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Nonuniversal behavior in the dynamics of phase separation is discussed. An equation which ex-

hibits a nonuniversal growth rate in a long-time limit is derived relying on the dynamic-scaling as-

sumption. Two contradictory behaviors, a crossover to larger growth rate and a formation of a
locked-in structure, are shown to be described by this equation in two limiting cases. The intermit-

tent region lies between regions with these two contradictory behaviors. Two types of intermittent-

growth-rate exponents are obtained. One, a», is valid at high temperatures, while the other, a&2, is

valid at low temperatures. These two exponents are, respectively, a» ——w ~ a 1 +w2a2, and

a» ——(wl/a i+w2/a2) . Here w; (i =1,2) are the probabilities of finding configuration associated,
a& Q2

respectively, with the growth rates R o t ' and R o t . a& is the largest exponent due to the
curvature-driven force and aq is the next largest exponent; a2 ——0 at zero temperature. Thus, for
certain values of system parameters, the intermittent exponent aI varies from 0 to aqua as the tem-

perature is increased. Several aspects of the growth rates in parameter space are predicted. They
are consistent with numerical simulations and fluid mixtures.

I. INTRODUCTION

with a constant exponent a. This smling law has also
been studied by many authors from theoretical and exper-
imental viewpoints and now seems to be well establish-
ed. ' The largest growth rate is usually expected to dom-
inate the final state. To show this we may write down, in
a simple way, an equation of motion for droplet growth in
which two different elementary processes are accounted
for

1 —1/a
&

1 —1/a&

dt
R =c1R '+cga ', a1)a2 (1.3)

Such an equation may be obtained by deriving an equation
of motion for structure function Sk(t) and then using the
scaling assumption:

Sk(t) = [R(t)]dS(kR(t) ), (1.4)

A phase separation in a quenched thermodynamically
unstable system starts with the formation of small drop-
lets and then the droplet coarsening follows. ' When the
average droplet radius R exceeds a certain value, say the
thermal correlation length g, several aspects of the
dynamics appear. These universal behaviors have been
the subject of predictions and justifications of a universal
law called a "dynamic-scaling law for the first-order
phase transition. " An average quantity 6 as a func-
tion of wave number k and time t has a scaling form:

Gk(t) = [R (t)]y6(kR(t) ),
where y is a constant. In order that the kinetic equation is
consistent with the scaling assumption (1.1), the length
scale R (droplet radius) must satisfy a simple power law
for the growth rate,

R(t) ~ t',

where d is the dimensionality. To derive (1.3) it is as-
sumed that the scaling function S(x) is independent of
time t This as. sumption is not, however, rigorous if more
than two mechanisms are involved. Equation (1.3) is
qualitatively correct and sufficient for the present pur-
pose. In the large-R limit the second term on the right-
hand side of (1.3) can be neglected and thus we observe

0) a&that 8 ~ t '. This means that the largest growth rate t '

always dominates the late stage of phase separation. The
largest exponent a1 is mlled a universal one. For relaxa-
tional systems the universal exponent is —,

' for noncon-

served order parameters, " and —, for conserved order pa-
rameters. ' For fluid mixtures the largest exponent is 1.'

All these exponents can be derived through si.mple physi-
cal considerations on the curvatures of droplet surfaces.

Recent numerical simulations' ' on highly degenerate
systems cast some doubt on the universal growth of drop-
lets. The droplet growth exponent in a highly degenerate
system is certainly smaller than a universal exponent. At
low temperatures we also observe a "locking-in" phenom-
ena, i.e., a system has a locked-in structure and droplets
grow very slowly. ' ' Such a locking-in can also be ob-
served in a real system. '

Real systems have complicated structures. The
locking-in in such systems might be attributed to their
complicated structures. Therefore, even if the locking-in
in such systems contradicts with a simplified evolution
equation (1.3), no problem seems to arise. However, the
numerical simulation' for a system with a simple lattice
structure also exhibits a nonuniversal growth rate of drop-
lets. The only characteristic of this system is that it has
high degeneracies.

