices associated with Igool and Igio, I'ioj, 1+0, respectively; compare with Sec. IIIC. Then,
denoting the corresponding eigenvalues by A,o and A,ia, a=1,2, performing in Eqs. (20) and (21) the integration over the
time and designating the normalized infrared and anisotropic Raman correlation functions by Gi(t), 62(t), one finally
finds

G„(t)= .
P

g x„e " +i
o,'= 1,2

—2, ptQCX e g

X ~-p

QCX

X X "-'p
a,p~ 1,zi =1,2 ~gp ( 1) ~ga

—
I t1-(-1)']A,„+A,„&J»

[A,„p—( —1)9.„]z

Xexp(itoot)exp i (hey t) gg—I i p
i a p=i Z ~ia+~ip

(Al +Alp)»
1 —e

(A,i +A,ip)

=G.' '(t)+G„'"(t)+G„"'(t)+, u =1,2.

All parameters entering into this equation are calculated
from the transport matrices; the resulting expressions are
lengthy and are not reproduced here. It should be noticed
that Eq. (22) is valid for positive times; for negative times,
G„(t) is equal to G„(

~
t

~

)'.

E. Convergence of the series for 6;,(t)
and 6,„;(t)

The formulas (21a)—(21c) can be easily generalized to
include higher-order terms. Then, noticing that the ith-
order contribution to the infrared correlation function
Gi(t) is obtained by multiplying X&'(t) by the vibration-
al correlation function &exp[i fo dt&Q(t~)]), one fmds

readily that these contributions differ from each other by
a factor of the order of g&0~. Similarly, the successive

I

contributions to Gz(t) differ by a factor of the order of
g2oz. The convergence thus depends on ~„=A~„&~2, the
characteristic time of the experiment, and on
g„o——Q&g„o)/4m. , the magnitude of „g(ot)/v 4m, tt=1,2.
If g„ow«1, a reduced number of terms of the series will
suffice to reproduce G„(t) as in Eq. (22). On the other
hand, if g„ow& 1, the series will diverge and the present
theory will no longer remain applicable.

Finally, the use of the particular form of the series ex-
pansion employed in this paper can be questioned. For
example, a method that might appear to be more straight-
forward, is to expand the total rotational-vibrational
correlation function in the frame of the generalized cumu-
lant expansion method and to introduce an appropriate
averaging operation. Proceeding this way, one finds easi-
1

18

exP ~ t1«1 ——exP E d&1 0 ~1,+~' t, dt, 0 ~ Q ~,

«») =&~.(t,0)»&I.(t,0))-'. (24)

Unfortunately, this procedure is not easily used and its
convergence is far from being obvious. In a number of
model calculations, expressions of this type were found to
contain exponentials which increase with time. This cir-
cumstance strongly handicaps the applicability of this
method.

IV. ORDER OP MAGNITUDE ESTIMATION
OF CORRECTIVE TERMS OF 6;,(t)

AND 6,.;(t)
This section is relative to the order of magnitude es-

timation of terms neglected by the simple product approx-
imation and accounted for by the present theory. The

procedure contains the following steps. (i) The solvent-
solute interaction potential is written as a superposition of
a Lennard- Jones, dipole-dipole, dipole-induced dipole,
dipole-quadrupole, etc., potentials. Site-site potentials are
not employed. (ii) The correlations between translational
motions of solute and solvent molecules are considered ex-
plicitly as are the correlations between their rotational
motions. On the contrary, correlations between rotational
and translational motions are neglected. The spectral ef-
fect of this assumption turns out to be comparatively
small. (iii) The lattice-gas model is used to calculate
&gio ) where l =0, 1,2, . . . . The method employed in this
paper follows closely that proposed earlier by Guillot,
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Bratos, and Birnbaum. ' (iv} The correlation times of
C~'(t), C~„"(t), where I =0, 1,2, . . . , are calculated by a
formula described by Berne and Pecora. This formula
in which the inverse of the correlation time is expressed in
terms of an integral going through a plateau region is em-
ployed in conditions similar to those described in the
above cltcd paper by Gulllot, Bratos, and BlrIlbaum. Its
use is justified if molecular motions are diffusionlike as it
is tacitly assumed in Eq. (14).

