
908 A. G. de P INHO

not possible to note any tendency towards an in-
crease or a decrease of this ratio with the atomic
number.

A decrease in the slope of the K~/K -vs-Z curve
was observed by Hansen et a/. ' in the lanthanide
region. Tentatively this was attributed to the influ-
ence of filling the 4f shell. The same effect would
be expected in the actinide region where the 5f shell
is being filled. In this region, however, we have
only two points, for Th and U, and here the K~/K
ratios are equal within experimental errors. In
fact, this ratio was carefully measured in mercury,
giving 0. 275+0. 004. It rises gradually up to
0. 284+ 0. 005 in thorium and 0. 283 + 0. 005 in ura-
nium. This feature of the x-ray spectrum is very
interesting and should be studied in greater detail.

In these measurements the most important source
of experimental error is due to the efficiency curve
of the detector. The spread in energy between the
KL» andtheKO», x rays is about 14keV in mercury

and 21 keV in uranium. It is hard to reduce the ex-
perimental error due to efficiency differences be-
low l%%uo for the first interval and 1.S%%d for the second.

An attempt was made to resolve the transitions
from the Mzv-Mv and Nc» -Nzv v subshells in the
heavier elements. In Ra and U we found KM,v/KM„
= 1.1+0. 3 and KN&v v/K&rzz = 0.06 + 0. 03. The first
value is in good agreement with the theory.

Note added in Proof In .a recently published work

Hansen et al. [Nucl. Phys. A153, 465 (1970)] mea-
sured relative K x-ray transition probabilities at
Z = 96 from Cf decay. The reported values
KL„/KL„, = 0. 626+ 0. 006 and Kg /K~ = 0. 327+ 0. 010
are slightly below and above the calculated' values,
respectively. This agrees with the general tendency
shown by our measurements.
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It has recently been established that the radiative lifetime of the metastable 2 S state of
helium and the heliumlike ions is determined by single-photonmagnetic dipole (M1) transitions
to the ground state, rather than the two-photon process proposed by Breit and Teller. The
theory of nl —n'l M1 transitions with n & n' is developed in the Pauli approximation and ex-
tended to two-electron systems. Terms arising from relativistic energy corrections and
finite-wavelength effects are included. The results for hydrogenic systems are shown to be
identical to those obtained in the relativistic four-component Dirac formulation. The co-
efficients in the Z perturbation expansion of the 1s2s S-1s S M1 transition integral are
evaluated through ninth order and used to calculate the M1 emission probabilities from the
2 S state of the two-electron ions up to Fe xxv. The emission probability for neutral helium
is 1.27 &10 4 sec '. The results are compared with recent solar coronal observations by
Gabriel and Jordan, and with a measurement of the 2 S state lifetime in Ar xv» by Schmieder
and Marrus.

I. INTRODUCTION

The radiative lifetime of the metastable 1s2s 'S
state of helium and the heliumlike ions has been a
subject of controversy for some time, despite its
importance in a variety of astrophysical problems. '
Breit and Teller suggested that the state decays

primarily by two-photon electric dipole (2EI) emis-
sion, incorrectly estimating the single-photon mag-
netic dipole (Ml) process to be much slower. A
calculation by Mathisl yielded 2. 2 x 10 ' sec ' for
the 2E1 decay rate, a value used in the astrophys-
ical literature for many years. However, Drake
and Dalgarno showed Mathis's calculation to be
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based on an incorrect formulation of the problem,
and detailed calculations by Drake, Victor, and

Dalgarno and by Bely and Faucher reduced the

F1 decay rate to 4~10 sec '.
Gabriel and Jordan' stimulated further theoret-

ical work when they identified lines in the spectrum
of the solar corona as the 1s2s S-ls 'S transition
of the heliumlike ions Cv to Sixirr. The above au-
thors proposed that, contrary to Breit and Teller' s
conclusion, the 2 Sstate decays primarily by single-
photon magnetic dipole emission. Griem then dem-
onstrated that results roughly consistent with the
coronal observations could be obtained in the Dirac
relativistic formulation with wave functions approx-
imated by hydrogenic products of Dirac spinors.

