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Elastic Scattering of Positrons from Hydrogen: An Optical Potential Calculation*
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The optical potential of Bell and Squires is used to formulate the problem of the elastic scatter-
ing of positrons from atoms. An application is made to the scattering of S-wave positrons from
hydrogen below the threshold for positronium formation. The single-particle states of the elec-
tron are chosen to be the hydrogenic solutions, while the positron states are obtained by using a
single-particle potential which includes the Hartree potential plus a model polarization potential.
Various models are investigated and a choice is made which effectively maximizes the calculated
phase shifts through second order in the perturbation expansion of the optical potential. Phase
shifts thus obtained yield approximately 67-80% of the difference between the static Hartree re-
sults and the variational results of Schwartz. Higher-order effects are evaluated using the tech-
niques of Kelly. Intermediate states of multipole l (3 are included.

I. INTRODUCTION

It is well known that in the scattering of low-en-
ergy positrons from atoms the distortion of the
atom by the incident positron gives rise to sub-
stantial effects on the scattering phase shifts. ' '
Various attempts have been made to take account
of this polarization phenomenon. The case of
S -wave positron-hydrogen scattering provides a
good test of these approaches since accurate re-
sults have been obtained by Schwartz in an exten-
sive many-parameter variational calculation.

One class of approximations is nonvariational
in nature. This includes the adiabatic polarized
orbital method' and the nonadiabatic extended po-
larization potential method of Callaway et al.
The former method' tends to overestimate the
S-wave phase shifts while the latter method' tends
to underestimate them. Because these nonvaria-
tional approaches do not yield a stationary prop-
erty of the phase shifts, attention has recently
shifted to variational methods, some of which yield
bounds.

The many-parameter variational approaches of
Schwartz, Hahn and Spruch, and Burke and Tay-
lor, ' are capable of yielding reliable results.
However, extension to more complicated atoms is
a formidable problem. The close-coupling for-
malism, ' " in which the first few lowest-lying
states of hydrogen are included, yields poor re-
sults, mainly because of the neglect of excitation
to the electron continuum which is of great impor-
tance in the hydrogen case.

This undesirable feature is partially eliminated
by a modification of the close-coupling formalism
which introduces localized pseudostates of the atom
that effectively represent the continuum. '

In considering the positron-hydrogen problem,
Perkins" has coupled pseudo-p and -d states to the
1s state of hydrogen. Two adjustable parameters

are used to maximize the lower-bound phase shifts.
Burke et al. have close-coupled pseudo-p and -d
states along with the 1s, 2s, and 2P states of hy-
drogen in a calculation of electron-hydrogen scat-
tering. The pseudostates used yield the exact
values of the polarizabilities o(ls- p- 1s),
a(ls- d- ls) and contain no adjustable parameters.
The main disadvantage of Perkins's approach" over
that taken by Burke et al. "is that his pseudo-P
state carries the much heavier burden of providing
an adequate representation of the 2p state as well
as the continuum p states.

One of the most fruitful approaches to the low-
energy scattering of positrons from hydrogen has
been formulated by Drachman using the lower-
bound principle of Gailitis. ' As discussed in Ap-
pendix A, this approach can be viewed in the con-
text of the optical potential formalism of Feshbach.
The Hilbert space of the atom is decomposed into
the ground state and the first-order perturbed
atomic state whichimplicitlyincludes all excited
atomic states. This method has recently been ex-
tended to the electron-hydrogen elastic scattering
problem by Oberoi and Callaway. " The success
of these calculations is heartening, although ex-
tension to more complicated systems requires ap-
proximations which destroy the lower-bound prop-
erties.

A completely different formulation of the elastic
scattering problem is the optical-potential approach
of many-body theory. As shown by Bell and
Squires, the optical potential is equivalent to the
self-energy of the single-particle Green's function
and can be represented by a perturbation expansion.
Brueckner and Goldstone ' have developed tech-
niques for representing these terms in diagram-
matic form. The method has been applied by Pu
and Chang to the problem of electron-helium
scattering and by Kelly+ to the problem of triplet
scattering of S-wave electrons from hydrogen.
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The main difficulty of this approach is that the nu-
merical work involved in the calculation is lengthy.
However, extension to more complicated systems
is straightforward. First-order and second-order
diagrams can be readily and accurately evaluated,
but higher-order diagrams can only be approxi-
mated in practice. For this reason it is desirable
to formulate the problem in such a manner as to
minimize these higher-order effects.

The objectives of the present calculation include
the extension of the many-body formalism to the
problem of the elastic scattering of positrons from
atoms, consideration of various possible choices
of the single-particle potential, and an investiga-
tion of the usefulness of this perturbative approach
to scattering problems when correlation effects
are large. In Sec. II we detail the extension of
the formalism to the problem of positron-atom
scattering. Section III contains a discussion of
the choice of the single-particle potential of the
positron, and in Sec. IV we present the results.
Conclusions and a summary are contained in Sec.
V.

