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Correlation energies for M-shell and mixed LM-shell electron pairs have been computed

for the ground states of the atoms listed in the title.

For open-shell atomic states, one-elec-

tron effective correlation energies are also computed. The method used is a formulation of
Brueckner’s theory in which one- and two-particle Bethe-Goldstone equations are solved by

a variational procedure that uses N-particle trial wave functions expressed as linear combina-
tions of Slater determinants. Individual pair-correlation energies are computed to an expected
accuracy of a few percent, based on previous calculations on L-shell atoms. The computed
correlation-energy data are used to analyze the various energy contributions to the first

ionization potentials of the atoms considered.

I. INTRODUCTION

This paper extends calculations of electronic-
correlation energies to atoms of the third chemical
period, using a method applied previously to atoms
of the sezond period. ! The method used is an appli-
cation of Brueckner’s many-particle theory® to the
electronic structure of atoms. For closed-shell
states, as in the case of the 'S ground states of Mg
and Ar considered here, the only difference of the
present work from the Brueckner theory is the use
of a Hartree-Fock set of electronic orbitals, avoid-
ing the higher level of self-consistency implied by
Brueckner’s original formulation. This use of Har-
tree-Fock rather than Brueckner self-consistency
for electronic theory has been discussed some time
ago.® The essential aspect of Brueckner’s theory
that is used is the independent solution of two-par-
ticle equations for each pair of occupied orbitals in
an assumed Fermi sea. This procedure is charac-
terized by Gomes et al. * as the “independent-pair
model. ”

The two-particle equations of Brueckner’s theory,
embodying the independent-pair model, were first
derived as differential equations by Bethe and Gold-
stone, ° and are commonly known as Bethe-Gold-
stone equations. Several forms of these two-par-
ticle equations have been discussed in the extensive
literature on Brueckner’s theory. In the original
formulation of Brueckner, the two-particle equation
took the form of an integral equation.? The equiva-
lent differential equation, with an orthogonality con-
straint, was derived by Bethe and Goldstone.® The
Bethe -Goldstone equation was shown to be equivalent
to a sum of so-called ladder diagrams in many-par-
ticle perturbation theory by Goldstone. 8 The two-
particle variational equation proposed by Sinanoglu’
and referred to by him as an “exact-pair” equation
is equivalent to the Bethe-Goldstone equation as

given for atomic electrons by Szasz, 8 except for a
possibly unimportant difference in treatment of the
residual one-electron perturbing operator. ®

In the present work, this formalism is recast as
a many-particle method, involving a hierarchy of
variational calculations equivalent to the usual
Bethe-Goldstone equation at the two-particle level
of the hierarchy.'*!! The only aspect of this for-
malism used in the calculations to be reported here
that represents any conceptual advance over the
Brueckner theory is the treatment of one-electron
energy effects in open-shell atomic states. This
requires one-particle Bethe-Goldstone equations,
defined in a consistent way as the one-particle level
of the hierarchy of equations considered in the pres-
ent work.

Previous calculations of electronic pair-correla-
tion energies have been carried out on Be 12 and the
252 valence pair of several atoms, '* using Sina-
noglu’s method. The present method has beenapplied
to correlation energies in ground states of atoms
from Be through Ne'? and to calculations of hyper-
fine-structure constants. '' The calculationsto be re-
ported here extend this work to one- and two-elec-
tron correlation energies affecting the M -shell va-
lence orbitals (3s and 3p) of the ground states of
atoms from Na through Ar,

II. METHOD OF COMPUTATION

If a Fermi sea is defined for N electrons by the
occupied orbitals of a reference-state Slater deter-
minant ¢,, the Bethe-Goldstone equation for pair
ij is a two-particle Schrodinger equation, con-
strained by requiring the wave function to be orthog-
onal to the N-2 occupied orbitals ¢, of &, with &
#ior j.® This is equivalent to a variational calcu-
lation with an N-particle trial function® '°
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TABLE I. Exponents used for orbital basis sets.

¥4 Atom {r Ly

11 Na 3.191 1.035
12 Mg 3.565 1.228
13 Al 3.939 1.421
14 Si 4,313 1.614
15 P 4,687 1,807
16 S 5.067 2,006
17 Cl 5.447 2.204
18 Ar 5,826 2,403

In the notation used here, a Slater determinant ob-
tained from ¢, by replacing occupied orbitals ¢,,
¢4y... (i<j... £N) by unoccupied orbitals ¢,,
®p,...(N<a<b...), chosen from a postulated
countable complete set of orbital functions, is
denoted by ®§5::: . In Eq. (1), the summations
extend over all values of the indices a and b, but
indices 7 and j are fixed and denote specific occu -
pied orbitals in ®,. The summation over ab denotes
a double sum with a<b.

