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The quantum corrections to the thermodynamic properties of simple molecular fluids have been
calculated, with the influence of quadrupole moment, induced dipole moment, anisotropic disper-
sion, and shape factors taken into account. Expressions are given for the free energy, pressure, en-
tropy, and internal energy, and results are reported for D, and H,. It may be seen that the rotation-
al contribution to the quantum effect is very small in comparison to the translational contribution,
in which the main contribution arises from the central forces.

I. INTRODUCTION

The problem of calculating the structural and thermo-
dynamic properties of molecular fluids made of nonspher-
ical molecules has been a subject of considerable interest
in recent years.! Although the behavior of fluids is funda-
mentally quantum mechanical, most of the fluids found in
the literature have been treated classically because the
quantum effects for them are so small as to be negligible.

There are some fluids, such as H, and D,, for which de-
viations from classical behavior are observed at low tem-
peratures. For classical molecular fluids considerable pro-
gress has been made.>~!° However, our understanding of
the quantum molecular fluids is far from satisfactory.!®

In the semiclassical limit (i.e., high-temperature limit),
where quantum effects are small and can be treated as a
correction to the classical system, the usual method for
calculating such quantum corrections is the Wigner-
Kirkwood (WK) expansion.!”!® In this approach, expan-
sion is done in powers of the kinetic energy operator #2V?,
which leads to a series in powers of #2. Since V? operates
on the potential-energy term, the WK-expansion method
is valid for analytic potentials. This method has been
used extensively to calculate the equilibrium properties of
fluids of spherical molecules.'

The WK method can be extended to cases where the in-
termolecular potential is a complicated function of both
positions and orientations of the molecules.”° For such a
fluid, the only work available is that of Wang Chang'®?!
and Singh and Datta,”? who have calculated the quantum
corrections to the second virial coefficient of diatomic
fluids. Singh and Datta®? have considered the various fac-
tors which arise due to the presence of permanent and in-
duced electric moments and the shape of the molecules.
For diatomic molecules, which may be represented by rig-
id three-dimensional rotators of mass m and moment of
inertia I, the quantum corrections are the sum of two
parts: one is due to the translational contributions and the
other is due to the rotational contributions. To the best of
our knowledge, no work is available for the dense molecu-
lar fluids in the semiclassical limit.

The present paper is concerned with the evaluation of
the equilibrium properties of the dense molecular fluids in
the semiclassical limit. We assume that the total interac-
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tion potential is pairwise additive, i.e.,

UX,Xp ..., X0)= 3 ulX,X)), (1.1)

1<i<j<N

where u ()L_’,-,fj) is the pair potential between molecules i
and j and the vector X; =(7;,w;) represents both the posi-
tion of the center of mass and orientation of the ith mole-
cule. The pair interaction potential between two diatomic
molecules is usually assumed to be of the form

u (X, X)) =uo(F, ;) +us (X, X)) (1.2)

where u,(7;,7;) is a spherically symmetric component and
u,(X;,X;) a contribution due to the nonsphericity of the
molecular charge distribution. The anisotropic contribu-
tion ua(f,-,)?j) in Eq. (1.2) is conveniently divided into the
classical electrostatic interaction, the anisotropy of the
quantum-mechanical dispersion forces, and the anisotropy
of the repulsive part of interaction potential (i.e., shape of
the molecular core). In the present treatment we neglect
the three-body nonadditive interaction.

In Sec. II we give the basic theory for calculating the
radial distribution function (RDF) and thermodynamic
properties of molecular fluids in the semiclassical limit.
Expressions are given there for the free energy and RDF
in terms of the classical distribution functions. Section
IIT is devoted to discussing the perturbation theory in
which nonspherical potentials are treated as perturbation
for the thermodynamic properties and RDF of classical
molecular fluids. In Sec. IV the first-order quantum
correction to the thermodynamic properties is simplified
and expressed in terms of the distribution functions of
classical fluid whose molecules interact via the central po-
tential. Results are discussed in Sec. V. The concluding
remarks are given in Sec. VL.