This method was applied to the estimation of the in-
frared spectrum of a diluted solution of HCl in SO&, a
spectrum x'ecoxded by Perrot and Lascombe. ' The choice
of the system was dictated by two conflicting require-
ments. The intermolecular forces must be sufficiently
lax'ge to genex'ate important intermolecular rotational-
vibrational coxrelations. However, they xnust be weaker
thaIl hydI'ogcn bonds which cannot bc accounted foI by
the present theory. Only the attractive dispersion and the
dipole-dipole interaction forces were assumed to contri-
bute to the frequency increment Q(t) of HC1 in SO2, the
contribution of the Pauli repulsion forces was found to be
sIIlall 1Il s1IIlllax' c1rcumstanccs. Thc parameters cntcr1Ilg
into the calculation were chosen as follows. The
Lennard-Jones parameters for HCl were taken from Ref.
16, and those for SO@ from the recent molecular dynamics
data. In turn, rotational diffusion constants were es-
timated from the experiment, ' whereas translational
diffusion constants were calculated from the Stokes for-
IIlula. Tllc spcctl oscoplc pRrRIllctcI' I~, dcflllcd
Levesque, leis, and Oxtoby, "was estimated by consider-
ing the values c)pfc)n for HCl in diluted gas and in pure
hquid; the corresponding parameter lD was then deter-
mined by fitting the isotropic Raman spectral data. ' Fi-
nally, the lattice-gas parameter po was chosen so as to cox'-

1cspond to thc close-packed dcnslty fo1 SO2. Thc cst1ma-
tions reached in this way are discussed in the next section.

The infrared and anisotropic Raman spectra may be
calculated by Fourier transforming the correlation func-
tions G„(t), u=1,2, given by Eq. (22). The following con-
clusions may be reached from this theory.

(i) The zero-order theory coincides with the simple
pI'odUct theory. Th1s theory 1I1 which thc corrclat1on
function is split into two independent factors associated
with rotational and vibrational motions is thus a correct
lowest-order theory. It gives an exact integrated intensity.
(ii) The first-order theory generates a spectral density
which 1s 111Ustratcd qualitatively 1n Flg. 1. SUpcrposcd to
thc spcctxal density of thc zcl.o-order thco1y lt pIodUccs,
in essence, a small frequency shift. (iii) The second-order
theory generates a spectral density which is illustrated
qualitatively in F1g. 2. Superpcsed to the spectxal density
of the zero-order theory it produces, in essence, a small
broadening or narrowing of the band. The combined ef-
fect of these two corrections is shown in Fig. 3. (iv} The
size of the effect is illustrated, in the case of an infrared
spectrum of a diluted solution of Hcl in SO2, on Fig. 4.
Tllc llalf-wldtll of 'tllc HC1 stl'ctclllIlg bRIlcl CRlclllatccl by
the complete theory exceeds that produced by thc simple

g(o) (~) g( 1) (~
({p))

(&)

(w)(o)

~W W ««V

V ««

FIG. 1. Effect of the first-order corxection on an infrared
spectrum. Thc f1gurc lllustratcs qualltatlvclp rotation-vlb)ration
correlation effects for a representative van der &Rais solution.

product theory by -8% whereas the band centers remain
unchanged; this value may increase or decrease for a half
according to the choice of l„which is largely uncertain.
The product glor is of the order of 0.2. The effects miss-
1ng 1n thc simple prodUct Rpp1ox1IIlRt1on Rrc thUs com-
paratively small and may escape observation. This is true
even in the present case where intermolecular forces are
quite large. (v} The magnitude of successive corrections
to G;,(t),G,„;(t) as well as their convergence vary when
going, for a given system, from an infrared to an anisotro-
pic Raman spectrum. The components of V(n, t) contri-
buting to X|(t) are different from those contributing to
Xz(t). The isotropy of the liquid sample contributes
essentially to this effect. One concludes from this discus-
sion that the rotation-vibration correlation effects missing
in the simple product approximation are, in weakly in-
tex'acting van der %Rais solutions at least, small and by no
means co11splcuous.

