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The computer-assisted C-matrix, Lowdin-alpha-function, single-center expansion method in

spherical harmonics has been applied to the three-center nuclear-attraction integral (potential due to
the product of separated Slater-type orbitals). Exact formulas are produced for 13 terms of an infin-
ite series that permits evaluation to ten decimal digits of an example using 1s orbitals.

I. INTRODUCTION

Efforts continue to be made to facilitate the use of
Slater-type orbitals (STO's), or, more generally speaking,
exponential-type orbitals in problems of ab initio quantum
chemistry and molecular physics. ' Here, we apply our
method of computer-assisted single-center expansion in
spherical harmonics to the difficult case of the three-
center nuclear-attraction integral, which is the same as the
problem of finding the potential due to a charge distribu-
tion that is given by the product of separated STO's. Ear-
lier, partial results had been achieved for this integral by
the use of elliptical coordinates and transform methods.
We will make numerical comparisons with results recently
obtained by Trivedi and Steinborn in which a transform
method using the Steinborn B function is employed.

The initial work in single-center expansion methods
was carried out by Coolidge. A suggestive formulation
of this method with the use of coefficient matrices and
the a-function notation was introduced by Lowdin. An
essential simplification and the use of a "C matrix" was
given to the closed form of the a function by Jones and
Weatherford after its presentation by Sharma. Thus far,

I

computer-generated formulas have been produced for
two-center overlap, ' " Coulomb, ' hybrid, ' and ex-
change integrals some three-center Coulomb-type for-
mulas also have been generated. '

II. DERIVATION OF THE POTENTIAL

We place a STO, X„at the origin of our coordinate sys-
tem (r,8,$) to represent one of the factors of the expres-
sion for the electron density of electron 1:

N —1 /pi M
X,(1)=A,ri' e ' 'Yl '(ei, gi) . (1)

A, =(2$, ) ' [(2X,)!] '~ is the normalization factor;
N„L„and M, are the quantum numbers of the orbital;
and g, is the screening constant. We place the other fac-
tor Xb for the density of electron 1 in its local coordinate
system (R,6,$) that has been translated a distance u
along the z axis:

Xb(1) AbR i e Yl,
b

(ei '(( i)

In terms of the original coordinate system, the expansion
in spherical harmonics is as follows:

AbXb("= ~
0b

b

where

(2Lb+ 1)(Lb+Mb).
4n(Lb Mb )!— 4m(l +Mb )!

(21 + 1)(l Mb )!—
1/2

Mb Nb Lb M Mb
1 (0b 0b i)~l (| 1 (i 1)
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i —Lb —I —j
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For completeness, we write an expression that can be used to determine the C-matrix elements:

N+L+I N+I ' [(L+M)/2] L+M —2p L+M —2p —q [(I—M)/2] I —M —2p' l —M —2p' —q t t —k xpc (',j) "=
i =0 j=O P=0 q=0 u =0 p'=0 q'=0 v'=0 k =0 k'=0

r"( —1)"+~+~+~ (2L —2p)!(21—2p')! (N L—+2p+2q+2q')![(N L——2p+2q+2q' k ——k')!]
(L —p)!p!p'!q!q'!u!v'!(L +M —2p —q —v)! (l —p')!(L —M —2p' —q' —u')!k!

where

(4)

811d

x =N+L +2l —2p' —2U' —2U —k —k',

y =2(p'+u+v')+k',

t =N —L +2p+2q+2q' .

The symbols [ ] mean reduce to integer. [By multiplying by ( —1)'+ it is possible to have all positive elements. ]
We seek the potential at an arbitrary point (r2, 82, $2) due to the charge distribution X,(1)Xb(l). Thus

XgXbV(r2)= fdv!
r12

The Laplace expansion of 1 lr, 2 is

00

=4m. g g (2A, +1) 'r Ir +'Yx (8!,p!)Yx (82,$2),
r12 A. =O m =—A,

(6)

where r( is to be replaced by r1 or r2, depending on which is smaller, and r) is to be replaced by r1 or r2, depending
on which is larger. By making the appropriate substitutions in Eq. (5), the radial and angular variables separate and we
get

V(r2)=k, gg Y&(82,&,)g(» —1) ' (l +Mb )!