Traditionally, the occurrence of a locked-in structure is
attributed to the formation of a droplet structure for
which a curvature-driven force becomes ineffective. "'
For instance, a close-packed structure may render the
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curvature-driven force ineffective. Such a geometrically
simple structure of a droplet, however, could not be possi-
ble. Thus, if we again adopt (1.3), then the locking-in be-
comes impossible in a long-time limit. In order to avoid
such a difficulty, we have, in a series of papers, ' ' pro-
posed an intermittent process of droplet growth. In this
process various growth mechanisms occur intermittently.
Taking an ensemble average or a time average of lnRJ (RJ
denotes the local droplet radius in the jth subsystem), we
obtained a growth rate with a nonuniversal exponent
smaller than the universal one, a~. A quahtat1ve agree-
ment between our prcdiction and both numerical simula-
tions and a fluid mixture experiment has been found.

Nevertheless, the previous derivation of the intermittent
growth rate should be reexamined. The obtained theoreti-
cal intermittent growth exponent is independent of tem-
perature. This contradicts numbers of numerical simula-
tions and laboratory experiments. Such an insufficiency
might come from two simplifications in the previous dis-
cussion. One of these simplifications is that we have
neglected the effect of the lattice structure. At low tem-
peratures the domain shape strongly depends on the lat-
t1cc stIUctuI'c. Thc doma1n s4apc 1s cluc1al to thc inter-
mittent growth rate at low temperatures. The other sim-
plification will be discussed in detail in this paper. This is
related to the dynamic-scaling assumption for the switch-
ing mechanisms of droplet growth rates. The intermittent
growth rate discussed in the previous papers' ' is valid
only Rt h1gh temperatures.

The purpose of this paper is to present the first step in
a fundamental discussion of the intermittent growth law
in the whole range of temperature. Very recently we have,
in a short paper, proposed a theory for a crossover from a
large to smaller growth rate. ' Such a process competes
with the process described by (1.3). In this paper it will be
discussed that the intermittency is a true state and the in-
termittent region lies in between regions of these two com-
peting processes. Namely, the intermittent-growth-rate
cxponcIlt Qy llcs bctwccn Qi and 02» where Q2 1s thc ex-
ponent of the next-most-dominant growth rate.

So far, the dynamic scaling assumption for the first-
order phase transition is restricted to the study of the
self-similarity of droplet configuration. Only a simple
law of droplet growth rate (1.2) has been discussed. In
this paper we shall apply the dynamic-scaling assumption
to more complicated dynamical processes. One may find
that the so-called universal droplet growth rates are not
always universal; rather, nonuniversal growth rates may
occur. We first show that the dynamic-scaling assump-
tion is consistent with the intermittency. Wc then present
a physical consideration of the appearance of intermitten-
cy. The appearance of the intermittency resembles the ap-
pcaI'ance of the gas-liquid transition. Namely, at certain
values of system parameters, i.e., of temperature, degen-
eracy, and dimensionality, the final growth rate bccon1es
marginal. Near this marginal point the effective tin1e
scale is extremely lengthened. This effect ensures the ap-
pearance of the intermittency. Various properties of in-
termittent growth of droplets are then predicted. Com-
parlso11s wltll numerical slnlulatlolls and a fluid 1111xtllle
experiment seem to verify theoretical predictions.

The present theory is by no means a complete one based
on the first principle or the basic kinetic equation, but is
devoted to the first step of the general description of the
dynamics of phase separation in parameter space spanned
by temperature, degeneracy, and dimensionality. In Sec.
II we shall formulate an intermittent droplet growth on
the basis of the dynamic-scaling assumption. In Sec. III a
prediction will be made for the entire behavior of the
growth rates in parameter space. The intermittent-
growth-rate exponent al will be calculated in the two lim-
iting cases of high temperatures and of low temperatures.
Section IV is devoted to discussion. Several interesting
behaviors of numerical simulation and fluid mixture ex-
periment are also analyzed.