In this paper, we evaluate certain "finite-wave-
length" contributions to the leading term of the M1
transition integral expanded in powers of the fine-
structure constant a, which have been omitted in
previous calculations. ' Further, it is shown that
an accurate calculation of the M1 decay rate using
correlated nonrelativistie wave functions is pos-
sible if the problem is transformed into the Pauli
approximation. The contribution to the transition
integral from the leading term in e vanishes and it
is necessary to retain terms of higher order than
those appearing in conventional radiation theory.
The higher-order corrections are derived and the
general Pauli theory of nl-n'l M1 transitions with

In4 n is developed for one- and two-electron sys-
tems. (Transitions with n =n do not require higher-
order terms to obtain a nonzero result. } A Z '
expansion technique described previously' '" is
used to calculate to high order the perturbation
expansion coefficients in the 1s2s 3S-1s2 'S tran-
sition integral. M1 decay rates are presented for
all the heliumlike ions through Fe xxv.

In the absence of nuclear spin, the M1 process
is the only possible single-photon decay mode from
the 2 S state, since radiation to the ground 'S state
involves a J=1-0 transition with no parity change.
The most efficient processes induced by a finite
nuclear spin are the following: electric quadrupole
(E2) decay due to the mixing of 'Dz states with the
2'S, state; and M1 decay due to the intermixing of
the 2 S, and 1'So states. As shown in the appendix,
these processes are slower by factors of
0(ma/(ZM}2) and may be neglected.

The first direct measurement of the lifetime of
a 2'S state has recently been reported in helium-
like Ar xvrr by Schmieder and Marrus, ' using the
Berkeley HILAC as an ion source in a beam-foil
experiment. Their measured mean life 172 ~ 30
nsec provides an important test of the theory.

photon as described by Akhiezer and Berestetskii.
Applications to magnetic dipole transitions with

n =n are further discussed by Mizushima. '3

Briefly, the vector potential for a photon in a state
of magnetic type with angular momentum L, com-
ponent M, and parity (-1} '' is

~L& ~(CIA+ 6 auL» ~

where

C(ac@ = (!f~/47fR} a e

a, ,s g, (~r/c) Y„„(r)
(2)

(3)

in units with 4mao —-1. R is the radius of a spherical
normalizing volume, S(d is the photon energy, Y«„
is a vector spherical harmonic defined by Y«»
=LYq/[L(L I+)] ', and@&, (x) is proportional to
the spherical Bessel function, having the power
series expansion

4v(fx)'
(2L+ I)!!i 2(2L+3) '

(2L+1)!!=Ix3x5x x(2L+1).
(4)

One normally retains only the leading term of (4)
since, except for x-ray transitions, the wavelength
of the emitted light is much larger than the atomic
dimensions, making &ur/c « I. Nevertheless, it
will be necessary to retain the leading tuo terms
in the present work to obtain all contributions to
the leading term of the M1-transition integral.

An arbitrary vector potential A& at the position
of the jth electron may be expanded in terms of the
above complete basis set as

A~= Z [c((ELM)0 Ls(j )+c~(&ELM)a.*,s(j)], (5)

(E —eV- p [mc p, +o(cp, —eA, )]

where the expansion coefficients c(ELM} and c~(&ELM)

are interpreted, respectively, as photon-annihilation
and photon-creation operators in the theory of the
quantized electromagnetic field. The spontaneous
emission af a single photon by an N-electron atom
is due to the first-order coupling between the atom
and the radiation field through the component

, tt~~s(j) of the total vector potential associated
with the creation operator.