(2l + 1)(l Mb )!—

where

N —1 g P NbLbMb r (X r!dr&r&' e ' 'ai (gba, (br, ) & &
(A, , m ~L,M,

~
1Mb),

r 0

2l+1
4~

YI (8,$)=

i
1/2

A, Ab Mb (2Lb+1)(Lb+Mb)!
(Lb —Mb )!

b

and the angular brackets represent the angular integration over the product of three spherical harmonics, i.e., the Gaunt
coefficients. ' Let us examine the case of 1 s orbitals with screening constants of 1. Carrying out the algebra and using

1/2

P!(cosH), (&)

we get

with

V(r2, 82) = y Vj(r2)PI(cos82)
1=0

I+1 1+1 I

V~(r2)=2 g g C!(ij )u '+' f dr! r!e '
I !HJ(u, r&)r~

i =0 j=O r )
The integral can be reduced to a summation by employing formulas (slightly modified) from a standard integral table

f n n —k

~

~ ~

—wx n —!
( k 1)! ( ~)k —!

( ~)n —!
(12)

For formula generation we use a very simple form of computer algebra. ' For instance, the expression 4u r would be
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represented by the array element (2,3)=4. Hence, to multiply terms we multiply the coefficients and add the powers of
the variables separately. This can be expeditiously done under iteration. We end up with obvious functions multiplied by
computer-generated polynomial coefficients. The potentials for r (u and r )a must be determined separately. Here,
we examine the r (a case. For every I value we anticipate a formula with ten kinds of functions, each multiplied by a
polynomial in a and r. The ten functions are as follows: e, e "Ei(—2r), e y, e ln2, e lnu, e lnr, e
e e ', e Ei( —2a), and e Ei( —2u), where y=0.577 . (Euler's constant). Actually, only two functions appear
with nonzero coefficients for all l values, namely, e and e e '. Only in the cases of 1=1 and 2 must we consider
more than two functions. To be explicit, we write the formulas for l =0 and 1, dropping the subscript 2 on r:

Vo(r) =a '( —1/r +1.5 r+—r /3)e +u '(1/r +0.5)e "+uo( 0.5—/r +2 r)e—
+ (0 5/r)e " "+ '(1 0)e

Vi(r) =u (3.75/r 9+ 13—r + 1.Sr )e +u (6r)e Ei( 2r—)+u (6r)e lna+a (6r)e "lnr

+u ( —3.75/r 7.5/r—+1.5)e "+a (6r)e "Ei(—2u)

+a (3 75/r. 9+—r+1.5r )e +a (6r)e "Ei( 2r)+a —'(6r)e "lna

+u ( —6r)e lnr +u '( —3 75/r . 7.5/r —+1.5)e '+a (6r)e "Ei(—2a)

+a (1/r 3 4r /—3—)e +a (2r)e Ei( —2r)+a (2r)e lna

+a ( 2r)—e lnr+u ( —1/r 2/r+—1)e " "+a ( —2r)e"Ei( —2a) .

(13)

Vp =0.388 3304404 Vi =0.053 464 134 5

V2 ——0.007 004 740 9, V3 ——0.000 977 5904,
V4 ——0.000 148 745 9, V5 ——0.000024463 7,
V6 ——0.000 004 283 0, V7 ——0.000 000 787 3,
V8 ——0.000 000 1504, V9 ——0.000 000 029 6,
V&p =0.000 000 006 0 V& i =0.000 000 001 2

V&2 =0.000000000 3

Hence,
12

V(0.5,0') = g Vi ——0.449 955 373 9,
1=p

and

12

V(0.5, 180')= g Vi( —1)'
1=P

(15)

The lowest powers of a and r in the polynomials appear
to be —1 —1, with the highest power of u being 1 and the
highest power of r being l+2. For the values u=2,
r =0.5 we obtain

I

may run our program in a purely numerical mode and
only use 1.4 sec central processing unit (CPU) time (on the
Florida State University CDC-Cyber 170-760). For
higher accuracy we must generate exact formulas for Vi,
which for l = 12 requires 44 sec CPU time, but of course
these formulas need only be generated once and then put
on magnetic tape. To avoid intolerable cancellation errors
at high l values, the formulas must be expanded by
machine in a Taylor series. "

III. CONCLUSION

Although in some respects our method is formally
equivalent to the single-center method of Harris and
Michels and that of Barnett and Coulson ' (at least for s
orbitals), it is our insistence on algebra that is decisive.
The fact that the C-matrix elements are integers permits
exact formulas to be developed. The extensive use of alge-
bra gives us a penetrating insight into numerical calcula-
tions that allows us to proceed with confidence. Our
method gives us the ability to establish benchmark values;
the use of high-speed mass storage devices makes it possi-
ble to efficiently store and retrieve formula coefficients
for further developments.

=0.341021 3596 . (16) ACKNOWLEDGMENTS
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