II. FORMULATION OF INTERMITTENCY

Lct Us cons1dcr sn1Rll sUbsystcnls w1th R hncar d1mcn-
sion of the order of R (the average droplet radius). Let
the number of phases be p. We assume, for simplicity,
that the average densities (volume fractions) of all phases
are the same. Let us consider the case of high tempera-
tures. Gn an average, the droplet of each phase takes the
san1e shape. Thus the average droplet shape would be a
close-packed one. The smallest degeneracy p, for which
the close-packed structure is possible is predicted to be
d+ I."' If, however, the random distributions of phases
are allowed, then this value would be replaced by z+1
(Ref. 19) (z is the number of nearest-neighbor droplets in
the close-packed configuration). It was also shown' '

that even for p &z+ I the close-packed structure does not
always appear. A loose-packed structure appears with a
certain probability which depends on p, d, and probably
on temperature T. Thus the droplet grows for a certain
time interval by means of a curvature-driven force, while
for another time interval it grows by means of the next-
most-dominant force. The next dominant force at higher
temperatures is a thermal force and at low temperatures it
is an exponentially weak force for relaxational systems. '

In fluid systems the next-most-dominant force may be a
curvature-driven force which drives individual atoms.
The largest growth rate occurs when the curvature-driven
force induces internal flow. ' The local droplet growth
rate is switched back and forth fmm small to large and
also large to small. Strictly speaking, only the curvature-
driven force is switched back and forth. However, if the
curvature-driven force is effective, then the next-most-
dominant force may be neglected.

Since the droplet growth rate is very small, it takes a
long time until a local growth rate is switched from one to
the other (notice that this depends on what values system
parameters take). Let us assume that the local droplet ra-
dius in the jth subsystem, RJ, obeys the equation of
nlot1on

(2.1)

Here a& gives the largest exponent, while a2 gives the
next" 1RI'gest exponent. Thcsc exponents RI'c summarized
in the previous papers. ' ' Here we have listed them in
Table I. If the switching of growth mechanisms is done
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TABLE I. Various growth rate exponents of elementary pro-
cesses.

~R2 f2~2 1/ai —1/a2I 2

ER1 f1W1
(2.5)

Systems

Relaxational,
nonconserved

order parameter

Relaxational,
conserved

order parameter

Binary fluid
mixture

Largest
exponent a~

&
a

2

1

3

Next-largest
exponent a2

1/(0+1)"

0 (for T=0) '

1/(0+2) '

0 (for T=0) '

1/d (d &3)~
1/3 (d) 3)"

Thus the average growth rate of R obeys the equation

dR ER1+ER2
dt ht, +b, t2

1 1/. , I+(f2W2/f, w, )R=f1R
1+(w2/tO1)R

Let us assume that

a2 (ai (a1 .

Then, for large R, (2.6) reduces to

(2.6)

(2.7)

'Reference 11.
Reference 19.

'References 18 and 19.
Reference 12.

'References 3 and 4.
Reference 13.

gReferences 3 and 22.
"Reference 20.

frequently enough, one may obtain the same equation as
(1.3). In this case no special effect due to the switching
can be expected. At low temperatures or for high degen-
eracies the curvature-driven force often becomes ineffec-
tive. Once the system comes to a state in which the
curvature-driven force becomes ineffective, it may take a
long time for the system to escape from the state. There-
fore, the switching of the local growth mechanisms is
done very slowly. The average growth rate can not be

1 —1/a ) 1 —1/a2
represented by a simple sum of Ri

' and RJ
In order to formulate an intermittent growth law, we

shall make a simplification saying that the average radius
also obeys the following equation similar to (2.1):

R=f R
t

(2.2)

Here, however, the switching of the growth mechanisms is
done with a short time interval. Let us assume that the
ith growth mechanism continues for a short time interval
b, t; (« t). Then the increment of the local droplet radius
for this time interval is given by

b,R;=ftR 'hatt, i=1,2. (2.3)

Wp 1/aI 1/a
1 w1+w2 ——1

w
(2.4)

where ai is a constant whose meaning will become clear
later. From (2.4) and (2.3)

We now notice that the ratio bt2lb, t, is not necessarily
independent of t or R. Each growth process has its own
growth rate. Therefore, it takes its own time to attain a
significant increment of the droplet radius. The growth
rate depends on the average droplet radius. Owing to the
dynamic-scaling assumption, the ratio b,t2lbt1 is propor-
tional to a power of R:

dR u21f1 1 —1/a,R
dt

(2.8)

This gives a nonuniversal growth rate R cc t '. If ai ——a1,
then (2.6) gives

dR 1 —1/a ) 1 —1/a2
=u11f1R +~2f2R (2.9)

which was also given by Kawasaki. If az ——a2, then (2.6)
gives

dt

X [ w1f1(f1R ') '+u12f2(f2R ') '],

ai =a2 . (2.10)

Equation (2.9) exhibits a crossover from a small growth
a2 a&

rate ~ t ' to a larger one ac t '. This is essentially
equivalent to (1.3). On the other hand, (2.10) represents a
crossover from a large growth rate to a smaller growth
rate. Thus (2.10}exhibits a locking-in at low temperatures
where a2 ——O.