II. BASIC THEORY

A. Expansion of Slater sum

We consider molecular fluids of diatomic molecules
which are permanently in their ground electronic and
ground vibrational states. Thus the diatomic molecules
may be represented by rigid three-dimensional rotators of
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mass m and moment of inertia I, each with five degrees
of freedom—three translational and two rotational.

The quantity of central importance for constructing the
theory of semiclassical fluid is the Slater sum, which may
be defined in this case as

Wy(X,X,, ..., Xy)=NIGN ,otzt,bxexp( BHN Wy
2.1)
where
Ae=Q2mHB/m)'? (2.2a)
Aot =20 B/I)/? (2.2b)

and B=(kT)~ .
nal N-particle wave functions.

Here t,’s are a complete set of orthogo-
The summation in Eq.

1079

(2.1) extends over all states. H n is the Hamiltonian of the
system

A

_ﬁ_ZEV?+U
2m < ! ’

where V? is the generalized Laplacian operator in an s-
dimensional space. In this case V7 is given by

Hp B #| 13

— —_— sing; 9
2m ' 2m sinf; 36,

36,

1 32
sin%0; d¢?

(2.4)

In the semiclassical limit, where the quantum effects
are small, we follow the method of Friedmann?® and write
the expansion of Wy as

Wy(X1,X,, . .., Xy)=exp(—BU) ‘1* [ [ o — 3BV, 0]
X, 3 U 1 U B
121] E' sm9i a0, "% 30, | * sinte, 3g? ao
g 1 [au " ]
= -~ +O(#Y) | . (2.5)
2 sin%0; | Op;
Using Eq. (1.1), Eq. (2.5) can be written as
— — — N — —_
WN(XI,XZ) .. .,XN)——"CXP —B 2 u(Xi,Xj)
hj=1
i<j
N _ N o N
X |1+ ¥ UFX, X))+ 3 USX X, X )+ 3 UrXX)UZ XX+ |,
ij=1 Ljk=1 ijk =1
i<j i<j<k i<js#k <l
(2.6)
|
where US(X,X,)= %{v (%, %)~ 181V, u(XX)P) ,
_ _ 2
U, %)= | 2L |us(X,. %)+ [”—Iﬁ— USE,.X) , (2.92)
2.7) . 2, o o
o ﬁZB Ur(X X Xk)‘*ﬁlvnu (Xi,Xj)~V’iu (X,',Xk)
U?(X,',Xj,Xk)z m U;(X,,Xj,Xk)
+Vrju(_i, j)'vrju(Xj1Xk)
+ ﬁz—B UYN(X;, X, Xy) . (2.8) = 5 = =
I J +V,ku(X~,Xk)-V ’Xk)]
Here U;" and U/ are the I-particle “modified” Ursell (2.9b)

functions due to translational and rotational contribu-
tions, respectively, and are given by

and
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otz g B | 1 8 ‘au(f,',)_fj) 1 3 ‘au(if',',f,')
U X X))==17 | sin6; 26, |"™% ag, sing; 06, |°" 7 06
= = = = = = 5 = 2
1 PuXX) 1 XX plauXX) | plauEX)
Tante, 042 sin%0;  9¢; 2 a6 2 09;
B 1 (w&E) ] g 1 XX ] 2,108
2 sin%g, a¢; 2 sin’0; dp; ’
U T, %, K= 32 ou (X;,X;) | | du(X;,Xy) N ou (X;,X;) | | du(X;,Xy) ou (X;,Xy) | | u(X;,Xy)
i, 36; 36; 36, 30, 30, 36,
N 1 ou(X;,X;) | | ou(X;,X;) 1 u(X;, X)) | | ou(X;,Xy)
sin?6; 3¢ 3g; sin®;, | 9¢; Op;
du(X,X,) | [ ou(X, %)
L 0wt X)) Su X, Xe) L (2.10b)
sin6; @i Iy

Thus the contribution of the first order of #?, which arises
due to the translational and rotational contributions,
comes from both U7 and UT.