II. FORMALISM

The application of the formal optical potential of
Bell and Squires' to the scattering of electrons
from atoms has been made by Pu and Chang
and Kelly. 3 4e briefly discuss the extension of
this formalism to the scattering of positrons from
atoms.

The total Hamiltonian describing an incident
positron and an atom of Z electrons is given by

H(A, x) = H„(A) + T,(x) —Q v( ix),
jul

where I„is the atom Hamiltonian

phase shifts. Here h is a zero-order positron
Hamiltonian and V„ is the optical potential; these
are obtained as follows.

The interaction between the particles can be ap-
proximated by single-particle electron and positron
potentials, V and V„respectively. We then de-
fine the zero-order Hamiltonians

h(x) = T,(x)+ V, (x), (6a)

H„'o'(A) =W[T(i)+ V(i)], (6b)

H'"(A, x) = h(x) + H„'" (A), (6c I

I. T(i)+ V(i)]4.(i) = .e4„(i),

[T,(x)+ V,(x)]g» (x) = e»P»(x)

(8a)

(8b)

form an orthonormal set.
The zero-order atomic wave function 40 '(A) is

chosen to be a Slater determinant formed from Z
single-particle states (It) „representing the ground
state of the atom. %e refer to these states as the
unexcited states.

Since the atom constitutes a system of identical
fermions, it is desirable to use the formalism of
second quantization. In this representation the
operators defined in Eqs. (6) and (f) become

g
H'„" = Q e„i)'„i)„, (9a)

from which one obtains the many-body perturbation

H'(A, x) = H(A, x) —H' '(A, x)
e g

=gQ v(ij) — v(ix) -Z V(i) —V.(x). (7)
j)) j~i j=1

The only restriction placed on the single-particle
potentials is that they be Hermitian so that the
single-particle wave functions

H„(A) =Q T(i)+Q Qv(ij).
Q)

h =Z»e»~»~», (9b)

T(i) is the sum of the kinetic energy and the nuclear
potential energy of the ith electron, T, is the cor-
responding quantity for the positron, and the two-
body interactions are given by

g2 g 2

v( ij)=, v( ix) =
lrj —r&l

' Irj -xl
The scattering equation of interest is

H(A, x)4(A, x) = (E„+z)q (A, x),

where E„ is the total energy of the ground state
of the atom and z is the energy of the incident posi-
tron. The optical potential formalism, described
below, replaces this many-particle Schr'odinger
equation with a single-particle equation,

[h(x)+ V„]ti(x)= cg(x),

the solution of which yields the exact scattering

H' = .L (pql v
I
mn) i)iii),'i)„i)

—~ & f'ql v
I
«»~iilin. &» 2(ql Vl n) q-ii)„

PqfKn Qn

(9c I

The electron operators pt and g satisfy the Fermi-
Dirac anticommutation relations as do the positron
operators A~ and ~. However g and X commute;
i. e. , we are not treating electrons and positrons
as antiparticles of one another. In the summations
gi,«, g~ „, only distinct matrix elements are
included. For example, & pq I v I mn) is not distinct
from (qpIvI nm) but is distinct from & pqlvlnm) .

Continuum solutions of the single-particle equa-
tions, Eqs. (8), are normalized as follows:
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P= r 'R(r)Yg (8, P)y

R(r)- cos[kr+5, —o(l+1)v] as r-~. (10)

Pith this normalization the summation over con-
tinuum states is replaced by (2/v) f" dk. o' In this
calculation bound states are summed up to princi-
pal quantum number N= 10. Higher states are in-
cluded using the estimation formula of Kelly. '

The single-particle Green's function can then
be constructed and from it one obtains the self-
energy or optical potential as shown by Bell and
Squires':

=0, (12)

we use the variational principle of Hulthen'~ which
yields a stationary property for the phase shift
although it does not give a bound. Constructing
a trial potential V, and its scattering solution

do 2z l (l +1)(Lc-t» )R» = — o+ + z + V, —t» R»
o o dr r o

=0,

we obtain the variational estimate of the phase shift

5 = 5g —(R» i
L —t»

i
R» )/Ko

=5, -(R,',~L-L,~R,' )/K,

= 6, (R» i
V, + V —-V,

iI
R~~ ) /Ko .

The normalization, Eq. (10), is assumed. One
can use different forms for the potentials V, and
V„but since the motivation for choosing each of

(14)

This sum can be represented by a series of dia-
grams in the standard fashion. The notation LP
refers to the fact that only those terms which are
linked and proper (as specified by Bell and Squires" )

are to be retained. The rules for evaluating dia-
grams need only minor modifications from those
used when all the particles are identical. 5 One
must distinguish positron lines from electron
lines. Ne use a double bar to indicate a positron.
The single-particle interactions are different de-
pending upon whether they are attached to a posi-
tron line (V,) or an electron line (V). Finally,
each two-body electron-positron interaction intro-
duces an additional minus sign to the over-all sign
of the diagram.