We will consider in particular two-electron atoms
in an electromagnetic field specified by the nuclear
Coulomb scalar potential V~ = —Ze/r~ and the photon
vector potential A& ——ft ~~(j). In the Dirac 16-com-
ponent formalism, the stationary states satisfy'
[through terms of 0(a~) )

II. GENERAL FORMULATION

The calculation of magnetic dipole transitions is
formulated in terms of the theory of the spherical

where

+Bm —As) 4=0

V= —Ze/r, — eZr/3e+r/, z,

(6)
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H12 (e / 12 ) (al a2+ al ' rl2a2 rl2/ 12

fig =!Ls(a/2w —2. 97a /2 } 2 of 3Cf,
)w102

(9)

=2 "a'/972x (2.4169x 10 "sec) ',

and for two-electron ions, in the limit of large Z,

where

2(I, +1) }2L ls
Sf,(2r. +1)[(2L,-1)!!)',

(10)

. ft &c'(L, (2f, 1+)1
"'

[ qLe(i) ] i f
I&0 i42 f. +1

~

'Lf' +g' al.g++)dr,

(d is the transition frequency, and 4', and 4& are the
initial- and final-state Dirac wave functions (omit-
ting time-dependent factors). For an N-electron
atom, qL& is replaced in lowest order by
qLe =Z f" 1 ftLe(t'}.

Using hydrogenic Dirac wave functions' to eval-
uate (ll), the Ml 2s- ls transition integral is

( q10 }2s,1s a e~0z [ 20 ltd -
01 ltd + g (a }+ g (a z ) ]

(12)
where ao is the Bohr radius. The first term is the
relativistic energy correction arising from the ex-
pansion of the large and small components of the
wave function in powers of (aZ)2 calculated by
Breit and Teller. The second is a finite-wave-
length correction from the expansion (4) of g L(0fr/c)
and has not been previously included. Substituting
(12) into (10), the emission probability for one-
electron ions is

A(2s'$- ls'$) =tf '4(00/c)'i(qm)2„„ i'

ru =r1 —ra

o is the 4x 4 Pauli spin matrix, !Ls =ek/2mc = Bohr
magneton, and R& = V&&A& is the magnetic field. F
is the total energy including the electron rest-mass
energy 2mc, p~ and a& are the usual Dirac oper-
ators, P& is the momentum operator, a =e2/hc is the
fine-structure constant, 8» is the Breit interaction
operator, and Q~ is that part of the quantum electro-
dynamic self-energy correction which is linear in
K." As will be seen later, the contribution from
f4 is O(a) relative to the terms in the Ml transition
integral evaluated in this paper and is neglected.
Radiative corrections to Coulomb's law could also be
included in Ell. (7}, but again the contributions to the
transition integral are smaller by a factor of n.

The magnetic multipole transition moment is
then proportional to the matrix element of the per-
turbation operator —e+ ~ g~l~ between the initial
and final states. Specifically, Akhiezer and
Berestetskii show that the emission probability
for a photon in a state of magnetic type of angular
f., component M, and parity (-1) ' is

A(ls2s $- ls '$)=-', A(2s $- ls $)+O(a Z )

(14)
summed over final states and averaged over initial
states. The factor of -', is the ratio of statistical
weights for the 2s S and 1s2s S states. The hydro-
genic approximation (14) to the emission probability
for two-electron ions results from neglecting the
electron-mutual-interaction terms e /r, 2+8,2 in (6)
and is of low accuracy. The effects of the mutual-
interaction terms are more easily evaluated within
the Pauli approximation as developed in Sec. III.

III. MAGNETIC DIPOLE TRANSITION MOMENT IN

PAUU APPROXIMATION

The usual definition of the magnetic dipole moment
operator in the Pauli approximation is

H= UHDU—
eg

(1 6}

where U is the FW transformation operator and H~
is the Dirac Hamiltonian. The term involving
—ts/st vanishes if the external field is time inde-
pendent.

Writing

Af =aLs„(j}e'"' (17)

Ql =Ef!12( T f + &f) (15)

where L, is the angular momentum operator for the
jth electron and o, is the Pauli spin operator. Since
matrix elements of (15) vm. ish for nl-fl f transitions
with n4 n, it is necessary to obtain the correction
terms O(a2Z') with respect to (15). The O(a2Z )
corrections to the expectation value of the magnetic
moment operator in the 1s2s S state have been
evaluated by Perl and Hughes, ' assuming a constant,
uniform magnetic field. The operator contains ad-
ditional terms when one considers transition inte-
grals since finite-wavelength effects are important.