B. Free energy

The quantum-mechanical canonical partition function
for a molecular fluid is defined as

Oy =(NIMAZNaN) !

and Q=4 for linear molecules. Once the partition func-
tion is known, the thermodynamic properties can be ob-
tained. Thus the free energy of the system is given by

A=—kTInQy . (2.13)

Substituting Eq. (2.5) into Eq. (2.11) and integrating by
parts, we obtain an expression for the free energy correct
to the first order of #:

I I
_ N BA_p4a° |\ #B || Ax | |#B || "
[ [ WyZ..., X [1d%: @) N N T|m |[|W T ||w |t
i=1
where (2.14)
d X, =dF; do; =dF; sind, d6; dg; (2.12)  where
|
Ac ——B—B——f “X,,X,)Viu(X,,X,)dF do (2.15)
N | T 1927 J B0V LA ’ '
Arot 1 d . au(ihfz) 1 az14(/‘71’/?2) —
- X, X — drdw , (2.16)
N 192 o2y J &K sin; 86, [S’ a0, | inte,  agl ©
l
with P8 (X1, 7,)=[(N -2 220y 0N =21~
dw=sin0,d0,sin0,d6,d¢p ,
where A€ and g°(X,,X,) are, respectively, the free energy L - Z\TY I7
and RDF for the classical molecular fluid. Other thermo- X [ [, Ry ) I1 X, .
dynamical properties can be obtained from the free ener-
8y.
(2.17)

C. Radial distribution function

The quantum-mechanical angular pair correlation func-
tion for a diatomic molecular fluid is defined as

Substituting Eqgs. (2.6)—(2.8) into Eq. (2.17), we obtain an
expression for the angular pair correlation function of the
diatomic fluid correct to the first order of #%. Thus
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o 2
g(X1,X,)=¢gX,X,)+ L ﬁ

2
gn(X,X,) + [%

gh (X, X)) +0#) ,

(2.18)

where g{(X,X,) and gl (X,,X,) are the first-order quantum correction to the pair correlation function due to transla-

tional and rotational contribution, respectively.

gL(X,X,) is given by

gé(fl,iz>=gf<)?1,fz>vg<fl,fz>+393 [ 80, %0, X)) US(X,, X3 )dE,

2

+_QZ f [gc(XI:XZ,X3:X4)— (XI,XZ)g (X3,X4)]Ua X3,X4)dX3dX4

—_— — — —_— — — —_ 2 — —_— -_— — — -_— — — —
+1—’~ [ gc(Xl,Xz,Xs)Ulaz(Xl,Xz,X3)dX3+‘S%2‘ [ 84X, %, X3, X)US(X,, %5, %,)dX; dX4

+_6__\(% f [gc(il: )

Here a stands for both tr and rot. g&(X7, ..

III. CLASSICAL MOLECULAR FLUIDS

In this section, we consider the classical fluids of di-
atomic molecules. The pair potential energy for such a
system is given by Eq. (1.2), where uo(r,]) is the central
potential between the molecules i and j, and u (X,,X ) is
the angle-dependent part of pair interaction. For central
potential, we take the Lennard-Jones (12-6) potential

uo(r)=4e[(o/r)?—(o/r)°], (3.1)

where € and o are, respectively, the well depth and molec-
ular diameter. For an angle-dependent interaction, we
writel23—25

|

U quaa = 5 (02/7°)[ 1 —5(c0s0; + cos?0,) — 15 cos?6,c0s20, + 2(sinb;sinb,cosp —4 cosf;c0s6,)?] ,

Uipn=—

Ui, =4€(0/r)’[K — 5K (1—K)(cos?0; +cos?0,) — 3 K X(sinf;sinBcosp — 2 cosf;c0s6,)?] ,

U shape =4€D (0 /r)'%(3 cos?0, + 3 cos?0,—2) ,

where 0,, 0,, and ¢ are the angles which determine the
orientation of the molecule with respect to the line joining
the centers of the molecules. 8 is the quadrupole moment,
@ is the average polarizability, K is the anisotropy in the
polarizability, and D is the dimensionless shape parameter
of the molecule. The potential parameters € and o ap-
pearing in Eq. (3.3) are characteristic of the Lennard-
Jones (12-6) model representlng the central potential.

