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Equilibrium properties of molecular fluids in the semiclassical limit
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The quantum corrections to the thermodynamic properties of simple molecular fluids have been
calculated, with the influence of quadrupole moment, induced dipole moment, anisotropic disper-
sion, and shape factors taken into account. Expressions are given for the free energy, pressure, en-

tropy, and internal energy, and results are reported for D2 and H2. It may be seen that the rotation-
al contribution to the quantum effect is very small in comparison to the translational contribution,
in which the main contribution arises from the central forces.

I. INTRODUCTION

The problem of calculating the structural and thermo-
dynamic properties of molecular fluids made of nonspher-
ical molecules has been a subject of considerable interest
in recent years. ' Although the behavior of fluids is funda-
mentally quantum mechanicalm, ost of the fluids found in
the literature have been treated classically because the
quantum effects for them are so small as to be negligible.

There are some fluids, such as Hz and D2, for which de-
viations from classical behavior are observed at low tem-
peratures. For classical molecular fluids considerable pro-
gress has been made. ' However, our understanding of
the quantum molecular fluids is far from satisfactory. '

In the semiclassical limit (i.e., high-temperature limit),
where quantum effects are small and can be treated as a
correction to the classical system, the usual method for
calculating such quantum corrections is the Wigner-
Kirkwood (WK) expansion. ' ' In this approach, expan-
sion is done in powers of the kinetic energy operator trt V,
which leads to a series in powers of fP. Since V operates
on the potential-energy term, the WK-expansion method
is valid for analytic potentials. This method has been
used extensively to calculate the equilibrium properties of
fluids of spherical molecules. '

The WK method can be extended to cases where the in-
termolecular potential is a complicated function of both
positions and orientations of the molecules. For such a
fluid, the only work available is that of Wang Chang' ' '

and Singh and Datta, who have calculated the quantum
corrections to the second virial coefficient of diatomic
fluids. Singh and Datta have considered the various fac-
tors which arise due to the presence of permanent and in-
duced electric moments and the shape of the molecules.
For diatomic molecules, which may be represented by rig-
id three-dimensional rotators of mass m and moment of
inertia I, the quantum corrections are the sum of two
parts: one is due to the translational contributions and the
other is due to the rotational contributions. To the best of
our knowledge, no work is available for the dense molecu-
lar fluids in the semiclassical limit.

The present paper is concerned with the evaluation of
the equilibrium properties of the dense molecular fluids in
the semiclassical limit. We assume that the total interac-

u(X, ,XJ)= up( r;, rj)+u, (X;,XJ), (1.2)

where up(r;, r&) is a spherically symmetric component and
u, (Xt,XJ ) a contribution due to the nonsphericity of the
molecular charge distribution. The anisotropic contribu-
tion u, (X;,Xt ) in Eq. (1.2) is conveniently divided into the
classical electrostatic interaction, the anisotropy of the
quantum-mechanical dispersion forces, and the anisotropy
of the repulsive part of interaction potential (i.e., shape of
the molecular core). In the present treatment we neglect
the three-body nonadditive interaction.

In Sec. II we give the basic theory for calculating the
radial distribution function (RDF) and thermodynamic
properties of molecular fluids in the semiclassical limit.
Expressions are given there for the free energy and RDF
in terms of the classical distribution functions. Section
III is devoted to discussing the perturbation theory in
which nonspherical potentials are treated as perturbation
for the thermodynamic properties and RDF of classical
molecular fluids. In Sec. IV the first-order quantum
correction to the thermodynamic properties is simplified
and expressed in terms of the distribution functions of
classical fluid whose molecules interact via the central po-
tential. Results are discussed in Sec. V. The concluding
remarks are given in Sec. VI.