We now mention the physical meaning of these equa-
tions. As noted in Sec. I, if two processes with growth-
rate exponents a1 and a2 occur in a parallel way then the
equation can be given by (2.9}. This means that the ratio
b, t2lht, is independent of R or t. The switching of
growth mechanisms is done independent of the incremen-
tation of droplet radius R. This means that the various
configurations giving different growth rates are mixed up.
Such a situation occurs at high temperatures or for low
degeneracies. w1 and w2 are the weight functions and
thus w1 is the probability of finding a configuration giv-
ing the largest growth rate.

At low temperatures and for high degeneracies, the
droplet configuration would be simple. If a system ac-
cidentally comes to a state where the curvature-driven
force is ineffective, then the droplet must grow without
the curvature-driven force. In order for the system to es-

cape from the stationary state, local droplet radius Ri
must be increased by an amount of the order of R without
the curvature-driven force. Thus at low temperatures the
switching between the growth mechanisms occurs with
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each constant (relative) increment of the local,droplet ra-
dius. Then the duration times b, t; (i =1,2) are given by

J4RI

bR"=w f bR/(w&f&+w2f2) (2.11)

with a constant ratio b,R' '/b, R"'. The time rate of
change of R is then given by dR/dt =SR/(b, t&+Atq),
which gives the equation (2.10). Thus (2.10) describes
droplet growth in a system with high degeneracy at low
temperatures.

At intermediate temperatures or for intermediate de-
generacies the above two switching processes may mix to-
gether, or, the final state is equally dominated by the
next-largest growth rate and by the largest growth rate.
This fluctuation at the intermediate temperatures or the
intermediate degeneracies would cause the intermittency.
Owing to the dynamic-scaling assumption, the only plau-
sible way of mixing together is given by (2.4), which gives
an intermittent growth law as seen above.

III. PHYSICAL BACKGROUND OF INTERMITTENCY

Let us focus our attention on local droplet growths.
The local length scale RJ does not increase as smoothly as
the average droplet radius R. At high temperatures and
for low degeneracies, switchings of local growth rates
occur frequently, since the droplet configuration is so
complicated. Several kinds of configurations are mixed
up. In such a case the equation obeyed by the local length
scale has the same form as Eq. (2.9). As temperature is
lowered or the degeneracy is increased, the droplet config-
uration becomes less complicated. Time intervals between
the switchings of local growth rates are then lengthened.
Then the effective time scale becomes longer and the in-
termittent effect can be enhanced. In other words, a
crossover regime can be lengthened. This is the reason
why the intermittent growth law begins to dominate as
the temperature is lowered or as the degeneracy is in-
creased (see Fig. 1). Next let us consider the low-
temperature limit or the high-degeneracy limit. We may
consider that in such a limit the switching between the
growth rates should be done with each constant relative
increment of local droplet radius. Then we may obtain
the same form for the local droplet radius R~ as given in
Eq. (2.10). This equation shows a crossover from a large
growth rate to a small growth rate. At low temperature
this exhibits a locking-in, since a2 ——0 at T=O. ' At in-
termediate temperatures or for intermediate degeneracies
the final growth rate is marginal: It is dominated by a

allarge growth rate ~ t ' as well as a small growth rate
~ r '. Thus the temporal range of intermittent growth
becomes very large. The intermittency thus has a margin-
al region. Let T and p be the temperature and the de-
generacy for which the final growth rate cannot be deter-
mined. Then these values may be called "marginal
values. " T would be a function of p . Namely, as p
increases, T also increases. The phase diagram of inter-
mittency is thus qualitatively symmetric with respect to
the line T cc p (see Fig. 2). If the transition to the inter-
mittency is of first order, then T and p span a parame-