We divide the pair potential u (X;,X,) according to Eq.
(1.2), where u, is treated as the reference potential and u,
is the perturbation. Using this division of the potential,
g%X,,X,) can be expanded as®®

8(X |, X,)=g5(rin)+85(X 1, Xo)+ -+ -, (3.4)

where g§(r;,) is the RDF for the reference system and
g$(X,X,) is the first-order perturbation correction to the
RDF of the classical system. The expression for
81 (X 1 :X 2 ) 18

1?5)—gc(X_l,X—z)gc()?:;,z?‘;,fs)]U?(X_:;,X—‘;,X—s)dfg df,; df5 .

+(@0%/r®)(sin*0; +sin*6, + 4 cos?0, +4 cos?6,) ,

(2.19)

., X;) is the canonical ensemble I-particle angular distribution function.

ua(/‘—;hfvj ) :uquad(i’j)+uin(i’j)

+udis(i’j)+ushape(i,j) ’ (3.2)

where ug,q is the interaction between the permanent
quadrupole moment of the molecules, u;, is the interac-
tion of the induced dipole moments in one molecule with
the permanent quadrupole moment in the other molecule,
ug;s is the interaction between anisotropic dispersion
forces of the molecules, and u g,y is the anisotropy of the
short-range overlap forces of molecules. They are ex-
pressed as

(3.3a)
(3.3b)
(3.3¢)
(3.3d)

g?‘()?l’X—Z):_ﬁua(fhfz)gg(rlz)
—Bf (ua()?1,)?3)+ua(X_2,f3)>m3
ng)(’TbFZ’F:;)dF} ) (35)

where
1
(...>w3__f(...

The corresponding perturbation expansion for the free en-
ergy per particle f°(=A4°/N) of the classical fluid is given
by

[e=fo+f1+15, (37)

where f§ is the free energy per particle of the reference
(classical) fluid and f{ and f§ are, respectively, the first-
and second-order perturbation correction to the free ener-
gy.

)dws . (3.6)
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For molecules having the angle-dependent potential
[Eq. (3.2)], we have®

fi=filn), (3.8)
f5=r5(quad)+ f5(anis-dis)
+ f5(shape) + f%(quad-in) + f5(quad-dis)

+ f$(shape-in) + f5 (shape-dis) , (3.9
where
filin)=—$[p*a*(6*)2/T*1{(r*)7%),, (3.10)
f5(quad)= — -5 [p*(60*)* /(T*)21{(r*)~10),, (3.11)
S5 (anis-dis) = — +[p* /(T*)?]
X[K2(2+5K){((r*)~12),
+20* K% ((r1713)~8P,(cos8;))5] ,
(3.12)
fS(shape)=—Z[p*D2/(T*)?]{(r*)~2#),, (3.13)
fi(quad-in) = [p*a* (G /(T**I((r*)~1B),,  (3.14)
fi(quad-dis)= T [p*KX6* > /(T**{(r*)~11),,  (3.15)
fS(shape-in) =35 [p*a*(6*)2D /(T*)*]{(r*)~ %), , (3.16)
f5(shape-dis)=2[p*KD /(T**1{(r*)~'?), , (3.17)
with
(r*)"),= [ gb(r*)r*)mdr* (3.18)
and
)= [ g6t rtanri) (- - dFsdry ,  (3.19)

where g§(r*) and g§(ri,,713,733) are, respectively, the
two- and three-body distribution functions of the refer-
ence (classical) fluid. P; is the /th Legendre polynomial.
In the above expressions we have used the reduced vari-
ables defined as

r*=r/o.

Other thermodynamic properties of the classical molecu-
lar fluid can be calculated from Eq. (3.7).