II. BASIC THEORY

A. Expansion of S1ater sum

We consider molecular fluids of diatomic molecules
which are permanently in their ground electronic and
ground vibrational states. Thus the diatomic molecules
may be represented by rigid three-dimensional rotators of

tion potential is pairwise additive, i.e.,

U(X),Xz, . . . , Xtt) = g u (X;,Xl ),
1&i &j&N

where u (X;,XJ ) is the pair potential between molecules i
and j and the vector X;:(rt, to; )—represents both the posi-
tion of the center of mass and orientation of the ith mole-
cule. The pair interaction potential between two diatomic
molecules is usually assumed to be of the form
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mass m and moment of inertia I, each with five degrees
of freedom —three translational and two rotational.

The quantity of central importance for constructing the
theory of semiclassical fluid is the Slater sum, which may
be defined in this case as

~iv(Xi»z, . , Xx)=Nl~tr "r~o~ g fxexp( —PIIx 4'x ~

x

(2.1)

fi gv,'+v, (2.3)

where V'; is the generalized Laplacian operator in an s-
dimensional space. In this case 7; is given by

(2.1) extends over all states. H~ is the Hamiltonian of the
system

where

A,„=(2M P/m)'

A,„,=(2m' P/I)

(2.2a)

(2.2b)

and p=(kT) '. Here g&'s are a complete set of orthogo-
nal N-particle wave functions. The summation in Eq.

B

sin 8; By;
(2.4)

In the semiclassical limit, where the quantum effects
are small, we follow the method of Friedmann and write
the expansion of 8'~ as

~N(X),X2, . . . , X~)=exp( PV) 1 ——
g2 N

g [v„'.v ——,
' p(v„.v)']

i=1
r

g~p+ 12I,
&

sin8; B8;
Bv 1 B'U P 'Bv'

sin'8; By,'

P 1 BU

sin Oi ~f i
.+0(R') (2.5)

Using Eq. (1.1), Eq. (2.5) can be written as

N

W~(X),X2, . . . , X~)=exp —P g u(X;,X~)

N N

X 1+ Q U2 (X~,XJ)+ Q U3 (X;,XJ,Xk
i,j,k =1
i&j &k

N

)+ g U2 (X;,XJ)U2 (Xk,X()+
i j,k, l = 1

i &j~k&1

(2.6)

where U2'(X;,XJ ) = ——
I V„„u(X;,XJ ) ——,

'
p[ V „,u (X,XJ )] I,

Up (X;,XJ)=
m

(2.9a)

U3 (Xg,XJ,Xk) = Q2 "(;, )
m

+ U3" (X~,XJ.,Xk ) .

(2.7)

(2.g)

2

U3'(X;,XJ,Xk ) = [V „u (X„XJ).V„,u (X;,Xk )

+ V „u (Xi,XJ ) V „u(XJ,Xk),
+ V„„u(X;,Xk) V„„u(XJ,Xk)]

Here U~' and UI"' are the I-particle "modified" Ursell
functions due to translational and rotational contribu-
tions, respectively, and are given by and

(2.9b)
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U2" (X;,XJ )=—p 1 B Bu (X~,xz)
sinO.

12 sinO; BO;
'

BO;

B u(X;,X )

sin 8; BP; sin 81

a+
sinO& 88~

B u(Xi, X, )

Blpj'

Bu(X, ,X, )
sinOJ

p 'Bu(X, ,X, )

2 88;

2

p Bu (X~,x~ )

2 BOJ-

2 sinO

Bu(X;,XJ )

By, 2 sin O.

Bu (X„x~)

BQJ.
(2.10a)

2

U3"(X;,XJ,Xk ) =
Bu (X;,Xi )

aO,

Bu (X;,Xk )

aO,

Bu (X;,XJ )

aO,

Bu (XJ,Xk )

a8,

Bu (X;,Xk)

88k

Bu(XJ,XI, )

B8k

Bu (Xi,xj )

sin 8;

Bu (X;,Xk )

~Fr.

Bu(xi, x~ )+
sin 8J

Bu (XJ,Xk )

BfJ.