The general procedure for obtaining relativistic
corrections in the Pauli approximation is to elimin-
ate the contribution from the "small" components
of the wave functions to successively higher orders
in 0, 'Z' by repeated application of the unitary Foldy
Wouthuysen (FW}' transformation, as described
also by Messiah. However, Messiah's formulas
are applicable only to time-independent potentials
and must be modified since the photon vector poten-
tial A~ is in fact time dependent. The Hamiltonian
0 which governs the evolution of states in the Pauli
representation is of the form
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rrr =p, —eA, /c, (18)

H= H(1) + H(2) + 8,', ,

where

(19)

H(f)= ' "' —,, (o, rr, ), (o, rr, ), eV i-

the effective two-electron &amiltonian in the sec-
ond Pauli approximation obtained from a Inultiple
FW transformation is

The three terms of (21) in brackets are, respec-
tively, the mutual electron orbit-orbit, spin-orbit,
and spin-spin interactions arising from the 8,2

term of (6). H is defined such that the Pauli eigen-
functions may be taken as orthonormal up to, but
not including, terms of O(n Z ).

The perturbation operator responsible for M1
transitions is obtained by separating out of (20) and

(21) the terms linear in A. Making use of the
relations

, Co, v, )'
8m c

(2o)
((r A) (o B) =A B+io Ax B,

((r rr)2=r( —e(r X/c,

(22)

(23)

and

2
12 ( 12 &1) &2

12 2 2 2 &1 &2+ 2mcr, 2 X/2
and

(o r()' = Crr' —e(r 3C/c)', (24)

[Co,), [(o i), V)]=- V'V —2o ~ (Vvxo), (25)

+ ~Cr x
2 +r x ~ )mct' 12

+ p(r 3 r(Co( ' oa) 6 Crra)

(o m), (o 7r), i—
I

= (e/c) i(d v A —(e/c) (dK o+ (2e/c) i(dAx p, (26)

3(cr, r„) ((r, „)) (~))+~ (71
'

(X2
r12 +12

the linear interaction operator is

H„, =H„,(1)+H„,(2)+H„,(12),

where

(27)

H„,(j) = —(e/2mc) (p, A, +A, p ) —(e/2mc) o, 3C, (+e/8m c )[Pr (Pr ' A Ar+P&r)].

+ (e/8m c ) [p, (rr Kr], —(e /4m c )(rr V;VxA, + (e /8a)cm) (iV& A~ —(rr 3Cr+ 2i(rr ~ Ar xpr),

(28)

e3e
&

- -
& (r„A,)Cr„v, ) ~ C„")Cr„),))int 2m2 3 1 P2+P1 2 + 2m cg12 ~12

—(p() e /mc r(2) Cr(g Ag
' (7( + r2( Ar ' og)

The notation [, ], denotes the anticommutator.
For the L=1 case we have

Ar = (1/g)[ g, ((drr/c) Lr Y", (8r, &pr )]*,

(29)

andi from (11), Q,„=—(c/(o)(-', rr)' 'H„, . Using (28) and (29), the expression for the vector magnetic dipole
moment operator becomes

2;, (L, +o.)+, , p,. x(p, x(r, )+„((o/c)'[(r,x(r, x(r, ) r'( L +(r)]r-

Z2 2g~ ~ (d P~P r12X [ 1p X ((71+ 0'2)] + (r1X rp) r12 ' (P1+P2)
2 2 3 (r~x rgxog))+ 2 O'J + 2 (r, xp, ) —(r2xp, ) .mc x& 4mc 2mc x12 +12

(3o)

fn the above we have used (to the order required)

o ~ 3C = if[a +~(o ((d/c)2 (r x (r xo) —r o)]„, (31)

p A=H[L-~(~/c)'+L], (32)

o" rxA=K[rx(rxo)]„, (33)

and

i(o(fl(rr ~ A xp li& =i(f l[o ' A xp, H ]li&

= ff(f l p, x (p, x o, ) (ze'/r, ') [ P; x ( f-', x o, ) ]