FIG. 1. Appearances of intermittency (schematic). (a)
Switchings of local growth rates at high temperatures. Switch-
ings are done in each constant relative time interval (hint)I or
(bint)2. A shaded region is a crossover region or an intermit-
tent region. (b) Same as (a), but relative time intervals are
lengthened, since the temperature is lower than in (a).
Intermittent-growth-rate exponent ai is w~ a l +wza2. (c)
Switchings of local growth rates at low temperatures. Switch-
ings are done with each constant relative increment (hlnR~)& or
(hlnR~)2. (d) Same as (c), but the relative increments of local
droplet radius are lengthened. Intermittent-growth-rate ex-
ponent ar is (wl /a~+ w2/a2) '. (e) Switchings of average
growth rate in a fully intermittent region. Here from (2.5)
(hlnR )2/(AlnR )~~0 as R ~0.

ter space (see Fig. 2).
As we have considered, the intermittent regime would

emerge as a result of an elongation of a crossover regime.
Thus the intermittent-growth-rate exponent ai can be ap-
proximately given by the effective exponent at the cross-
over regime. If we assume that the growth mechanisms in
the local droplet radius RJ are switched at considerably
large time intervals, we can neglect the transient effect
due to the switchings; then we have, by solving Eq. (2.1),

a;t—:RJ', i =1,2 . (3.1)RJ ——

a;

It is assumed that the temporal region under consideration

0
P,

c,(r)

FIG. 2. Phase diagram for intermittency. C&, region of
crossover from small to larger growth rate. C2(I), region of
crossover from large to smaller growth rate. This region is
seemingly the same as an intermittent region, since the exponent
a2 in this region is temperature dependent. TI1, temporary in-
termittent region for finite quenching time t, in a long-time lim-

it the growth rate reduces to a universal one R ~ t '. TI~, tem-
porary intermittent region, in a long-time limit the growth rate
reduces to R ~ t . I., locking-in regime. Here p, is the largest
degeneracy for which the curvature-driven force is always effec-
tive.
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is given by RJ"-RJ '. By averaging local growth rate
equations, we have

C1

aI

FI

dt ¹

(3.2)

Cg,(I)
L w~

~ax y ~z

TIg 0

—g"'R, =w;R,1 (3.3)

where N is the number of subsystems and g" denotes

the summation over all subsystems in which the ith
growth mechanisms (i = 1,2) dominate. We set

FIG. 3. Time dependence of the effective exponent

a,~~
——d(lnR )/d(lnt). C~, C2, TI~, . . . represent the same param-

eter regions as in Fig. 2.

where w; are the probabilities of finding subsystems with
the ith growth mechanisms. For relaxational systems w&

is the probability of finding a loose-packed structure and

w2 a close-packed structure. ' ' From (3.2) and (3.3) we
find that

d RR= —(w]a]+wza2) . (3.4)

Solving (3.3) we find the intermittent exponent

at ——at] =w]a]+w2a2 ——w](a] —a2)+a2 . (3.5)

[bint(RJ)];= —(blnR&);, i =1,2.1

a;

Thus, setting

(b,lnRJ. ); =w; hlnRJ,

we have

(3.6)

(3.7)

This exponent was previously obtained using various
methods. ' ' This exponent, a&~, is valid at high tempera-
tures or for low degeneracies, since (3.2) demands a con-
stant ratio of time intervals between switchings.

Next we shall give another intermittent-growth-rate ex-
ponent at2, which may be suitable to the case of low tem-
peratures and high degeneracies. We consider the elonga-
tion of the crossover regime at low temperatures. Let us
assume that the switching between the growth mecha-
nisms occurs with each constant relative increment of lo-
cal droplet radius. We also neglect the transient effect
due to the switchings of local growth mechanisms. Then
the relative time interval for attaining a relative increment
of local droplet radius in this process is

growth-rate exponents resembles that between the total
electric conductivities of a parallel circuit (at]) and of a
series circuit (at2).