1+ 2sin 8k

Bu (Xg,xk )

BPk

Bu (XJ,Xk )

Bf'k
(2.10b)

Thus the contribution of the first order of A', which arises
due to the translational and rotational contributions,
comes from both U2 and U3.

and Q =4m. for linear molecules. Once the partition func-
tion is known, the thermodynamic properties can be ob-
tained. Thus the free energy of the system is given by

B. Free energy A = —kTlnQ~ . (2.13)

The quantum-mechanical canonical partition function
for a molecular fiuid is defined as

Q~ =(NQi I, tQ )

Substituting Eq. (2.5) into Eq. (2.11) and integrating by
parts, we obtain an expression for the free energy correct
to the first order of R:

where

N

x f f w (x,, . . . , x }gdx, , (2.11)
pA pA' A' p
N N m

+ ~~r fi p
N I +0 (A'4),

(2.14)

dX; =dr; de; =dIi sinO; dO; dy; (2.12) where

g'(X»xz)V„u(X»X2) dr dao,
192m

(2.15)

r

pp 1 B Bu(xi, x&)
g'(X&,xz ) . sin8,

192m
'

sin8i 8i 1

B u(X&,Xz)+ 2 z dr dc@,
sin 8; By&

(2.16}

with

dco=sinO~ dO~ sin82d82dy,

where A' and g'(Xi, X2) are, respectively, the free energy
and RDF for the classical molecular fluid. Other thermo-
dynarnical properties can be obtained from the free ener-

gy.

C. Radial distribution function

The quantum-mechanical angular pair correlation func-
tion for a diatomic molecular fluid is defined as

p'g (xi,x2) = [(N —2)!A~~A2~tQ~ Q~ —~]—'

N
X f . . f 8'(X,, . . . , X }gdX, .

i=3

(2.17)

Substituting Eqs. (2.6)—(2.8) into Eq. (2.17), we obtain an
expression for the angular pair correlation function of the
diatomic fluid correct to the first order of A' . Thus
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II1

g(XI,X2)=g'(XI,X2)+ gt„(XI,X2) + g„,(XI,X )+O(II1 ),
m I (2.18)

where g„(XI,Xz) and g„,(XI,Xz) are the first-order quantum correction to the pair correlation function due to transla-
tional and rotational contribution, respectively.

g~(XI,X2) is given by

gn(XI ~X2 ) =g (XI iX2 ) U2 (XI~X2) + f g (XI X2~X3 ) U2 (XI ~X3 )dX3

2

+— [g'(XI,X2,X3yX4) g (XIyX2)g (X3 IX4)]Uz (X3yX4)dX3 dX4
2 0

2

g'(XI,X2,X3)U3 (XI,X2,X3)dX3+ 2 g (XI,X2,X3,X4) U3 (Xz,X3,X4)dX3 dX4
Q

3

+—
3 f [g'(XI, . . . , X5 ) —g'(XI,Xz )g'(X3 X4 X5 )]U3 (X3 X4 X5 )dX3 dX4 dX5 .

6 ~3 (2.19)

Here a stands for both tr and rot. g (XI, . . . , XI ) is the canonical ensemble I-particle angular distribution function.

III. CLASSICAL MOLECULAR FLUIDS

uo(r) =4@[(o./r)' —(0./r) ], (3.1)

where e and o. are, respectively, the well depth and molec-
ular diameter. For an angle-dependent interaction, we

At 10,23 25

In this section, we consider the classical fluids of di-
atomic molecules. The pair potential energy for such a
system is given by Eq. (1.2), where uo(r, j) is the central
potential between the molecules i and j, and u, (X;,XJ ) is
the angle-dependent part of pair interaction. For central
potential, we take the Lennard-Jones (12-6) potential

u, (X;,X, )=uq„,d(i j)+u;„(ij)
+udis( ~j)+ shape( ~j) (3.2)

where uq„,d is the interaction between the permanent
quadrupole moment of the molecules, u;„ is the interac-
tion of the induced dipole moments in one molecule with
the permanent quadrupole moment in the other molecule,
ud;, is the interaction between anisotropic dispersion
forces of the molecules, and u,h,p, is the anisotropy of the
short-range overlap forces of molecules. They are ex-
pressed as