+ (e'/r(2) [r(2x Cr(2" og)] li&e (34)
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for j=1, 2, where K=(&o/c) (f»)'~ and the notation

[R]„denotes the tensor components + (R, +R, )/W2

or R, for M =+1 or 0, respectively. In view of the
commutator relation (34), the operator (30) is cor-
rect only when applied to eigenfunctions of the non-

relativistic Hamiltonian H».
For the 2 S-1 'S transition of helium, the spin-

independent terms and terms symmetric in the

spin operators do not contribute because of the
orthogonality of the initial and final spin states.
The M =0 component of the magnetic dipole transi-
tion matrix element then reduces to

( 1 'S
I Q» I

2 S) = i&o ( 1 'S —(2/3m c ) ( f&, —
/)oz)

—,( &/dc)'(r
&
—r!)

+ (Ze /3mc ) (r, ' —ro')I 2 'S&,

tion-perturbation procedure of Scherr and Knight. ~'

Introducing the Z ' expansi~. }.s

&)&= g"'+& &)'"'Z"
n=1

(43)

gr gdp} q f in }Z-n
i=1

(44)

the zero-order function satisfies the hydrogenic
I quation

(H W&0)}q&o) 0

and the g'"', n &0, satisfy a series of perturbation
equations which are often solved by finding the sta-
tionary values of the functionals

&.=(g'"'I Ho —w"'I g'"'& +2(g'"'I v„—w"'I q&"

(35)
2n-1

—2 Z w'"'Z (c"'I c""-"-"& (46}

(36)

where

omitting the spin parts of the wave functions. The
terms in (35) represent a mixture of finite-wave-
length and relativistic energy corrections to the
magnetic dipole moment operator. "

In the limit of large Z, (35) is related to the

hydrogenic transition integral by

(1 SI @»I 2 S) - && 2 ( ls q, oI 2s),
X&

= (1 + P&o)r;ror &o e —a r& —Rro' (47)

q=n-v

with respect to arbitrary variations of g'"', assum-
ing that all the g' ' with m&n are known exactly.

In the formulation of Dalgarno and Drake, ' a
set of M orthonormal functions p, is introduced,
each of which is constructed from a linear com-
bination of M functions of the form

q&o
= gs [- 2f&'/3m c' —+~ (&dr/c)'+ Ze'/3mc'r]c, .

(37)

and satisfies

( 9&&
I

Ho q&&&
= e ' 5&, &

~ (48)

IV. NUM ER ICAL R ESU LTS FOR
T4'O-ELECTRON SYSTEMS

We wish to obtain accurate solutions of

(0„„—W) q~ 0= (38)

for the 2 S and 1'S states of heliumlike ians, where

HNR=Hp+ Z V-1

2 1 2 -1 -1
Hp = —

~ ~1 —
~ ~2 —&~ —&s

-1~12=&is .

(4o)

(41)

(42)

In the above, the unit of energy is Z~ a. u. and the
unit of length is Z 'ap. An efficient method of gen-
erating accurate solutions for the entire helium
isoelectronic sequences is provided by the varia-

Evaluation of ( ls l q, o l 2s) with nonrelativistic hydro-
genic wave functions yields —o.'eao7 (+zp 2 —~~, » 2 ),
in agreement with the result (12) obtained by ex-
panding the exact Dirac wave functions in powers of
n'Z'. From (13), (14), and (36), the averaged
emission probability from the 23S state of helium
is

A(2 S-I'S) =If 'o (&o/c)' ( I 'S
I Q&oI2 S)

I

(38)

(See Note added in proof. )

Here, P» indicates the exchange of the labels 1 and

2, with the + sign referring to the 1 'S state and the
—sign referring to the 2 3S state. The scale fac-
tors & and R are set equal to their hydrogenic val-
ues, i. e. , o=R=1 for the 1'S state and ~=28=1
for the 2'S state. Then one of the p„say p„ is
the exact hydrogenic iI~'