Rather than attempt to solve the scattering equa-
tion (5) with the complicated nonlocal optical po-
tential, Eq. (11), or the equivalent radial equation

do 2z l(L+ 1)(L-» )R» = — o+—+ o +V, +Voo-t» R»
&o o dr r

these potentials is the same, we identify V, with
V, . The result is then

V,.I Ko)/Ko ~

In Sec. III we discuss various possible choices
for the single-particle potential V, .

III. CHOICE OF SINGLE- PARTICLE POTENTIALS

(15)

-«ol V

(Kos I v I Kk) (Kk I v I Kos)
g~ %~+Kg -C~ —Cg

g (KonI v IK'k') (K'k' I v IKk) (Kk I v IKos)
»» (t„+ t» —t» ~ —t'o ) (t„+t» —t»'—to )
Ak' (16d)

(16a)

(16b)

(16c)

(Kos I v IK'k) (K' I V, IK) (Kk I v I Kyg)
(so+ f» - t» - to) (t~+ t» t»'- eo)

0 (16e)

The positron-atom problem has a computational
advantage over the associated electron-atom prob-
lem in that exchange diagrams involving the scat-
tered particle do not occur because the Pauli
principle does not enter. A serious disadvantage
is that correlation effects are generally larger
for the positron than for the electron. Therefore
one must judiciously choose the positron single-
particle potential to inct.ude as much as possible
of the correlation effects and minimize the higher-
order correlations. In particular, it is desirable
to choose V, such that it includes the screening
effect of all the atomic electrons and also includes
a model potential which approximates the polariza-
tion effects. The electron single-particle potential
V should be chosen to represent the screening of
Z -1 electrons (generally the lowest-lying elec-
trons). Such a choice gives rise to both bound
and continuum excited electron states. Pu and
Chang and Kelly~ chose a single-particle elec-
tron potential which did not give rise to bound
excited states. KeQy+ then found that second-
order effects accounted for about 7+ of the full
correlation effect in triplet S-wave electron-hy-
drogen scattering and about 60% of the dipole
polarizability. By estimating higher-order ef-
fects he was able to obtain good agreement with
the exact results.

For the application considered here, the scat-
tering of S-wave positrons from hydrogen, we
choose V= 0. The excited electron states Q, are
just the hydrogenic functions. Diagrams which
then arise, through third order, are shown in
Fig. 1. Only the two terms of H' in Eq. (9c)
which contain positron operators will contribute.
The perturbation expansion of the matrix element
(Kol V„ I Ko) gives the following terms through
third order:
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Ko' '

(a)

K Ko

~ %%%%%%

k n
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(c)

found to have no zeros other than at the origin,
and therefore there exist no bound states of the
zero-order positron Hamiltonian h.

IV. RESU LTS

iVith the choice V. = V„+ V(Bethe) the first-order
contribution becomes

0"
I

Lee m m w m aw a0

K r'i
~mmmmmg II

FlG. 1. Contributing diagrams to (&Ol ~Dpi p )
through third order.

Here we denote the hydrogenic ls state by n and
Vrr is the (attractive) Hartree potential

Vrr = —( n
~
v

~
n) .

The standard choice of V, is such as to make the
first-order corrections, Eq. (16a) plus Eq. (16b),
vanish. However, the second-order correlation
effect, Eq. (16c), is large in this case, and we
choose V, in such a manner as to partially com-
pensate for this polarization effect. Preliminary
calculations including first- and second-order
diagrams with intermediate states restricted to
the multipoles l & 3 were performed using four
choices of V,: (i) V. = V„, (ii) V, = V„+ V(Bethe)
where V(Bethe) is the adiabatic dipole polarization
potential, (iii) V, = V„+ V(Bethe)+ V(Heeh) where
V(Heeh) is the adiabatic quadrupole polarization
potential, (iv) V, = V„+ V(Buckingham) where

which is the sum of Eqs. (16a) and (16b). This
partially cancels the second-order matrix element
Eq. (16c). In Table I we list the various contribu-
tions to 5 through second order. These results
are subdivided into the multipole of the intermedi-
ate states, and further subdivided into contribu-
tions from bound excited states k(b) and from
continuum excited states k(c). Bound f states are
not included since their contribution is small.
Qfe estimate that an error of about 1% of the dif-
ference between the static results and the exact
results is made when one neglects multipoles
l & 4 in second-order. The second-order phase
shifts are also plotted in Fig. 2, One observes
that approximately 67-8(g of the total correlation
effect is accounted for in second order. This is
to be compared with the results of Hahn and Spruch'
who obtain 85-89%%u() of the full correlation effect

0.2

O. l

V(Buckingham) = —4. 5/(r +& ) (18)

and 4 is used as an adjustable parameter. A

value of &= 1.85 was found to maximize the second-
order results,

Choices (ii), (iii), and (iv) (with &=1.85) were
found to give essentially the same second-order
phase shifts, with V.= V„+ V(Bethe) giving slightly
larger values. However, choosing V, = V0 gives
decidedly inferior results at low energies. This
is illustrated in Fig. 8 where we plot 5,(Hartree),
5,(Hartree+ Bethe), 5 (Hartree), 5(Hartree+ Bethe)
and Schwartz's values for 5. 6 The agreement of
the second-order phase shifts for all model po-
tentials at the high-energy portion of the spectrum
implies that the variational method of computing
the phase shifts should be quite good away from
threshold. The results discussed in Sec. IV were
computed using the choice V. = Vz+ V(Bethe).
However, we shall refer to the difference between
the Schwartz result and the Hartree result as the
full correlation correction to the phase shift. The
zero-energy scattering solution to Eq. (8b) was

oo .