The present methods of obtaining intermittent-growth-
rate exponents are linear ones. As noted in the above, the
intermittent regime may be regarded as the anomalous
elongation of the crossover regime. There are two possi-
ble types of the transitions from crossover regimes to in-
termittent regimes. If the transition is continuous, then
the intermittency would continue for an infinitely long
time only if the system parameters take on definite values.
The whole behavior of the (effective) exponent a,ff(t)
(R ~ t ") is predicted in Fig. 3. Here the region C2(I) is
the region where the growth rate always crosses over from

aj 02
a large growth rate R ~ t ' to small growth rate R ~ t '.
a2 may be switched from 0 at T=0 to nonzero values as
temperature is increased and the final growth rate in this
region depends on the temperature. Thus the final growth
rate seemingly resembles the intermittent growth rate.
The plateau value of a,tt gives an intermittent-growth-
rate value aq, such that aq is zero at zero temperature. In
particular, at ——at&, and at2 ——w2a2 —0 at T=O (see Ref.
19). As the temperature is increased, at also increases
mainly due to the switching of a2 from a2 ——0 to a2&0
(thermal contribution). As temperature is further in-

creased, aq reaches a constant value determined by aq~.
The whole behavior of at is illustrated in Fig. 4. In Fig. 5

we also illustrate the exponent at as a function of degen-
eracy p and the dimensionality d. In previous papers' '

we have found that such a dependence of the
intermittent-growth-rate exponent az on degeneracy is ob-

b Int(RJ ) = [b,lnt(RJ )]]+[b,lnt(RJ )]2
r

AlnRJ .
a

(3.8)

p~p

We then obtain another intermittent-growth-rate ex-
ponent: ' 0

T 0

Qy =Qg2=
W) M2+
a& a2

(3.9)

which should be valid at low temperatures or for high de-
generacies. Notice that az ~ )a&2. The equality holds for
w1 0 or +1 2 If az =0, then ar &

=wia i while

aq2 ——0. The difference between these two intermittent-

FIG. 4. Temperature dependence of intermittent-growth-rate
exponent az. p, represents the largest degeneracy for which the
curvature-driven force is always effective, or the smallest degen-

eracy for which the intermittent growth rate with nonuniversal

exponent occurs. The increase in a~ at low temperatures is
mainly due to the increase in aq from 0 at T=O to nonzero
values at high temperatures.
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(b) p&z . (4.4)

On the other hand, there is another criterion different
from (4.4) (Refs. 11 and 18):

p 1
P(Q . (4.5)

FIG. 5. (a) Intermittent-growth-rate exponent aI as a func-
tion of degeneracy p. As temperature is lowered, both ai in the
high-p case and a2 approach a zero value. (b) Intermittent-
growth-rate exponent as a function of dimensionality. p, is a
function of d {see Ref. 19). This is the reason why aI takes a
universal value a~ for large d. Since a~ ——a2 for d=1 at high
temperatures (see Table I), ai ——a& for d=1 at high tempera-
tures.

served in numerical simulations and in a binary-fiuid-
mixture experiment. For a binary fluid mixture in three
dimensions, the volume fraction of the minority phase
corresponds to the reciprocal of the degeneracy, p

IV. DISCUSSION

w, =minIzp ', lI . (4.1)

Here z is the number of the nearest-neighbor cells, e.g.,
z =6 for d =2. In the case where the average densities of
phases are not equal to each other, the probability may be
given by

(4.2)

where n; is the density of the ith phase. Here we have
used units such that

(4.3)

The probability w~ given by (4.1) or (4.2) might be suit-
able in the case of high temperatures. At low tempera-
tures w~ would strongly depend on the lattice structure.
This might be the reason why the growth rate on a tri-
angular lattice is different from that on a square lattice at
low temperatures. ' At high temperatures they are very
similar. If w~ is given by (4.1), then the curvature-driven
force is always in effect for

In this section we shall examine the predictions made in
Sec. III. We shall compare these predictions with recent
numerical simulations. ' ' We have previously com-
pared' the intermittency-growth-rate exponent ar& given
by (3.5) with numerical simulation of the p-state Potts
model on a triangular lattice. ' Improvements over the
data of this simulation have recently been made. The
agreement between the theoretical prediction and the
simulation becomes poorer, though still satisfactory. In
order to calculate w~ we have employed a close-packed-
cell model. ' ' In this cell model, every cell is occupied
by a single phase. The loose-packed structure appears
when any neighboring cells are occupied by the same
phase. When all phases have the same average density,
random distributions of phases give the probability w& of
finding a loose-packed structure

This criterion [Eq. (4.5)] gives, however, the largest degen-
eracy for which the close-packed structure or effectively
the same structure cannot be created. The smallest
growth rate is the most dominant one at low temperatures
(for certain system parameters). Therefore, the droplet
configuration which gives the smallest growth rate is the
most stable one at low temperatures near T=O. Thus
(4.5) is suitable at low temperatures. On the contrary,
(4.4) should be suitable at high temperatures. Thus w~
must be a function of temperature.