' with e; = 8" ', and the
remaining basis functions form a synthetic repre-
sentation of the excited states of Hp which, together
with y„ form a complete set. If we expand g'"' in
the finite basis set y, ,

M

(4S)
i its

and evaluate J„, demanding that its value be sta-
tionary with respect to variations of the a';"', it
follows that g'"' and W'"' are determined by the
recursion relations'

(
i 7

its s Ei P1 ~s—
(50)

n-1
w&~ =(g" &&I v

I

g&o&& —Q~ w&»&(g&" »&I p&o&&. (51)
P-1

Since the tt' ', ~n&n must be known exactly, the
above recursion relations lead to the exact solu-
tions only in the limit of a complete, infinite-
dimensional basis set. However, accurate results
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TABLE I. 1s2 S-ls2s S transition-integral expansion
coefficients.

Order Pi -P2

0.592 593
—0.295 69

0. 00625
—0. 034 00
—0. 032 06
—0. 029 11
—0. 025 95
—0. 022 92
—0. 021 19
—0. 020 39

r1 r22 2

—4. 213 992
—4. 2602
—3.122 9
—2. 0631
—1.326 4
—0. 8300
—0. 4796
—0. 1756

0. 1903
0. 6563

0.296 296
—0. 02147
—0. 022 11
—0. 02498
—0. 02422
—0. 022 56
—0. 020 59
—0. 018 69
—0. 017 48
—0. 01716

The matrix element of an operator 6 for an ion with
nuclear charge Z is (ls''S I 5 I ls2s iQ = 8p+6~Z +~2Z '
+ ~ ~ ~ + 6 P' ~, where the unit of length is Z ao.

are still obtainable in a finite basis set, with the
additional advantage that only a single matrix diag-
onalization of Ho is required [cf. Eq. (48)] to gen-
erate results for the entire isoelectronic sequence.

The above Z ' expanded wave functions were used
to calculate the coefficients in the Z ' expansions
of the matrix elements (1'Sl p~ —pal 23$),
(1'Slr f —r 2~12~$), and(1'SIr, ' —rz'123$). Both

the initial- and final-state wave functions were
constructed from the 47 basis functions of the form
(47) having a+8+ c&6 and c&4. The resulting
matrix-element expansion coefficients are given
in Table I, and the summed matrix elements and
M1 decay rates for the ions up to Fe xxv are
given in Table II. The expansions summed through
ninth order are sufficient to determine the matrix
elements for neutral helium to three or four sig-
nificant figures. For example, the Z= 2 values
from Table II, 0.438 44, - 7.4984, and 0. 274 12,
compare well with the values 0.43835, —7. 5022,
and 0. 274 06 calculated directly from 50-term
correlated variational wave functions constructed
from linear combinations of terms of the form (47),
but with n and 9 chosen to optimize the energy.

V. DISCUSSION

The He i Ml decay rate, 1.27&10"' sec ', is a
factor of 3 larger than Griem's estimate. ' How-
ever, Griem's estimates have an incorrect Z de-
pendence, causing the disagreement with his data
to increase with increasing Z. ' The correct Z'
dependence for the M1 decay rate has also been
derived by Freeman et al .

The Ar xvzz mean life (212. 7 nsec) lies above the

TABLE Q. ls2s S-ls 'S energy differences, transition integrals, and Ml decay rates for the heliumlike ions.

2

3
4
5
6
7

8
9

10

11
12
13
14
15
16
17
18
19
20

bS'(a. u. )b

0.728 50
2. 16918
4. 358 40
7.297 07

10.985 49
15.423 76
20. 61194
26. 550 07
33.238 15

40. 676 21
48. 86425
57. 802 26
67. 490 27
77. 928 26
89. 11625

101.0542
113.742 2
127. 180 2
&41.3681

p2/22

0.438 44
0. 492 90
0.518 37
0. 533 37
0 ~ 543 30
0. 550 36
0.555 65
0.559 76
0.563 05