-0.2

-d3

-ai
o dI o2 as ao as oa av

K,(a",)

FIG. 2. S-wave positron-hydrogen phase shifts (in
rad). 6,= Schwartz results, &&= zero-order results,
and 6 =second-order results. H= Hartree single-(2)

particle potential, and H+B= Hartree plus Bethe single-
particle potential.
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Ko 0. 2 0. 5 0. 6

TABLE I. Contributions to the second-order S-wave phase shift (in rad) for positron-hydrogen scattering using
the single-particle positron potential V, = VH~&~~+ Vz+h~. The t value is the multipole of the bound (b) or continuum
(c) excited electron states.

0. 0 0. 1 0.3 0.4 0. 7

(f)
Voy

V'"(kt = co)

V.',"(kt = bo)

V'»(kt = c1)

V.',"(kt = b1)

V.'"(kt = c2)

Voy'(kt = b2)

V~»(kt =,3)

g(2)

-1.4587

2. 7803

-0.0544

-0.0950

-0.6956

-1.4705

-0. 1877

-0. 0250

-0.0494

-1.2561

0. 0982

-0. 2094

0. 0048

0. 0083

0. 0545

0. 1038

0. 0158

0. 0020

0. 0042

0. 0822

0. 1139 0. 0870 0. 0415

0. 0080

0. 0139

0 ~ 0785

0 ~ 1283

0. 0233

0. 0025

0. 0062

0. 0910

0. 0104

0. 0179

0. 0871

0. 1230

0 ~ 0255

0. 0022

0. 0068

0. 0635

0. 0125

0. 0214

0. 0890

0. 1106

0. 0251

0. 0018

0. 0066

0. 0218

-0. 2836 -0. 2964 -0. 2868

-0. 0102

-0. 2697

0. 0147

0. 0250

0. 0883

0. 0953

0. 0235

0. 0013

0. 0060

-0. 0258

-0. 0622

-0. 2509

0. 0171

0. 0291

0. 0860

0. 0814

0. 0214

0. 0010

0. 0053

-0.0719

-0. 1115

-0. 2327

0. 0198

0. 0345

0. 0826

0. 0705

0 ~ 0191

0. 0007

0. 0046

-0. 1123

K,= 0 entries are contributions to the scattering length.

(K k) g(Kpnl vIK'k)(K' I V, IK
g' &ft+ Cg «g

0
K,ni viKk)

(21)

using multipoles l & 3 and including all orders of
interactions.

The radial integrals were performed using8,„=45. The trial phase shift 5, and the first-
order matrix element, Eq. (19), were extended
to infinity using the technique of Levy and Keller.
A check on the numerical accuracy of the second-
order p and d multipole contributions was made
by simultaneously computing the adiabatic matrix
elements which are obtained by setting E„equal
to ez in the denominator of Eq. (16c). The re-

0
suits were compared to the matrix elements of
the Bethe potential and the Reeh potential and were
found to agree to approximately 0. 5%. The latter
figure then serves as our estimate of the numerical
accuracy of the second-order results.

Higher-order correlations involving multipoles
l & 3 are estimated using the third-order diagrams
according to the techniques devised by Kelly.
The most important intermediate electron states
of the second-order matrix element are 2s, 2p,
ks= 0. 5s, kp = 0. 5p, kd = 0. 75d, and kf~ 1.Of.
Bimilarly we find that the most important inter-
mediate positron states are given by ks= 0. 75m,
Kp = (0. 25+ 0. 8K,)p, Kd= (0. 75+ 0. 6K, )d, and
Kf = (1.25+ 0. 6KO)f.

For a particular l value of the excited states
K, k in Fig. 1(c), with K, k chosen to be the typical
excitations of importance just given, the ratios

t(K k) = + (KonIvIK'k')(K'k'IvIKk)
(Kpn v Kk)g'y' Cfl+ &g —Eg ~ —Cg ~

0

(20)

are constructed. The motivation for forming these
ratios becomes clear when one compares the third-
order matrix elements, Eqs. (16d) and (16e), with

the second-order matrix element, Eq. (16c). The

ratio t has been found by Kelly+' ' to be a reason-
ably accurate approximation for the ratio of the
ladder diagram, Fig. 1(d), to the second-order
diagram, Fig. 1(c). Similarly, a approximates
the ratio of Fig. 1(e) to Fig. 1(c).