uq«d ——,'(0 /r )[—1—5(cos 0, +cos Oz) —15cos O,cos 02+2(sinOIsinOzcosy —4cosOIcosOz) ],
u;„=——', (aO /r )(sin 01+sin Oz+4cos 01+4cos 02),

udis =4@(o/r) [K ——,
' K(1.—K)(cos 01+cos 02) ——,K (sinOIsinOzcosip —2 cosO, cos02) ],

ushap,
——4'(0/r)' (3cos 01+3cos 02 —2),

(3.3a)

(3.3b)

(3.3c)

(3.3d)

where 01, 02, and y are the angles which determine the
orientation of the molecule with respect to the line joining
the centers of the molecules. 0 is the quadrupole moment,
a is the average polarizability, K is the anisotropy in the
polarizability, and D is the dimensionless shape parameter
of the molecule. The potential parameters e and o ap-
pearing in Eq. (3.3) are characteristic of the Lennard-
Jones (12-6) model representing the central potential.

We divide the pair potential u (XI,X2) according to Eq.
(1.2), where uo is treated as the reference potential and u,
is the perturbation. Using this division of the potential,
g'(XI,Xz) can be expanded as

gi(XI,X2)= —pu (XI,X2)go(r12)

—p f (u, (XI,X3)+u, (X2,X3))o13

Xgo(ri, rz, r3)dr3

where

1
( . . &~=— ( . )den .0 3

(3.5)

(3.6)

The corresponding perturbation expansion for the free en-
ergy per particle f'( =A'/N) of the classical fluid is given
by

g' (XI')=go("12)+g 1 (Xlxz)+ (3.4) f'=fo+f I +fz (37)

where go(riz) is the RDF for the reference system and
g I (XI,Xz) is the first-order perturbation correction to the
RDF of the classical system. The expression for
gi (XI,Xz) is

where fo is the free energy per particle of the reference
(classical) fluid and f I and f'z are, respectively, the first-
and second-order perturbation correction to the free ener-
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For molecules having the angle-dependent potential
[Eq. (3.2)], we have

&fHs = rj(4 —3il )/(1 —ri)' (3.22)

f;=f', (in),

f;=f;(quad)+ f;(a»s-dis)

+f2(shape)+ f2(quad-in)+ f2(quad-dis)

+f2(shape-in)+ f2(shape-dis),

where

f1(in)= —, [p*a—*(8*)/T*]((r*) }2,
f2(quad)= ——,', [p*(0') /(T*) ]((r*) ' }2,

f2(anis-dis) = ——', [p*/(T*) ]

(3.8)

(3.9)

(3.10)

(3.11)

Here d is the diameter of a hard sphere and is determined
by the expression

d =d~ [1+(cr,/2op)5],

where

(3.24)

pbf'=3' (1+1.759il—5.249il )/(1 —il), (3.23)

where

,' harp—*(d*)

itc 3
p =p~

d*=d/o .

X [K'(2+ —",K')((r')-"&

+2p K ( (r12r13) P2(cos~l) }3]

(3.12)

d—1 I exp[ —Pu„(r)]]dr,

ds = f (1—exp[ —13u„(r)]Idr,

s= f"
(3.25a)

(3.25b)

f2(shape)= —"
, [p*D /—(T")]((r") 2")2,

f2(quad-in)= —
35 [p*cc*(8")/(T') ]((r*) ' }2,

f2(quad-dis)= „[p*K (8—*) l(T*) ]((r') ")2,

(3.13)

(3.14) and

crp (1————,
' il)/(1 —il)

(3.15) o.i ——(2—7.5rI+0. 5il —5.7865il —1.51ri )/(1 —il)

(3.26a)

f2(shape-in)= » [p"u'(8") D/(T*) ]((r*) P)2, (3.16) (3.26b)

f2(shape-dis) = , [p'KD/(—T*) ]((r') ' )2,
with

((r ) ")2= f g1'1(r*)(r*) "dr

and

}3 f gp(r12, r13, r23)( ' ' ' )dr 2dr 3

(3.17)

(3.18)

(3.19)

In Eq. (3.25), u„(r) represents the reference part of the LJ
(12-6) potential according to the perturbation theory of
Weeks, Chandler, and Andersen (WCA).