A first-order or one-particle Bethe-Goldstone
equation is defined to be equivalent to a variational
calculation with trial function

\y£=¢0+2u ‘b? CT! (2)

where index ¢ is specified, but a takes on all possi-
ble values.

The coefficients such as ¢} or ¢ are obtained as
components of an eigenvector of the matrix of the
N-electron Hamiltonian H over the set of Slater de-
terminants included in the variational trial function.
This reduces the Bethe-Goldstone calculation to a
straightforward configuration-interaction calcula-
tion. As indicated by Eq. (1) or (2), it is conve-
nient to normalize the wave function by setting the
coefficient of ¢, equal to unity. The reference state
¢, is a Hartree-Fock determinant computed with
the usual symmetry and equivalence restrictions for
open-shell atomic states. '*

In practice, the set of unoccupied orbitals ¢, is
finite. Orbital sets are used that can be extended
to completeness, and this extension is carried out
until computed quantities are observed to stabilize

within a specified error. The pattern of basis trun-
cation used here is expected to give errors no
greater than 0. 001 Hartree a.u. (ez/ax for atom X)
in the largest pair-correlation energies.

The energy eigenvalue computed directly for trial
function ¥;,... is the gross energy increment
AEy..., an energy mean-value correction relative
to the Hartree-Fock energy Hy,. The net increment
€;;... is defined as the difference between AE;,...
and the sum of all net increments of lower order,
with indices that are a proper subset of the indices

ij... . For example, the net energy increment for
pair 2,5 is
€5=OEp; —ey—es, ®)

where AE,; is the directly computed lowest eigen-
value of the configuration-interaction matrix for ¥,s,
and e, and e are net increments obtained from first-
order Bethe-Goldstone equations for ¥, and ¥;, re-
spectively. If carried to Nth order, this method of
bookkeeping gives the exact correlation energy (en-
ergy in addition to Hgy)

AE=03 e+ €13+ 2 Cip+*** €1.o.n. (4)

Each net increment has been shown to be equivalent
to a particular sum of Goldstone diagrams in the
formal linkedcluster perturbation theory, ® summed
in each case to infinite order.! Thus, the decompo-
sition of the correlation energy in the present method
is essentially different from that implied by pertur-
bation theory, although both methods eventually con-
verge to the exact result.

The atoms considered here have single-determi-
nant wave functions in their ground states, if M, and
Mg are taken equal to L and S, respectively. The
constraints inherent in the traditional Hartree-Fock
method introduce one-particle configuration-inter-
action matrix elements for states other than 'S,
These matrix elements, which cannot be eliminated
without destroying the spherical-symmetry proper -
ties of the Hartree-Fock orbitals, lead to nonzero
one-particle net-correlation-energy contributions.
The configuration-interaction matrix is constructed
in a basis of Slater determinants, taking into account
only the quantum numbers M, Mg, and parity.

TABLE II. One-particle net increments of correlation energy e; in Hartree units (ez/ax) for atom x.

i Na(S) Mg('S) Al(2P) Si(P) P(‘s) Sep) C1¢P) Ar(ls)
3sB -0.0 —0.000382 - 0.000457 -0,000177 —0.000692 —-0,000649 -0.0
3sa 0.0 -0.0 —~0.000516 —0. 000593 ~0.000141 - 0. 000455 ~0.000422 -0.0
3p_B -0.0
3poB ~0.000096 -0.0
3p8 ~0.000631 ~0. 000096 -0.0
3p-¢ -0.0 - 0.000150 -0,000215 -0.0
3poc -0.0 -0.0 ~ 0. 000387 ~0.000193 -0.0
3p -0.0 -0.0 —-0.0 ~0.000150 -0.000215 -0.0
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TABLE III. Two-particle net increments of correlation energy e;; for LM pairs (Hartree units).