We use the Verlet-Weis (VW) method?’ to calculate the
thermodynamic properties of the reference [Lennard-
Jones (LJ)] system. Thus the free energy per particle of
the reference system is given by?’

fo=fi+fs (3.20)
where
Bf;=Bftis +4BSASC (3.21)

with

Bffis=n(4—31)/(1—7)%, (3.22)

BAf =3nX1+41.7599—5.2499%) /(1—7)>,  (3.23)
where

n=+mp*(d*)?,

pr=pa’,

d*=d/o .

Here d is the diameter of a hard sphere and is determined
by the expression

d =dp[1+(01/200)8] , (3.24)
where
dp= [” (1—exp[ —Bu,(N)}dr , (3.252)

5= f0°°

oo=(1—2n)/(1—9)*,

r d
a5 -1 ] m {exp[ —Bu,(r)]}dr , (3.25b)

(3.26a)
and

01=(2—7.5740.592—5.7865%° — 1.519*) /(1 —n)* .
(3.26b)

In Eq. (3.25), u,(r) represents the reference part of the LJ
(12-6) potential according to the perturbation theory of
Weeks, Chandler, and Andersen (WCA).2

The second term of Eq. (3.20) is the first-order pertur-
bation correction to the free energy and is given by

Bfs=2mp [ wlrighs(rridr , (3.27)

where gfis(7) is the RDF of the classical hard-sphere fluid
of diameter d and w(r) is defined as

—€, r<ry

w(r= (3.28)

up(r), r>ry .
rm is the distance at which uyj(7)= —e. Using the stan-
dard relations one can calculate the other thermodynamic
properties from the free energy of the reference system.

IV. QUANTUM CORRECTION TO
THERMODYNAMIC PROPERTIES

The first-order quantum correction to the free energy is
expressed in terms of the classical RDF g¢X,X;). In
terms of the reduced quantities

h
A¥=
oVme '’
h
*__

=TT -
Eq. (2.14) can be written as

Bf =Bf (AL + () fin)* 4.1)
where
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* ~ - 1 3 ou*(X,,X,) B
(f{r)*=ﬁr%(—]:;‘)—2‘ fgc(Xl,Xz) !W " [(r*)z—a—ri—z— dir*dw , 4.2)
* 1 d wu*(X,X,) du*(X,,X,)

dr*do . (4.3)

(frot)*

sinf,

T [ 89X, %,)

= 7687 sinf; 6,

Here u*(X,,X,)=u(X,,X,)/e.

1
a6, ] sin%6, 3t

Using Eqgs. (3.2) and (3.5) in Eq. (4.2), the first-order quantum correction to the free energy per particle due to transla-

tional contribution is given by

=L LD+ LG * + [fF (quad) T* + [ £ (anis-dis) ]* +[f L (shape) ]*

+[fT(quad-dis)I* +[fL (quad-dis) I* + [ fL (shape-in) ]* + [ £ (shape-dis)]* , (4.4)
where

[f{,(LJ)]*:# P AT PI[22¢(r*) ), — 5((r*) )] , 4.5)
it = — 25 (a6 AT PIF ()10 — o221 2),= 5 9))], 4.6)
[ft(quad)]* = — 24772 [P* (@ /(T*P(r*)~12),, @.7)
[f7 (anis-dis)]* = —#[p*/(T* PUKXH2+2KH((r*) =), 4+ 20* KX [(r],) ~3(r}3) ~61P,(c0s6,) )] , (4.8)
[/%(shape)]* = ~5—iT87[p*D2/(T* PI(r*)26), 4.9)
[ff (quad-in)]* = 7(5)7772 [p*a*(8*)*/(T*)*1{(r*)~1%),, (4.10)
Lf fr(quad-dis)]*=ziﬂz[p*K%o*)z/(T*)3]<(r*)“3>2 , (4.11)
[/%(shape-in)]* = ;;fz [p*a*(6* 2D /(T* PI{(r*)~22), , 4.12)
[ f{,(shape-dis)]*=g5:—2[p*KD/( T*)1((r*)~20), . 4.13)

Similarly, the first-order quantum correction to the free energy per particle due to rotational contribution is given by