The second term of Eq. (3.20) is the first-order pertur-
bation correction to the free energy and is given by

Pfz 2rrp f„cp(——r)g Hs(r)r dr, (3.27)

Other thermodynamic properties of the classical molecu-
lar fluid can be calculated from Eq. (3.7).

We use the Verlet-Weis (VW) method to calculate the
thermodynamic properties of the reference [Lennard-
Jones (LJ)] system. Thus the free energy per particle of
the reference system is given by

fp =f,'+fr', ,

where

(3.20)

where gp(r') and gp(r*, 2, r13,r23) are, respectively, the
two- and three-body distribution functions of the refer-
ence (classical) fluid. Pi is the lth Legendre polynomial.
In the above expressions we have used the reduced vari-
ables defined as

3
p =po
T*=kT/e,
a*=a/cr

(0') =0 /acr

r*=rlo .

where gHs(r) is the RDF of the classical hard-sphere fluid
of diameter d and w (r) is defined as

E~ P (7m
ui(r)= '

uL3(r), r )r (3.28)

r is the distance at which uzi(r)= E. Using the stan-—
dard relations one can calculate the other thermodynamic
properties from the free energy of the reference system.

IV. QUANTUM CORRECTION TO
THERMODYNAMIC PROPERTIES

o 3/rrl E

h
5 =~

Eq. (2.14) can be written as

The first-order quantum correction to the free energy is
expressed in terms of the classical RDF g'(X„X2). In
terms of the reduced quantities

Pf,'=Pf Hs+413~~f'

with

(3.21) 13f=Pf'+ (&')'(f,', )'+ (&*)'(f'...)',
where

(4.1)
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(ft, )*= g'(X&,Xz), , (r*)
768m 3( T*) (r*) Br' dr* (4.2)

au "(X„X,)(f„,)'=, g'(X&,Xz) . sin8& +768~'(T')~ sin81 88~ 88) sin OI

a'u*(X„X,)
dP' d6) .

~PI

Here u'(X&,Xz ) =u (X&,X2)/e.
Using Eqs. (3.2) and (3.5) in Eq. (4.2), the first-order quantum correction to the free energy per particle due to transla-

tional contribution is given by

(ft')' =[ft,(L»]'+[ft'(in)]'+ [ft, (quad)]'+ [ft.(anis-dis) ]'+[ft.(shape)]'

+[f„(quad-dis) ]*+[f„(quad-dis) ] +[f„(shape-in) ]'+[f„(shape-dis) ]*, (4.4)

[f,(LI)]*=,[p*/(T*) ][22&( ') '
&

—5&( *) '& ], (4.5)

[f',(i )]'=—,[p* *(8*)'/(T*)'][—', &( ') "& —,(22&( ') "& —5&( ') "& )], (4.6)

[ft,(quad)]*= —,[p*(8')'/(T*)']&(r') "&2, (4.7)

[f„(quad-in)]* =

[f„(quad-dis)] =

[f„(shape-in) ]*=

[f,„(shape-dis) ]'=

[ft.(»»-d»)]*=—,[p'/(T*)']Ã'(2+ —5'It') &(r*) "&2+2p*&'&[(r i2) '(r ~3) 'P'2(cos81) &3],

[ft, (shape)]'= —,[p*D'/(T*)']&(r') "&2,88

57
, [&* *(8*)'/(T*)']&(")-"&,,

70m

, [p*lt'(8*)'/(T*)']&( ')