In recent papers, Sadiq and Binder have reported' an
observation on numerical simulation. The model which
they used is a lattice-gas model on a square lattice with
repulsion between nearest and next-nearest neighbors.
The ground state has fourfold degeneracy (p =4). The or-
der parameter (sublattice magnetization) is not conserved
in this system. They performed simulation in two ways,
i.e., by means of Glauber dynamics and by means of
Kawasaki dynamics. In Glauber dynamics the magneti-
zation of the Ising model is not conserved; in Kawasaki
dynamics it is conserved. The ordering processes should
be different in both cases. In the case of Kawasaki
dynamics, the extension of the ordered domain is caused
by the flow of particles in bulk. This corresponds to the
dynamics of a system with conserved order parameter.
Therefore the growth rate of the ordered domain in
Kawasaki dynamics would be the same as in the case of
the conserved order parameter. In the case of Glauber
dynamics, the growth rate of the ordered domain is found
to be (1.2) with a = —,

' . On the other hand, the growth rate
in the case of Kawasaki dynamics is not so simple. They
examined effective growth rates of energy at several tem-
peratures and at several quenching times in Kawasaki
dynamics. We may consider the change in the energy as
simply due to the change in the surface area. Their obser-
vations are as follows. (i) At low temperatures, the ex-
ponent y,ff, which may correspond to our exponent a, ap-
proaches zero with time, showing a locking-in. (ii) At
higher temperatures (except in the vicinity of the critical
point), the exponent y,ff increases from 0.27—0.28 to
about 0.35, and then seems to stay at the final value
=0.35. These values are, however, accompanied with
large error bars. (iii) At intermediate temperatures the ex-
ponent y,ff seems to fluctuate between 0.2 and 0.3. The
behavior of y,ff in region (i) can be explained if we assume
that the criterion (4.5), i.e., p & 2 is suitable. The thermal
force cannot apply and therefore the smallest growth rate
with a2 ——0 is the most dominant. The dynamics may be
described by (2.10) with a~ ———, and a2 ——0. In region (ii),
the criterion (4.4) is applicable. Since p =4 & 6, the
dynamics is described by (2.9) with a& ———, and a2 ———,.
the region (iii) must be an intermittent region where the
intermittent-growth-rate exponent ai seems to lie between

and —,'. Their observations are the same as in Fig. 3.
w~ should depend on the temperature, however. Why is



1058 HIROSHI FURUKAWA 30

the intermittent effect not observed in their simulation in
the case of Glauber dynamics? The reason might be as
follows. There is an ambiguity in the threshold value p,
at which the intermittency effect appears, namely,
d+1 &p, &z+1 (z =6 for d =2) [see (4 4) and (4.5)]. p,
strongly depends on the cluster shape and cluster configu-
ration. For Kawasaki and Glauber dynamics the cluster
shapes and cluster configurations might be different.
Thus the appearance of the intermittency in both cases

may be different.
Similar behavior, as in Fig. 4, is seen in a numerical

simulation done by Sahni et a/. ' The simulation was

done using the Potts model with attractive force for p =6
and 36 on a square lattice with nonconserved order pa-
rarneter. Due to high degeneracies both cases, p=6 and

36, exhibit locking-in at low temperatures near T=O.
Otherwise these systems are intermittent with ai ——ar2 ——0
at T=O. The increase in ai near T=O is due to the
switching of az from a2 ——0 to —,. This switching should

occur in a parallel way with certain probabilities wI and
Thus, near T=O, one might set aq ——OXwI

+ 3 w 2 3 m 2 ~ Assuming that there is an activation ener-

gy b, for the process with az ———,
' we may set

8 c

1+e
(4.6)

where b, is of the order of ks T, . Since this system exhib-
its the locking-in at T=O, the threshold value p, at low
temperature is smaller than z=6. For the sake of simpli-
city we neglect the temperature dependence of mI. In-
stead of this simplification, we set w

&
———, (w I & 1) for

p =6. This ensures the locking-in at low temperatures
and also gives the suitable value aII ——0.47 at high tem-
peratures. For p =36, (4.1) gives wI ———,. This gives

ai~ ——0.36 at high temperatures, which is in good agree-
ment with the experimental value. In Fig. 6 we compare
theoretical intermittent exponents with numerical simula-
tion. We note that the increase in the intermittent ex-

ponents near T=0 is due to the increase in a2. The tern-

perature dependence of w ~ is not important to this
behavior of the intermittent exponent. Here we have
chosen 6=0.4k& T, .