0.565 74
0.567 97
0.569 87
0.57149
0.572 90
0. 574 13
0.575 21
0.576 18
0.577 04
0.577 82

Z2r2

—7. 4984
—6.0779
—5. 5126
—5.2099
—5. 0215
—4. 8929
—4. 7997
—4. 7289
—4. 6734

—4. 6287
—4. 5920
—4. 5612
—4. 5350
—4. 5125
—4. 4930
—4. 4758
—4.4607
—4. 4472
—4. 4351

1/(Zr)

0.274 12
0.285 32
0.289 03
0. 290 87
0.291 97
0.292 69
0.293 21
0.293 60
0.293 90

0.294 14
0.294 34
0.294 50
0. 294 64
0.294 V6

0.294 86
0.294 95
0.295 03
0.295 10
0.295 16

A& &(sec ~)

1.272 x10
2.039x10
5.618 x 10~
6.695 x100
4 856 x10
2. 532 x102
1.044 x10'
3.608 x 103

1,087 x10

2.935 x104
7.243 x104
1.658 x 105

3.563 x105
7.251 x 1Q5

1.408 x106
2. 622 x]06

4.709 x 108

8. 187 x106
1.383 x107

21
22
23
24
25
26

156.306 1
171.994 1
188.432 0
205. 620 0
223. 557 9
242. 245 9

0.578 52
0. 579 16
0. 579 75
0.580 28
0.580 77
0.581 23

An operator &is understood to mean 5
&

—62, with
elements. Atomic units are used except as noted.

—4. 4242
—4. 4143
—4. 4053
—4. 3971
—4. 3895
—4. 3826

the spin parts of the

0.295 22 2.275 x 107
0.295 27 3.656 x10
0.295 32 5. 751 x10
0.295 36 8. 870 x.10
0.295 40 1.344 x 108
0.295 44 2. QQ2 x10

wave functions omitted when calculating matrix

Nonrelativistic energy differences are used throughout. Relativistic corrections increase the A& & values by less than
1 or2% for Z& 20.
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quoted error limit in Schmieder and Marrus's'
experimental value, 172 + 30 nsec (95% confidence).
Relativistic corrections to the 23S-1 'S transition
frequency (&u) decrease the theoretical mean life
only by about 1% and cannot explain the discrep-
ancy. Also, the neglected terms in the transition
integral are of 0(o) and 0(a~Z~) relative to the
leading term and should not change the results by
more than 1 or 2%. The discrepancy, if real,
could be explained by an additional mechanism de-
populating the metastable states.

Freeman et al. ~~ have derived the M1 decay rate
of C & from observed coronal line intensities.
Their value (37 sec ') is in satisfactory agreement
with 48. 6 sec-' given in Table II. The above au-
thors deduced from their coronal observations the
semiempirical formula A, &=4.4 x10 X sec '
(X in A) for the decay rates along the isoelectronic
sequence. By chance, their formula comes re-
markably close to the exact asymptotic relation
A, &=4.4059 x10 X 'sec ', where A. is the hydro-
genic wavelength (A).¹teadded in proof It is .assumed in this paper
that, in the absence of interparticle interactions,
the two-particle FW Hamiltonian is a sum of one-
particle Hamiltonians. R. A. Krajcik and L. L.
Foldy [Phys. Rev. Letters 24, 545 (1970)] have
recently found some additional nonadditive terms
arising from a transformation associated with
center-of-mass motion. These terms, although
of the right order in n, can be shown to make no
contribution tothe magnetic dipole transition
operator.
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APPENDIX: NUCLEAR-SPIN-INDUCED
TRANSITIONS FROM 2 5 STATE

The photon-emission probabilities for transi-
tions of both the ML and EL types are determined
by formulas of the form

2(f. +1) 2L+1 ', 2

pp EL I (2f I)[(2L I}t t]R c 4L or EL

where Q is the appropriate transition integral.
Q„z is 0(aZ- ') and Qz~ is 0(Z ) for allowed
transitions, whereas the inhibited 2 S-1'S M1

transition integral is 0(&3Z~). Since 'Dz' states
connect directly with the ground state through an

E2 transition, it is necessary to estimate the
nuclear-spin-induced mixing of 'Dz states with the
2'S, state. E1 transitions to the ground state need
not be considered because the upper state is of
odd parity. Since all the fine- and hyperfine-
structure interactions are parity conserving, they
mix the 2'S, state only with states of even parity.