[ ' '(8') &/(T')']&( ')
2 P

[ @~a/( Ts )3]& (re )
—20

&2 P

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Similarly, the 6rst-order quantum correction to the free energy per particle due to rotational contribution is given by

(f,'., )' =[f,'.,(quad)]'+ [f'...(in)]'+ [f'...(anis-dis)]*+ [f'...(shape) ]*

+[f„,(quad-in)] +[f„„(quad-dis)]'+ [f,«(quad-shape)]*+ [f„,(in-dks)]*

+[f„,(shape-in)]'+ [f„,(shape-dis)]',

[f'„,(quad)]'= [p'(8*) /(T')']&(r')
768

[f„,(in)]'= [p'(a') (8') /(T')']&(r') '
&2,

33
560m

(4.15)

[f„,(shape) ]'= — [p*D /( T*) ]& (r*)4
(4.18)

(4.19)

[f„,(anis-dis)]*

5
[p'/(T ) ]K(1+—",E )&(r') '

&p, (417)

[f„,(quad-dis)]*

, [p'(8*)'/(T')']&(I+ ",'It. )&( *)
48~2

(4.20)
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TABLE I. Force parameters used in the present calculations.

System

Dp
H2

e/k (K)

35.0
37.0

o. (A)

2.976
2.928

10 "a
(cm )

0.7954
0.790

10260

(esucm )

0.84
0.84

0.1153
0.0911

0.21
0.21

1.238
1.729

9.9358
13.4997

[f,«( quad-shape) ]*

, [p'(0')'D/(T')']((r*) "), , (4.21)
p4 2

[f„,(in-dis)]* =
224

(4.22)

al and rotational contributions, respectively. The entropy
S and the internal energy U, correct to the first-order
quantum correction, are given by

(4.27)

where

[f„,(shape-dis) ]'

80m ( T')

(4.23)

and

(St, )
BT

(S„,)"=—

(4.28a)

(4.28b)

lt:(1——t4it )((r*) '
)2 . (4.24)

15+ (T*)

Other thermodynamic properties can be calculated
from Eq. (4.1). Thus the equation of state is given by

with

Uc

NkT NkT
+ (A*)'( U,', )*+(5*)'(U,'., )* (4.29)

(4.30a)
ap~ (A')'(P'„)" + (&*)'(P,'., )*,

P P
where

&(f,', )*
(PI )g 4 ftt

P

(4.25)

(4.26a) V. RESULTS AND DISCUSSION

(4.30b)

&(f„,)'(PI )g g frot

P
(4.26b)

The coefficients (P„)* and (P„,)* are the first-order
quantum correction to the pressure due to the translation-

In this section, we use the theory developed in the pre-
vious section to calculate the thermodynamic properties of
diatomic molecules such as D2 and H2, where the quan-
tum effects are appreciable. Force parameters for these
systems are given in Table I. The parameters 0 and D,
which are assumed to be the same for Hz and Dz, are

TABLE II. First-order quantum correction coefficient for free energy and pressure of D2.