The previous work on this problem is scaI'ce and does
not lend itself to an easy comparison. This is particularly
true for the early papers by Van Woerkom et al. and
Lynden-Bell. The discussion is easier for the theory by
Wang and McHale. 9 Their theoretical expressions for

G (Q) + G( )(u))
c (Q)(2)
@(o)(~)

«V V VV«V

««VVVV«««VV ~

FIG. 2. Effect of the second-order. correction on an infrared
spectrum. The figure illustrates qualitatively rotation-vibration
correlation cffccts for a representative vRn dcr %Rais solutIon.
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G (Ol) + G (40) +( (4a)

Q( ) (~) G(u)
(A)(o)

G(o) (~) C( )(~) G( )

J'
HCI + SO2

20 C

u(cm )

FIG. 3. Combined effect of the first two corrections in the
case of an infrared spectrum. Results are similar for an aniso-
tropic Raman spectrum.

the two lowest infrared and anisotropic Raman spectral
moments turn out to be similar to those predicted by the
present theory. However, the most significant comparison
probably is that with the recent work by Levesque, Weis,
and Oxtoby. " These authors state that the simple prod-
uct and the exact correlation functions for infrared and
anisotropic Raman spectra of the liquid HC1 are indistin-
guishable from each other, within the uncertainty of
simulation. This conclusion does not contradict those
reached here as the corrections of a few percent are diffi-
cult to bring out in standard molecular dynamics calcula-
tions. Nevertheless, an additional theoretical work would
be required to settle this problem definitivel.

This paper may be concluded by briefly mentioning the

gg) y(~$ 20

FIG. 4. Rotation-vibration correlation effect in the case of
the infrared spectrum of a diluted solution of HCl in SO2, at
room temperature. The correspnding experimental value of
Ace&&2 is 61 cm ' (Ref. 21).

intramolecular coupling effect which has up till now been
neglected. For a diatomic molecule, it is due to centrifu-
gal forces. It may then easily be seen that the correspond-
ing contribution to Q(t) can be incorporated into the in-
variant term gpp of Eqs. (12) and (13). The intramolecular
coupling thus contributes to A, (t), but not to X„(t), u = 1,2.
The simple product correlation function remains valid.
This conclusion is comparable to that reached, in similar
circumstances, by Bratos and Chestier. '

S. Bratos and E. Marechal, Phys. Rev. A 4, 1078 (1971).
F. Bartoli and T. A. Litovitz, J. Chem. Phys. 56, 404 (1972).
D. W. Oxtoby, Adv. Chem. Phys. 40, 1 (1979).

4S. Bratos, in Vibrational Spectroscopy of Molecular Liquids and
Solids, edited by S. Bratos and R. M. Pick (Plenum, New
York, 1980), p. 43.

5P. C. M. Van Woerkom, J. de Bleyser, M. de Zwart, and j. C.
Leyte, Chem. Phys. 4, 236 (1974).

R. M. Lynden-Bell, Mol. Phys. 36, 1529 (1978).
7R. M. Lynden-Bell, Mol. Phys. 33, 907 (1977).
8C. H. Wang and J. L. McHale, J. Chem. Phys. 72, 4039 (1980).
J. L. McHale, J. Chem. Phys. 75, 30 (1981).
S. Bratos and G. Tarjus, in Raman Spectroscopy, edited by J.
Lascombe and P. V. Huong (Wiley, New York, 1982), p. 317.
D. Levesque, J. J. Weis, and D. W. Oxtoby, J. Chem. Phys.
79, 917 (1983).
G. Tarjus and S. Bratos, Mol. Phys. 51, 793 (1984).
A. Abragam, Les Principes du Magnetisme Xucleaire (Presses

Universitaires de France, Paris, 1961),p. 261.
S. Bratos and J. P. Chestier, Phys. Rev. A 9, 2136 (1974).

~5L. Blum and A. J. Torruella, J. Chem. Phys. 56, 303 (1972).
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (Wiley, New York, 1967).

M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).
R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).
B. Guillot, S. Bratos, and G. Birnbaum, Phys. Rev. A 22, 2230
(1980),
B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley,
New York, 1976), p. 303.
M. Perrot and J. Lascombe, J. Chim. Phys. 70, 1486 (1973).
F. Sokolic and Y. Guissani (unpublished).
J. Soussen-Jacob, E. Dervil, and J. Vincent-Geisse, Mol. Phys.
28, 935 (1974).

4J. Chesnoy, D. Richard, and C. Flytzanis, Chem. Phys. 42,
337 (1979).