ij Na(®$) Mg(1S) Al(P) SiCp) P(s) sép) C1¢p) Ar('s)
2spB 3sB -0.000271 —0.000371 —0.000441 —0.000494 —0.000481 —0.000447 ~—0.000397
2sa —0.000546 —0.000762 —0.000909 -0,001 013 —0.001062 —0,001074 —0.001069
2p.4B —0.001410 -0.001707 —0.001897 -0.001985 —0,001677 —0.001341 —0.001057
2pB —0.001419 -0.001753 —0.001873 —0,001996 —0.001839 —0.001333 —0,001061
2pB -0.001410 -0.001707 —0,001897 —0,.001985 —0.001788 —0.001561 —0.001057
2p_a ~0.001737 —0.002171 —0.002440 —0.002474 —0.001991 —0.001703 —0.001588
2pa —0.001750 —0.002216 —0.002330 —0.002488 —0,002278 —0.001919 —0.001593
2p0 -0.001737 -0.002103 —0.002352 —0,002474 —0.002379 —0,002206 —0,001588
2sB 3sa —0,000360 —0.000546 —0,000715 —0.000817 —0.000871 —0.000952 —0.001019 —0,001069
2sa -0.000178 —0.000271 -—0.000331 —0.000346 —0.000331 —0,000365 —0.000379 —0.000397
2p_48 -0,001321 —0,001737 -0,001756 —0,001658 —0,001604 —0,001753 -0,001699 —0,001588
2p8 -0,001333 —0,001750 —0.001929 —0.001805 —0.001610 —0,001683 —0,001580 —0,001593
2psB -0.001321 —0.001737 —0.002027 —0.002006 —0,001604 —0,001561 —0.001596 —0,001588
2p_a -0.001113 —0.001410 —0.001378 —0.001258 —0,001031 —0,001051 —0,001067 —0,001057
2p . —0.001122 -0,001419 —0.001509 —0.001238 —10.001036 —0,001074 —0.001055 —0,001061
2p -0,001113 —0.001410 -0.001479 —0.001396 —0.001031 —0,000929 —0.001067 —0.001057
2sB 3p.4B —0.000559
2sa —0.000775
2p.4B —0.000561
2poB —-0.001212
2p4B —0.001485
2p_,a —0.001607
2p0a —0.001413
2p,a —-0.002015
2spB 3peB —0.000516 —0,000559
2sa —0.000728 —0,000775
2p.4B -0.001257 —0,001209
2pB —0.000790 ~—0.000843
2p4B —-0.001133 —0.001209
2p. —0,001318 —0.001411
2pg0 —0.002067 —0.002224
2p —0.001323 —0.001411
258 3p4B —0.000380 —0,000535 —0.,000559
2sa —0.000682 —0.000760 —0.000775
2p_4B —0.001491 —0,001560 —0,001485
2pB -0.001264 —0.001145 —0.001212
2p4B —0.000404 —0.000548 —0.000561
2pqa —0.001696 —0.001888 —0.002015
2py —0.001213 —0,001336 —0.001413
2p —0.001385 —0,001537 —0.001607
2sp 3p_y -0.000598 —0.000546 —0.000729 -0.000775
2sa —0.000402 —0.000461 —0.000517 —0.000559
2p.4B —0.001370 —0.001602 —0.001646 —0.001607
2pyB -0.001218 —0,001467 —0.001345 —0.001413
2p48 -0.001687 —0.001645 —0.001918 —0.002015
2p.q —0.000454 —0.000489 —0.000536 —0.000561
2pc —0,000985 —0,001080 —0.001155 —0.001212
2pya -0.001203 —0.001315 —0.001420 =—0.001485
2sB 3pya —0.000498 —0.000599 —0.000683 —0.000726 —0.000775
2sa —0.000329 —0,000402 —0,000382 —0.000510 —0.000559
2p_48 —0.001035 —0.001215 —0,001444 —0.001436 —0.001411
2poB —0.001566 —0.001856 —0.002206 —0.002084 =—0,002224
2p.8 —0.001037 -=0.001215 —0.001260 —0.001333 —0.001411
2p_4a —0.000927 —0.000982 —0,000993 —0.001144 —0.001209
2po —0.000589 —0.000681 —0,000755 —0.000792 —0.000843
2pa —0.000848 —0.000982 —0.001082 —0.001144 —0.001209