Contributions
p* =0.85

(fI )III

Free energy
T*=2.74 p* =0.65

(fI )llc (fI )4

T*= 1.35
(fI )III

p =0.85
(pg )g

Pressure
T =2.74 p*=0.65
(pi )g (~t, )*

T*= 1.35
(~,', )*

LJ
quad
in
anis-dis
shape
quad-in
quad-dks
quad-shape
shape-in
shape-dis
Total

0.087 50
—0.000 66

0.004 62
—0.000 16
—0.001 28

0.00002
0.000 24
0.0
0.000 38
0.000 56
0.091 22

0.000 51
0.0
0.00002

—0.000 29
—0.00003
—0.000 13
—0.000 24
—0.0
—0.00002
—0.000 19

0.315 18
—0.008 01

0.011 50
—0.000 97
—0.029 84

0.00048
0.001 02
0.0
0.001 29
0.011 32
0.301 94

0.005 22
0.0
0.000 19

—0.001 82
—0.000 11
—0.000 63
—0.002 17
—0.00002
—0.00049

0.000 17

0.046 63
0.000 37
0.012 92

—O.OOO20

0.004 10
—0.00005

0.000 55
0.0
0.000 86

—0.001 44
0.063 72

—0.00001
—0.0
—0.00001
—0.000 15
—0.00006
—0.00026

0.0
0.0
0.00006

—0.00042

0.449 36
—0.009 29

0.02447
—0.001 36
—0.031 21

0.00044
0.001 57
0.0
0.002 22
0.012 17
0.448 36

0.006 04
0.0
0.000 22

—0.002 72
—0.000 17

0.000 93
—0.002 85
—0.00002
—0.000 50
—0.000 93
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TABLE III. Free energy and pressure of D2.

Contributions
p* =0.85

Pf'

Free energy
T*=2.74 p* =0.65

Pf Pf'
T =135

Pf
p =0.85

Pl essUI'e

T =2.74 p*=0.65
PI'&p P&'~p

T*= 1.35
PP/p

LJ
ln
quad
anls-dls
shape
qUad-1n

quad"d1s

qURd"shape
shape-in
shape-dls
Total

—0.8595
—0.0550
—0.0620
—0.0034
—0.0624

0.0064
0.0124
0.0
0.0006
0.0081

—1.0147

—0.7253
—0.0479
—0.0129
—0.0021
—0.0929

0.0038
—0.0001
—0.0237

0.0011
0.0069

—0.8932

1.2446
—0.0647
—0.3143
—0.0204
—0.1940

0.0133
0.0294
0.0
0.0063
0.0923
0.7925

1.7277
—0.0470

0.1889
—0.0028
—0.4194
—0.0028
—0.0310
—0.2146
—0.0063

0.0610
1.2720

4.2896
-0.1104

0.0014
0.0019

—0.0314
0.0145
0.0243
0.0

—0.0016
—0.0210

4.1672

4.3611
—0.0906

0.0008
0.0007

—0.0395
0.0084

—0.0001
0.0001

—0.0001
—0.0177

4.2231

0.6050
—0.0886
—0.3635
—0.0236
—0.2904

0.0203
0.0436
0.00
0.0067
0.0928
0.0024

1.2937
—0.0510

0.2185
—0.0036
—0.6071

0.0039
—0.0458
—0.2815

0.0081
0.0626
0.5977

where J„ is evaluated using the empirical equation of
Ananth,

lnJ„(p*,T*)=A„(p*)InT*+B„(p*) +C„p*lnT*

+D„p'+E„lnT'+F„. (5.2)

The constants A„—F„are reported by Gray and Gub-
bins. "

The contributions of the various branches of pair in-
teractions to the first-order quantum correction coeffi-
cients for the free energy and pressure of Dz are reported
in Table II at p =0.85, T*=2.74 and p =0.65,
T'=1.35. It is seen from the table that the rotational
contribution is very small in comparison to the transla-
tional contribution. In the translational part, the main
contribution arises fmm the central force, i.e., the LJ (12-

determined by Singh and Datta and by de Boer,
respectively. The values of a,K, and 5* for D2 are given
by Kolos and %'olniewiez. For H2, o. and K are deter-
mined by Volkmann, ' while 5 is obtained from the value
of A' /2kI. '

We have calculated the first-order quantum correction
to the thermodynamic properties due to the translational
and rotational contributions. The integral ((r*) ")

q that
appears in the expressions of the thermodynamic proper-
ties can be written as

6) potential. The table demonstrates the magnitude of the
contribution of various branches of nonspherical interac-
tions.

Table III demonstrates the magnitude of contribution
of the different pair potentials to the free energy per parti-
cle and pressure of D2 at p' =0.85, T*=2.74 and

p =0.65, T'=1.35. The classical values are also shown
in the table. %'e see that the main contribution comes
from the LJ potential and that the contribution of the
nonspherical parts is small and increases with the decrease
in temperature. Among the nonspherical interactions, the
most significant contributions arise from quadrupole mo-
ment and shape interactions as well as the cross term aris-
ing from quadrupole moment and shape. The contribu-
tion of other terms is found to be small but not negligible.