(frot)* =[f 10t (quad) [* + [ f 1ot (in) * + [ f 1ot (anis-dis) I* + [ f

ot (shape) ]*

+[ffe(quad-in)T* + [ fL,(quad-dis)]* + [ /L, (quad-shape) J* + [ £ %, (in-dis) J*

+[ £ (shape-in)]* +[f1 (shape-dis)]* ,

where
LFL (quad)]* = =2 [6*(8* ' /(T* P (r*) 10, ,
76872
(4.15)
[f{ot(in)]*=%[p'(a* 6V /(T* P (r*)~16),
(4.16)

[f},(anis-dis)]*

=;1;[P*/<T‘)31K<1+‘—S’Kz)«r*)-”)z, (4.17)

(4.14)

[fx{ot(Shape)]*= - g;irE[P*DZ/( T* )3]( (r*)‘ﬂ)z , (4.18)

523
448072

Pta*(et)4

[fLe(quad-in)]* = — e

]((rt)—l3)2 ’

(4.19)
[ffor(quad-dis)]*
=—Z—S%Ep*(m)z/(r*ﬁ]mu%K)«r*)—“)z ,

(4.20)
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TABLE 1. Force parameters used in the present calculations.
. 10%a 10%%
System e/k (K) o (A) (cm?) (esucm?) K D A* &*
D, 35.0 2.976 0.7954 0.84 0.1153 0.21 1.238 9.9358
H, 37.0 2.928 0.790 0.84 0.0911 0.21 1.729 13.4997

[fL(quad-shape)]*
7

=~ SO D /(T*PU*)7 ), 421)
T
. 3 *a*(6*)? _
[ falin-dis)]" = —— | &2 ]K2<<r*> ),
4.22)
. 9 *a*(6*)2D _
[f{ot(Shape-ln)]*z‘_goﬂ_Z £ (T*)3 ]<(r*) 20)2)
4.23)
[f1(shape-dis)]*
L3
———1%2— % K(—2K){(r*) 18, . (424)

Other thermodynamic properties can be calculated
from Eq. (4.1). Thus the equation of state is given by

%’-’=B—;’i+m* R(PL)* 4+(8*)A(PL,)* (4.25)
where
a Ir *
(PLy*=p* (g ‘*) , (4.26a)
I
AL *
(P *=p* % ) (4.26b)

The coefficients (PL)* and (PL,)* are the first-order
quantum correction to the pressure due to the translation-

al and rotational contributions, respectively. The entropy
S and the internal energy U, correct to the first-order
quantum correction, are given by

7\% - FSR‘ ARS8 (ST, 427)
where
3 [
Shy=— * , 4.28
Sl ==3 ar* (4.282)
d (L)
SIF=— T* , 4.28b
(Seo) aT* aT* (4.280)
and
WUT - F%T FADHULF +(8AUL ) (4.29)
with
a( Ir *
(Ut =—T* ath*) ) (4.302)
AL
(UL ) =—T* %— . (4.30b)

V. RESULTS AND DISCUSSION

In this section, we use the theory developed in the pre-
vious section to calculate the thermodynamic properties of
diatomic molecules such as D, and H,, where the quan-
tum effects are appreciable. Force parameters for these
systems are given in Table I. The parameters 6 and D,
which are assumed to be the same for H, and D,, are

TABLE II. First-order quantum correction coefficient for free energy and pressure of D,.

Free energy Pressure
p*=0.85 T*=2.74 p*=0.65 T*=1.35 p*=0.85 T*=2.74 p*=0.65 T*=1.35
Contributions  (f&)* (flo)* (Fh)* (fl)* (PL)* (PL)* (PL)* (Ply)*