In order to facilitate the discussion we subdivide

the contributions to the ladder approximation,
t (K, k), into its diagonal part and its nondiagonal

parts. For a given k the diagonal parts considered,

ts(k), are as follows:

k-2s- k —2s, k- ks- k —continuum s,
k=2p- k'=2p, k= kp- k'= continuum P, (22)

k = kd- k' = continuum d,

while the nondiagonal parts considered, t„v (k- k'),
are

k=2s- k'=all s (&2s); k= ks k'=bound s;

k=2p- k'=all s, all p(&2p), all d, all f; (23)

k=kP- k'=alls, bound P, all d, all f;
k =kd- k'= bound d.

A'e have not considered diagonal third-order cor-
rections for intermediate f and bound d states since
their contribution is small. Similarly, some (pre-
sumably small) nondiagonal third-order effects have
not been included [e.g. , t(s- d)].

In evaluating Eq. (21) the intermediate matrix
element, (K'I V, IK), diverges for K'=K if we let
R ~ approach infinity. " However, the integration
over K' removes this infinity. A similar phe-
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nomenon occurs for ta(k). Further, there is sub-
stantial cancellation between ta(k} and a(k). The
third-order ratios have been computed for the en-
ergies of interest. In Table II we list the results
for the single case KG=0. 3.

Higher-order corrections are estimated in the
following manner. Diagonal ladder diagrams can
be summed to all orders since the ratio of the
(n+ 1)th-order diagram to the nth-order diagram
is approximately given by ta(k)+ a(k). The net
effect is to modify the second-order diagram as-
sociated with the state k by the factor

[1 —t&(k) —a(k)] '. (24)

Nondiagonal third-order diagrams contribute a
factor'

[1 -t~(k) —a(k)] ' t„a(k- k')[1 —t~(k') —a(k')] '.
(»)

The transitions considered are given in Eq. (23).
A factor of 2 should be included for the E changing
third-order nondiagonal diagrams to account for
both k k' and k'- k. We also estimate some
small fourth-order diagrams of the type k- k'- k
which give rise to a factor

[1 —ta(k) —a(k}] ' t„a(k- k') [1 —tq(k} —a(k}] '.

TABLE II. Third-order ratios for K,=O. 3.
Transitions included are listed in Eqs. (22) and (23).

t~ (2s) + a(2s)

t~ (ks}+&(ks)

tD (2P) + a(2p)

tD (kp) + a(kp)

tD (kd) +a{kd)

tAD (2s s)

tprp (ks-s)

t pro (2P-s)

tpro (2P-P)

tpro (2p-d)

tpr g (kp—s)

t prD (kp-p)

t prD (kp-d)

t» (kp-f)

t» (kd-d)

-0. 5487

-0. 2808

-0. 0478

-0. 0017

0. 0627

0. 1188

0. 1461

-0. 0398

0. 0818

0. 0660

0. 0184

0. 0053

0. 0742

0. 0343

0. 0054

0. 0139

(26}

Using these estimates we compute a "coefficient
of enhancement, " C„ for each of the second-order
contributions listed in Table I. W'e have set C, =1
for bound d and continuum f contributions. The

TABLE IG. C, values.

Ko e(b0} C~(c0) C~(bl) Ce(cl) C (c2)

0. 0
0. 1
0. 2

0. 3
0.4
0. 5
0. 6
0.7

0.7262
0.7265
0.7216
0.7115
0. 6968
0. 6758
0.6425
0.5989

0. 8735
0. 8733
0. 8713
0. 8675
0. 8620
0. 8544
0. 8442
0. 8316

1.1260
l. 1521
1.1649
1.1644
1.1475
1.1237
1.1031
1.0822

0. 9956
1.0646
1.1181
1.1561
1.1755
1.1859
1.1963
1.2036

1.0646
1, 0754
1.0811
1.0817
l. 0755
1.0679
1.0627
1.0585

TABLE IV. Positron-hydrogen phase shifts (in rad).

Ko

0. 0'
0. 1
0. 2

0. 3
0. 4
0. 5
0. 6
0. 7

Hartree This work~

0. 5822
-0. 0580
-0. 1145
-0. 1682
-0. 2181
-0. 2635
-0. 3042
-0. 3400

-1.4091
0. 0996
0. 1187
0. 0938
0. 0488

-0. 0043
-0. 0540
-0. 1038

Hahn and
Spruch

0. 142

0. 076

-0. 029

Schwartz

-2. 10
0. 151
0. 188
0. 168
0. 120
0. 062
0. 007

-0. 054

~Including multipoles l «3.
"Ko= 0 entries are scattering lengths.

C, value for s and d states includes only the L non-
changing transitions as indicated in Eq. (23}. The
l changing corrections have been included in the
p-state C, value. These results are listed in Table
III. Explicit expressions for the C, values are
given in Appendix B.