The calculated values of thermodynamic properties
such as the free energy per particle, internal energy, and
pressure are given in Tables IV and V for D2 and H2,
respectively. It may be seen from these tables that the
quantum effect to the thermodynamic properties increases
with the increase of density and decrease in temperature.
Further, we see that the quantum effect is small at
T =2.74, where the contribution of nonspherical interac-
tion is also small. As the temperature decreases, the con-
tribution of both the quantum effect and nonspherical in-
teraction increases. At T =0.75 the quantum effect is
very large. One should include at least the second-order
quantum correction before predicting the thermodynamic
properties at low temperature.

TABLE IV. Thermodynamic properties of Dq.

Free energy Internal energy
U'/XkT U/XkT

Pressure

0.50
0.50
0.50
0.65
0.65
0.65
0.85
0.85
0.85

2.74
1.35
0.75
2.74
1.35
0.75
2.74
1.35
0.75

—0.1730
0.7563
2.0833

—0.40S3
0.7925
2.5018

—1.0147
0.3377
2.0751

—0.0899
1.1172
3.6068

—0.3032
1.2720
4.5331

—0.8932
1.0570
4.7821

—2.4507
3.8538

—5.2920
—3.9471
-5.1963
—7.1350
—4.7859
—6.0702

—10.8474

—2.6106
4.6481

—9.3144
—4.1565
—6.2781

—12.3915
—5.0909
—7.7819

—15.7891

1.3274
—0.2272
—3.3340

2.0499
0.0024

—4.6838
4.1672
1.7474

—5.9811

1.6158
0.119S

—1.8184
2.1241
0.5977

—3.422 S
4.2231
3.0859

—4.5501
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TABLE V. Thermodynamic properties of H&.

Free energy
Pf' Pf

Internal energy
U'/NkT U/Nk T

Pressure
PP'/p PP Ip

0.50
0.50
0.50
0.65
0.65
0.65
0.85
0.85
0.85

2.74
1.35
0.75
2.74
1.35
0.75
2.74
1.35
0.75

—0.1807
0.7245
1.9690

—0.4146
0.7503
2.3280

—1.0261
0.2771
1.7139

—0.0113
1.4814
5.2261

—0.2059
1.7590
6.7215

—0.7760
1.7982
7.8743

—2.4652
—3.9211
—5.5468
—3.9652
—5.2935
—7.5269
—4.8084
—6.2367

—12.0358

—2.7968
—5.6185

—14.2117
—4.4000
—7.6174

—19.0976
—5.4418
—9.9502

—24.8757

1.3212
—0.2590
—0.4789

2.0433
—0.0474
—5.0344

4.1558
1.6523

—7.2980

1.8907
0.4750

—0.1633
2.1978
1.2200

—1.6839
4.2850
4.5195

—1.3896

VI. CONCLUDING REMARKS

In this paper, we have estimated the quantum effect
due to the various branches of pair interactions to the
thermodynamic properties of the diatomic molecules such
as D2 and H2. We have considered only the first-order
quantum correction. This approximation may be valid at
high temperature. At low temperature, one should con-
sider the higher-order corrections to get better results.
But the exact evaluation of even the second-order correc-

tion is very difficult, so we have not attempted to here.
We have used the perturbation theory, in which all the
nonspherical interactions are taken as perturbation, to cal-
culate the thermodynamic properties of the classical
molecular fluids.

In conclusion, we feel that this theory is appropriate to
calculate the thermodynamic properties of molecular
fluids at high temperatures, where the quantum effects
are small and the series is truncated after the first-order
quantum correction term.

*Permanent address: Department of Physics, S. R. K. Goenka
College, Bihar University, Sitamarhi 843301, Bihar, India.
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