Ly 0.087 50 0.31518 0.046 63 0.449 36
quad —0.000 66 0.000 51 —0.00801 0.005 22 0.00037 —0.00001 —0.00929 0.006 04
in 0.004 62 0.0 0.01150 0.0 0.01292 —0.0 0.024 47 0.0
anis-dis —0.00016 0.00002 —0.00097 0.000 19 —0.00020 —0.00001 —0.00136 0.00022
shape —0.00128 —0.00029 —0.029 84 —0.001 82 0.004 10 —0.00015 —0.03121 —0.00272
quad-in 0.00002 —0.00003 0.00048 —0.00011 —0.00005 —0.00006 0.000 44 —0.00017
quad-dis 0.00024 —0.00013 0.00102 —0.000 63 0.00055 —0.00026 0.00157 0.00093
quad-shape 0.0 —0.00024 0.0 —0.00217 0.0 0.0 0.0 —0.002 85
shape-in 0.000 38 —0.0 0.001 29 —0.00002 0.000 86 0.0 0.00222 —0.00002
shape-dis 0.00056 —0.00002 0.01132 —0.00049 —0.001 44 0.00006 0.01217 —0.00050
Total 0.09122 —0.00019 0.30194 0.000 17 0.06372 —0.00042 0.448 36 —0.00093
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TABLE III: Free energy and pressure of D,.
Free energy Pressure

p*=0.85 T*=2.74 p*=0.65 T*=135 p*=0.85 T*=2.74 p*=0.65 T*=1.35

Contributions Bf¢ Bf Bf¢ Bf BP¢/p BP/p BP¢/p BP/p
Ly —0.8595 —0.7253 1.2446 1.7277 4.2896 4.3611 0.6050 1.2937
in —0.0550 —0.0479 —0.0647 —0.0470 —0.1104 —0.0906 —0.0886 —0.0510
quad —0.0620 —0.0129 —0.3143 0.1889 0.0014 0.0008 —0.3635 0.2185
anis-dis —0.0034 —0.0021 —0.0204 —0.0028 0.0019 0.0007 —0.0236 —0.0036
shape —0.0624 —0.0929 —0.1940 —0.4194 —0.0314 —0.0395 —0.2904 —0.6071
quad-in 0.0064 0.0038 0.0133 —0.0028 0.0145 0.0084 0.0203 0.0039
quad-dis 0.0124 —0.0001 0.0294 —0.0310 0.0243 —0.0001 0.0436 —0.0458
quad-shape 0.0 —0.0237 0.0 —0.2146 0.0 0.0001 0.00 —0.2815
shape-in 0.0006 0.0011 0.0063 —0.0063 —0.0016 —0.0001 0.0067 0.0081
shape-dis 0.0081 0.0069 0.0923 0.0610 —0.0210 —0.0177 0.0928 0.0626
Total —1.0147 —0.8932 0.7925 1.2720 4.1672 4.2231 0.0024 0.5977

determined by Singh and Datta’? and by de Boer,?
respectively. The values of @,K, and 8 for D, are given
by Kolos and Wolniewiez.*® For H,, @ and K are deter-
mined by Volkmann,’! while 8* is obtained from the value
of # /2k1.*

We have calculated the first-order quantum correction
to the thermodynamic properties due to the translational
and rotational contributions. The integral ((r*)~"), that
appears in the expressions of the thermodynamic proper-
ties can be written as

(r*) "), =4nJ, , (5.1)

where J, is evaluated using the empirical equation of
Ananth,>

InJ,(p*, T*)= A, (p*)InT* + B, (p*)*+ C,p*InT*

+D,p*+E,InT*+F, . (5.2)
The constants A4,—F, are reported by Gray and Gub-
bins.34

The contributions of the various branches of pair in-
teractions to the first-order quantum correction coeffi-
cients for the free energy and pressure of D, are reported
in Table II at p*=0.85, T*=2.74 and p*=0.65,
T*=1.35. It is seen from the table that the rotational
contribution is very small in comparison to the transla-
tional contribution. In the translational part, the main
contribution arises from the central force, i.e., the LY (12-

6) potential. The table demonstrates the magnitude of the
contribution of various branches of nonspherical interac-
tions.

Table III demonstrates the magnitude of contribution
of the different pair potentials to the free energy per parti-
cle and pressure of D, at p*=0.85, T*=2.74 and
p*=0.65, T*=1.35. The classical values are also shown
in the table. We see that the main contribution comes
from the LJ potential and that the contribution of the
nonspherical parts is small and increases with the decrease
in temperature. Among the nonspherical interactions, the
most significant contributions arise from quadrupole mo-
ment and shape interactions as well as the cross term aris-
ing from quadrupole moment and shape. The contribu-
tion of other terms is found to be small but not negligible.