The final value of the phase shift is then obtained
from

&= &, —[(Ko~ v'"~K )+ p, c,(i)(KO~ v,', '(i)~K )]/K,
(2'7)

where the summation runs over those contributions
to the second-order optical potential listed in Table
I. Table IV contains the results of our calculation
and compares them with the variational calculation
of Hahn and Spruch. ' The Hahn and Spruch results
include multipoles l & 3 and constitute an accurate
estimate of the best results one can obtain with
just these multipoles. (This is an intermediate
stage of their calculation. They extend the analysis
to multipoles l & 5 and successfully extrapolate
the contributions from the remaining multipoles. 1

The present calculation, which includes only
intermediate s, p, d, and f states contains about
8% less of the full correlation effect than the cor-
responding calculation of Hahn and Spruch. Sub-
sidiary calculations were performed in which only
s, p, d, and only s, p states were included. The
differences with the corresponding calculations
of Hahn and Spruch were 4 and l%%d, respectively.
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The good agreement of the results when only s, p
states are included suggests that the variational
approximation used here, Eq. (14), is sufficient
if the single-particle potential is properly chosen.
A'e believe the growing discrepancy with increasing
multipoles is due partly to the techniques used for
estimating the higher-order effects and partly to
the total neglect of fourth-order diagrams of the

type s- p- d, p- d -f, and p- p'- s, d where
the first transition is nondiagonal.

V. SUMMARY AND CONCLUSIONS

Ãe have calculated phase shifts for the S-wave
scattering of positrons from hydrogen using a
many-body optical potential. A single-particle
positron potential has been chosen which effectively
minimizes third- and higher-order correlations.
These higher-order effects are still large, and
present techniques seriously underestimate their
contribution. In the model problem where only

s,P, and d intermediate states are allowed to enter,
the present formulation agrees to within 5k of the
"exact" answer. ' This is consistent with the re-
sults of the triplet S-wave electron-hydrogen scat-
tering calculation of Kelly 3 where only these multi-
poles are important.

The contribution from multipoles l & 3 is known
to be large. Second-order contributions from
these multipoles have been found to be small in
this calculation. Attempts to estimate their con-
tribution in third and higher orders give substan-
tially smaller corrections than can be inferred
from the calculation of Hahn and Spruch. For
this reason we have not attempted to include multi-
poles l &4.

Virtual positronium formation is implicitly con-
tained in the many-body formalism used here.
Calculations of real positronium formation above
threshold ' indicate that the main contribution
comes from the P channel. We find little unusual
behavior of our S-wave results as we approach
threshold. The rapid rise of tD(2s)+a(2s) toward
the value -1 at threshold is the only sign of the
importance of virtual positronium formation in the
S channel.

The optical potential calculation of Drachman'
(see Appendix A) in which all multipoles are in-
cluded in a nonadiabatic manner gives excellent
results for the positron-hydrogen problem. How-
ever, extension of this formalism to the positron-
helium problem necessitated an approximation and
the results are somewhat poorer. We anticipate
that an application of the present many-body for-
malism to the positron-helium problem would give
better results than those obtained here for the
positron-hydrogen case. The substantially smaller
polarizability of helium implies that higher-order
correlations will be smaller and therefore any

errors made in estimating them would be reduced.
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h'(A, «) = —ZU(tx) —V, (x),
j=1

(A2)

which contains the two-body electron-positron
interactions and the single-particle positron po-
tential, which is chosen here to be the Hartree
potential

V, = V„= —Q (4 (A)
~

v (tx)
i

4? (A)) .
j=1

(A3)

4p is the exact ground state of the unperturbed
atom,

H„(A)4,(A) = E„4,(A). (A4)

The optical potential formalism of Feshbach" in-
troduces the projection operator

P =
i
4 (A) ) (4? (A)

i (A6)

and its complement

Q=1-P, (A6)

Re write the exact scattering equation, Eq. (4), in
the form

P(H —E„—&) (P+ Q) 4'=0, Q(H-E„—e)(P+Q)+=0.

(A V)
Eliminating Q4' we obtain for P+

(H,~
—E„—e)P+ = 0,

where

H, = PtLH —HQ[Q(E„+ e —H}Q] 'QH)P.

(AS)

(AS)

Equation (AS) is effectively a one-body scattering
equation for the function

q(x) = (4,(A)
~

v(A, x)) (A10)

APPENDIX A: OPTICAL POTENTIAL OF DRACHMAN

In this Appendix we recast the variational formu-
lation of Drachman into an optical potential for-
malism to facilitate comparison with the method

presented in this paper. The starting point is
the Hamiltonian of the interacting positron-atom
system, Eq. (1), which is separated in a different
fashion from the many-body formalism. Here we

write

H(A, x) = H„(A}+ h(x) + h'(A? x),

where H„ is the exact atom Hamiltonian, Eq. (2),
h is the zero-order positron Hamiltonian, Eq. (6a),
and h' is the perturbation
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(A11)

[H„(A) —E„]3v(A, x) = —h'(A, x)4 v(A) (A13)

whose solution yields the exact phase shifts.
In the manner of Gailitis' we consider now a

projection onto a subspace of the full space

R=P+Q,
where we choose

I 3v(A, x)) &3v(A, x) I

N(x) (A12)

Here 3v(A, x) is the first-order perturbed atomic
wave function which is the solution to

These are identical to the coupled equations ob-
tained by Drachman' who also projected onto the
space R = P+ g and used a variational technique.