Sahni et al. also did the simulation using the Potts
model on triangular lattice. A part of their results was
examined in a previous paper. ' No temperature depen-
dence of the droplet growth rate exponent was observed
on the triangular lattice. ' On the other hand, the growth
rate exponent on a square lattice strongly depends on tem-
perature. This difference may be explained as follows.
On a square lattice kinks of interface are absorbed by ver-

tices. At low temperatures, therefore, the flexibility of the
interface is lost on a square lattice. ' On the other hand,
there are many combinations between kinks and vertices
on a triangular lattice. Some of the kinks can be absorbed

by vertices, but other kinks remain without being ab-
sorbed. ' Since there are many kinks in the initial disor-
dered state, and most of the kinks would remain in a
phase-separated state on a triangular lattice, the flexibility

0.5

04

0,3

0.2

0,1

0 0.2 0.4 0.6 0.8 1.0
T/Tc

FIG. 6. Temperature dependences of a» and ai2 given by

(3.5) and (3.9), respectively. Here it is assumed that wI ——
~ for

p =6 instead of neglecting the temperature dependence of wI.

wI for p=36 is given by (4.1), i.e., wi ——~. a2 is given by (4.6)

with 5=0.4k&T. Experimental data are taken from Fig. 15 of
Ref. 14(b) (Potts model with nonconserved order parameter on

square lattice). Data should be compared with a» at high tem-

peratures and with ai2 at low temperatures.

w& ——minIzn2, 1I, (4.7)

where nz is the density of a minority phase and is
equivalent to the volume fraction U. The intermittent-
growth-rate exponent is given by

ai &
——w'I + —,

' (1—w'& ) for d =3 (4.8)

which is, at most, about 10% larger than aI2, however. It
has been shown that this growth law agrees with experi-
mental data at intermediate temperatures. For lower

temperatures, the growth rate of the experiment in the
same range of volume fractions is given by a = —,. This

is, however, not unexpected. At lower temperatures the
intermittent region may be narrower, and the final growth
rate is R cc t'~ (in a classical fluid the exponent a2 ——0 is
impossible owing to the appearance of the solid state).

V. REMARKS

There are two factors which cause the intermittency in
the droplet growth. One is the existence of many compet-

of the interface would be maintained even at low tempera-
tures on a triangular lattice. For this reason the growth
rate of the droplet on a triangular lattice does not exhibit
temperature dependence, while it does on a square lattice.
The flexibility of the interface on a square lattice depends
on the density of the kinks, which are thermally generated—5/k~ T
with a probability such as e . For a triangular lat-
tice b, =0 due to the "conservation" of kinks. Such a fac-
tor would appear in the probability wI, though it is

neglected in Fig. 6.
For binary fluid mixtures the same intermittent effect

can be expected, since the largest growth rate due to the
curvature-driven force, i.e., R ~ t, is possible only if inter-
nal flows are induced. ' The internal flows are induced if
the loose packing occurs for a minority phase. The proba-
bility of finding a loose packing of a minority phase is
evaluated as
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ing growth mechanisms. The other is the existence of two
different switching processes of these competing growth
mechanisms. The phase diagram of the intermittency
(Fig. 2) is the analog of the phase diagram of the gas-
liquid transition (static). The fully intermittent region
(FI) corresponds to the coexistence region. The oc-
currence of the intermittency resembles the occurrence of
the condensation in the gas-liquid transition. This sug-
gests the existence of intermittent critical phenomena and
other phenomena found in the static phase transition.

We have given a discussion which is oversimplified in
order to obtain the temperature dependence of ai2 at low

temperatures [see (4.6)]. Such a discussion is only for a
temporay purpose and should be replaced by a more mi-
croscopic discussion such as vertex dynamics, ' which de-
pends on the basic lattice structure. The temperature
dependence of the intermittent-growth-rate exponent is,
therefore, sensitive to the lattice structure.
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