The hyperfine-structure Hamiltonian is

H„„=—2 ps Q (- f v(o,. ~ pz)5'~'(r&) —(I/r &)L&
~ pi

f =1,2

+ (I/2r, )[op ' 4z 3(&, 'ry)(pz ' ry)/& j]) (A2)

where p, l = —gip, „I is the nuclear magnetic moment.
H„„may be thought of as a first-order perturbation
operator mixing ' "L states with the 2 S state
with mixing coefficients

(2'S~ H~,
~

""'L}/[E(2'S)—E(' "f.) ]

We need consider only the 'Dz states since no others
connect directly with the ground state through an
E2 transition.

The terms of (A2) are, respectively, the Fermi
contact term, the nuclear-spin-electron-orbit
term, and the nuclear-spin-electron-spin term.
Only the nuclear-spin-electron-spin term is ef-
fective in connecting S and D states because the
spatial part of the operator transforms as a spher-
ical tensor of rank 2. The mixing coefficient
(2'S

~ H~, l n 'D}/nE is then of 0(o'Zm/M), where
m and M are the electron and nuclear masses,
and we have included the scaling with the nuclear
charge Z. From (Al), the nuclear-spin-induced
E2 emission probability is of 0(& Zam~/M2), which
is smaller than the M1 emission probability by a
factor of 0(m /(ZM) ).

Similarly, the mixing of the 2 S, state with the
final 1'So state by the Fermi contact term allows
the 2 $-1 'S M1 transition to proceed by the nuclear-
spin mixing path. Although the 2 S-2 S M1 tran-
sition integral is 0(o'), the over-all process, in-
cluding the nuclear-spin mixing coefficient, is
less probable than the direct 2'$-1'S M1 transition
by a factor of 0(m /(ZM) ).
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Measurements of Lowest''-State Lifetimes of Gallium, Indium, and Thalium
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The lifetimes of the gallium 5 S&/2 state, the indium 6 Sf/2 state, and the thallium 7 Sf/2
state were measured using the zero-field level-crossing (Hanle-effect) technique. The life-
times obtained were (6.8+0.3) &&10 9, (7.0+0.3}x10, and (7.45+0. 2) &&10 sec, respectively.
Anomalous contributions to the level-crossing signals, from the wavelength dependence of the
exciting light intensity and self-absorption by the fluorescing atomic beam, were investigated
in detail.

I. INTRODUCTION

A short time ago most measured or calculated
atomic oscillator strengths were of uncertain re-
liability. Fortunately this situation is rapidly
changing as a result of more numerous efforts and
some different approaches. The increasing em-
phasis on direct lifetime measurements, rather
than on oscillator strengths times vapor density,
has freed the measurements from vapor-pressure
and plasma- condition uncer tainties. Increasing
computer capabilities have allowed more sophisti-
cated wave-function calculations. Almost as im-
portant, the available experimental and theoretical
information is very efficiently utilized by Wiese and
his collaborators, ' who make extensive studies of
regularities and consistencies.

At the moment, accurate lifetime measurements
for the upper state of the principal resonance lines
of the group-I and -II elements have been made by
two independent techniques, level crossing or mag-
netic resonance and phase shift. Theagreements
are almost all within the quoted experimental un-
certainties, which are typically a few percent. A
variety of relative oscillator-strength measure-
ments, which are independent of vapor density,
can be normalized to these resonance-line values
to provide an impressive number of reliable oscil-
lator strengths for these elements. ' The measure-
ments reported here allow several of the group-III
elements to arrive in this same category of reli-
ability. For these group-III elements as well, many
relative values can be tied down with a single good
lifetime measurement, while the lifetimes measured