An approximate nonadiabatic equation can be ob-
tained by formally expanding the integral operator
in Eq. (A21) about Vp, i. e. ,

[N(e —h)+ Vp —W —V„' V —V3]

/Vp —(1/Vp)[N(e h) W V, V V ](1/V )

and is made orthogonal to 4 v(A). The function N

is given by from which one obtains

(A23)

N(x) = &3v(A, x)
I
3v(A, x) ) . (A14)

Gailitis' has shown that the approximate optical
Hamiltonian

H, = P(H —H@Q(E„+e —H)Q) QH JP (A15)

H„=
I
43&(h+Ez+ Vp[N(e —h)+ Vp

—w -V„v —v, ]-' v, J &4,I, (A16)

where the potentials are defined as follows:

V (x}= &tv (A, x}
I
h'(A, x)

I
4 0(A) ),

W(x) = &3v(A, x)
I

—V (x)
I

gv (A, x)),
V (x) = &3v(A, x)

I
h'(A, x}

I
3v(A, x)),

V„(x)=&~(A, «)
I

—2v(x)
I ~(A, x)) .

(A17)

(A18}

(A19)

(A20)

Vp is the well-known polarization potential, 5' and
V„are nonadiabatic potentials, and V3 is a third-
order potential. Using Eqs. (A10) and (A16), the
approximate one-body equation which yields a lower
bound on the phase shift is

(h + Vp [N(e - h) + Vp —W -V„V —V, J
' V Jt}t(x)

= eg(x}, (A21}

which can be reduced to a set of coupled equations

will yield lower bounds to the true scattering phase
shifts for energies which lie below the lowest eigen-
value of QHQ.

Evaluation of A'„using the choice Q of Eq. (Al, 2)
is straightforward when Eqs. (A13) and (A14} are
used. The result is

[h+ (1+N) '(Vp+ V3+ W+ V„' V)]g= eg. (A24)

V.'."y(x) = ~ IK(x&& &n(i)
I
'(ix) Ik(i) & &Kki v

I
yn&

(
1 6g —Cgx

en e3 (e~ f3) (A25)

This is just the dynamic polarization equation of
LaBahn and Callaway" (neglecting the higher-order
terms N and V3).

The case of positron-hydrogen elastic scattering
provides a good test of this approximation. The
perturbed orbital so has been obtained analytically
and all the potential functions, Eqs. (A17)-(A20),
have been evaluated numerically. One obtains
that the nonadiabatic function 5' dominates at short
ranges. Therefore the expansion does not give an
adequate representation of the short-range behavior
of the optical potential. The approximation, Eq.
(A24), will be valid only when short-range effects
are known to be unimportant.

We now show how a similar nonadiabatic expan-
sion of the second- and third-order optical poten-
tial of many-body theory" also yields Eq. (A24)
which provides the desired link with the optical
potential used by Drachman. We consider posi-
tron-hydr ogen scattering and choose V,. = V„, which
causes the first-order diagrams to cancel. De-
noting the scattering solution to the optical Hamil-
tonian by g (which is not an eigenstate of h}, we
construct the second-order term V,', 'I}(x}as in
Eq. (16c) and expand the energy denominator,
treating E~-E~ as a small number,

(h —e)$ = —VpE,

[N(h —e) —Vp+ W+ V„~ V+ V3]E= —VpiI .
(A22) For the third-order terms we make the full adia-

batic approximation

]

V(3) Q IK'(x)) &n(i} I v(ix) I k'(i) &
&K'k' I v IKk) &Kk I v I gn&

rx' (e„ —e„ )(e„—e, )

IK'(x})&n(i) Iv(ix) I n(i}) &K' I vv IK) &Kklv I gn&

ICE ' (e~ —e3)2 (A26)
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The closure relations

r» IK(1)) (K(2) I
= ti(1-2), (A27}

Z. Ik(1) & &k(2)
I

+ In(i)& &n(2)
I
=6(1 —2), (A26}

and the corollary relation

Q»(e» —e» )IK(1)&&K(2) I
=[k(l) —e» ]6(1—2),

(A29)

along with the eigenfuncfion expansion of the per-

turbed orbital

~ I k(l})(k(3) I g(32) I tt(3) &

&a —~n
(A30)

can be used in a lengthy but straightforward cal-
culation to demonstrate that the resulting approxi-
mate optical potential V,", "P given in Eqs. (A26)
-(A26} reduces to precisely Eq. (A24) and there
fore establishes the connection with the optical
potential of Drachman.