The calculated values of thermodynamic properties
such as the free energy per particle, internal energy, and
pressure are given in Tables IV and V for D, and H,,
respectively. It may be seen from these tables that the
quantum effect to the thermodynamic properties increases
with the increase of density and decrease in temperature.
Further, we see that the quantum effect is small at
T* =2.74, where the contribution of nonspherical interac-
tion is also small. As the temperature decreases, the con-
tribution of both the quantum effect and nonspherical in-
teraction increases. At T%=0.75 the quantum effect is
very large. -One should include at least the second-order
quantum correction before predicting the thermodynamic
properties at low temperature.

TABLE IV. Thermodynamic properties of D,.

Free energy Internal energy Pressure
p* T* Bfe Bf U¢/NkT U/NkT BP¢/p BP/p
0.50 2.74 —0.1730 —0.0899 —2.4507 —2.6106 1.3274 1.6158
0.50 1.35 0.7563 1.1172 3.8538 4.6481 —0.2272 0.1195
0.50 0.75 2.0833 3.6068 —5.2920 —9.3144 —3.3340 —1.8184
0.65 2.74 —0.4053 —0.3032 —3.9471 —4.1565 2.0499 2.1241
0.65 1.35 0.7925 1.2720 —5.1963 —6.2781 0.0024 0.5977
0.65 0.75 2.5018 4.5331 —7.1350 —12.3915 —4.6838 —3.4225
0.85 2.74 —1.0147 —0.8932 —4.7859 —5.0909 4.1672 4.2231
0.85 1.35 0.3377 1.0570 —6.0702 —7.7819 1.7474 3.0859
0.85 0.75 2.0751 4.7821 —10.8474 —15.7891 —5.9811 —4.5501
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TABLE V. Thermodynamic properties of H,.

Free energy Internal energy Pressure

o* ™ Bf¢ Bf U¢/NkT U/NkT BP°/p BP/p
0.50 2.74 —0.1807 —0.0113 —2.4652 —2.7968 1.3212 1.8907
0.50 1.35 0.7245 1.4814 —3.9211 —5.6185 —0.2590 0.4750
0.50 0.75 1.9690 5.2261 —5.5468 —14.2117 —0.4789 —0.1633
0.65 2.74 —0.4146 —0.2059 —3.9652 —4.4000 2.0433 2.1978
0.65 1.35 0.7503 1.7590 —5.2935 —7.6174 —0.0474 1.2200
0.65 0.75 2.3280 6.7215 —7.5269 —19.0976 —5.0344 —1.6839
0.85 2.74 —1.0261 —0.7760 —4.8084 —5.4418 4.1558 4.2850
0.85 1.35 0.2771 1.7982 —6.2367 —9.9502 1.6523 4.5195
0.85 0.75 1.7139 7.8743 —12.0358 —24.8757 —7.2980 —1.3896

VI. CONCLUDING REMARKS

In this paper, we have estimated the quantum effect
due to the various branches of pair interactions to the
thermodynamic properties of the diatomic molecules such
as D, and H,. We have considered only the first-order
quantum correction. This approximation may be valid at
high temperature. At low temperature, one should con-
sider the higher-order corrections to get better results.
But the exact evaluation of even the second-order correc-

tion is very difficult, so we have not attempted to here.
We have used the perturbation theory, in which all the
nonspherical interactions are taken as perturbation, to cal-
culate the thermodynamic properties of the classical
molecular fluids.

In conclusion, we feel that this theory is appropriate to
calculate the thermodynamic properties of molecular
fluids at high temperatures, where the quantum effects
are small and the series is truncated after the first-order
quantum correction term.

*Permanent address: Department of Physics, S. R. K. Goenka
College, Bihar University, Sitamarhi 843301, Bihar, India.
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