APPENDIX B: ENHANCEMENT COEFFICIENTS

(B4)

(»)

In this appendix we give the explicit forms used for the C, values. The transitions included are given
in Eqs. (22) and (23):

C, (b0) =]1+t„s(2s- s)[l —to(ks) —a(ks}] + t »(2s- s)[1 —to(2s) -a(2s)] }[1—tn(2s) -a(2s)] ', (Bl)

C(c0) =.ttl+t„n(ks- s)[l —tn(2s) -a(2s)] +t s»n(ks- s)[1 —to(ks) -a(ks)] ')[1 —to(ks) -a(ks)] i, (»)
C,(bl) = (1 +t„n(2p- p)[l —ts(kp) —a(kp)] +t »(2p- p)[l —tn(2p) —a(2p)] +2t„o(2p- s)[1 —to(2s) -a(2s)]

+t a»n(2P- s)[1 —to(2P) -a(2P)] +2t»(2b d)[i-—tn(kd) -a(kd)] +t „o(2P- d)[1 —tn(2P) —a(2P)]

+2t»(2P- f}'f[1—tn(2P) -a(2P)] ', (B3)

C,(cl) = (1+t„n(kP- P)[l —to(2P) -a(2t)] '+tan(kP-P)[1 —tn(kP) -a(kP)] +2t„n(kP-s)[1 —to(2s) -a(2s)]

+t s»(kP- s)[l —to(kP) -a(kP)] '+2t„n(kP- d)[1 —to(kd) -a(kd)] '+t~»(kP-d)[1 tn(kP) -—a(kP)] '

+ 2t»n(kP-f) t[1 tn(kP) -a(kP)] -',

C,(c2)= (1+t„n(kd-d)) [1-tn(kd) -a(kd)] ' .
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Collisional ionization rates for C rv, N v, and 0 vr as well as for 0 v and Ne vri are deduced
from the time history of spectral lines emitted by these iona in a hot plasma. The plasma (in
the electron temperature range 100-260 eV) is produced in a 15-kJ theta-pinch device, and it
is analyzed using the light-scattering technique. The results are consistent with theoretical
calculations for 0 vr and with a semiempirical formula based on theoretical calculations for
hydrogenic iona but smaller by factors 1.5-2.

I. INTRODUCTION

Cross sections for ionization by electron impact
have been measured now for many neutral and some
singly ionized atoms. ' The technique usually em-
ployed is the crossed-beam method. Pith increas-
ing charge, such measurements become very diffi-
cult. Not only then are the cross sections decreas-
ing rapidly, but it also is more diQicult to obtain
suitable high-current ion beams. The cross sec-
tions for ionization of some doubly ionized atoms '3

appear, at present, to be the only ones measured
for higher ionization stages. Multiply ionized
atoms, however, are important in many laboratory
and astrophysical plasmas. In most of these appli-
cations only the corresponding rate coefficients are
needed. Such ionization-rate coefficients can be de-
duced from the spectroscopic analysis of a well-di-
agnosed plasma, as was shown for neon ions in a
stellarator discharge and for heliumlike C v in a
theta-pinch plasma. (Excitation coefficients have
been obtained by this method as well and will be the
subject of another paper. ) In Sec. II we present
ionization rates for ions of the lithiumlike and be-
rylliumlike isoelectronic sequences obtained with
a theta-pinch device.

II. THEORETICAL IONIZATION RATES

Theoretical cross sections for ionization from the
ground state, specifically of lithiumlike and beryl-
liumlike ions, have been calculated by Trefftz and
Malik for 0 vr and Ov using the Coulomb-Born-
Oppenheimer method and the distorted-wave ap-
proximation. Recently, Schwartz calculated the
ionization cross sections for Ovr for ionization
from the ground state as well as from the 2p excited
level in the Coulomb-Born II approximation. The

calculations include distortion, which was found to
increase the cross section by about 2PPO at 1. 5 times
the threshold energy and, to a lesser extent, at
lower and higher impact energies (for example,
only 13% at 5 times threshold).

The reduced cross section of Schwartz for the
ionization from the 2s level of Ovx agrees to within
10% with the reduced cross section for ionization
from the 1s level of a hydrogenic ion of charge
Z=128 as calculated by Rudge and Schwartz in the
Born-exchange approximation. The reduced cross
section for 0vr as given by Trefftze shows essenti-
ally the same maximum value; however, the peak
is shifted to lower energies and her cross section
is smaller at higher energies (e. g. , by 3(Pc at four
times threshold. ) Finally, the reduced cross sec-
tion for ionization from the 2p level as obtained by
Schwartz' is somewhat larger than that for ioniza-
tion from the 2s level (by - 31% at 1. 125 times
threshold and by -20/p at 5 times threshold).

Using an empirical formula with three free pa-
rameters, Lotz' approximated all experimentally
determined cross-section curves to within 10% and
predicted many unknown cross sections. For ions
four and more times ionized, his formula reduces
to one with a single free parameter, and then essen-
tially agrees with the calculations of Rudge and
Schwartz for a hydrogenlike ion with high Z num-
ber. Rate coefficients derived from the predicted
cross sections have been computed and are tabu-
lated in Ref. 11.

For many applications a simple expression of
general validity for the ionization rates would be
more desirable. A good starting point' is the well-
known effective Gaunt-factor excitation rate, where
the averaged Gaunt factor must now allow, of
course, for all electric multipole transitions.