90 R. K. NESBET 3
TABLE III. (continued)
ij Na(%s) Mg('S) A1(P) SiP) P(‘s) sép) C1(p) Ar('S)
2sB 3py —0.000372 —-0.000510 -0,000598 —-0.000681 —0,000745 -—0,000775
2sw —0.000241 —-0.000336 —0,000402 —-0,000345 —0,000517 -0,000559
2p_4B —0.001092 —0.001437 -0.001687 —0.001950 -0.002035 -—0.002015
2p,B —0.000801 —-0,001040 -0.001218 —0.001468 —0,001346 —0.001413
2p4B —0,000893 -0,001179 -0,001370 -0,001418 -0,001537 -0,001607
2p_qa —0.000877 —0.001141 -0.001203 —-0.001192 -0.001420 -—0.001485
2P —0.000719 —0,000851 —0.000985 —-0.001074 -0.001155 -0.001212
2pa —0.000319 —0.000404 —0,000454 -0.000495 -—0.000536 —0,000561

The lowest eigenvalue and eigenvector are obtained
by a rapidly converging iterative algorithm.®

Orbital basis sets capable of giving a reasonable
approximation to an atomic Hartree-Fock calcula-
tion, using the matrix Hartree-Fock method, '® are
extended by including additional orbitals in the form
of exponential functions e'~*” multiplied by powers
of 7 and by spherical harmonics. Optimal values of
the exponent { were determined by preliminary cal-
culations on Mg, Si, and Ar. Different values of ¢
were used to represent perturbations of atomic or-
bitals with different principal quantum numbers n.
Exponents ¢, and ¢, were obtained variationally for
virtual excitations of the L and M shells, respec-
tively, of Mg, Si, and Ar. Exponents for the other
atoms considered here, listed in Table I, were ob-
tained by linear interpolation. Virtual excitations
of the K shell were not considered.

Orbital basis sets used in the present calculations
have the same structure as those used previously for
the atoms Be through Ne.! The basis sets contain
orbitals capable of representing virtual orbitals with
all combinations of up to three nodal surfaces super-
imposed on occupied Hartree-Fock orbitals. The
specific basis sets used consist of the “double-¢”
basis set of Clementi!” augmented by perturbing or-
bitals with exponents £; and ¢, as described above.
All basis orbitals of s and p symmetry are included
in a preliminary matrix Hartree-Fock calculation
for each independent Bethe-Goldstone calculation.
Gross energy increments are computed relative to
this particular approximate Hartree-Fock energy
in each case.

For calculations of energy increments e, or e,
where 7 and j both denote M-shell orbitals, only per-
turbing orbitals with exponent £, are included in the
basis set. The basis for Mg is M-9532, denoting
the double-¢ basis extended to nine s orbitals, five
p orbitals, three d orbitals, and two f orbitals.

For Al through Ar, the corresponding basis set is
M-9632. Intershell energy increments e;,, where

i denotes an L -shell orbital and j denotes an M-shell
orbital, are computed with basis sets LM-111753 for
Na and Mg; LM-11953 for Al through Cl; and LM~
12953 for Ar.

III. RESULTS

The reference-state Slater determinants for the
atomic ground states considered here, denoting
filled inner shells 1s® and 2s? 2p® by K% and L®, re-
spectively, are

&, (Na, 25)=det(K? L® 3sa),

¢, (Mg, 'S)=det(K? L® 3sB 3sa),

@, (Al, 2P)=det(K® L® 358 3sa 3p,a),

&, (Si, *P)=det(K? L® 3sB 3sa 3p,a 3p,a), (5)
&, (P, *S)=det(K? L® 358 3sa 3p_,a 3pya 3p,a),
&, (S, P)=det(K? L® 3583 3sa 3p,8 3p_,a 3p,a

3p,@),

®, (Cl, ?P)=det(K® L® 3sB 3sa 3p,8 3p,8 3p.,a

3pea 3p1),

@, (Ar, 'S)=det(K? L® 358 3sa 3p_,8 3p,8 3p,8

3p.1a 3poa 3p1@).

One-particle net-correlation-energy increments,
computed as described in Sec. II for the occupied
3s and 3p valence-shell orbitals, are listed in Table
II. Two-particle net correlation energies for inter-
shell LM pairs of orbitals, computed as in Eq. (3)
from directly computed gross energy increments,
are listed in Table III. Two-particle net correla-
tion energies computed for intrashell M-orbital
pairs are listed in Table IV. These data are summa-
rized in Table V by listing for each atom the subto-
tals, respectively, of M-shell one-particle correla-
tion-energy increments, of LM-shell pair-correla-
tion energies, and of MM -shell pair-correlation en-
ergies (net energy increments).

Pair-correlation energies computed by the method
used here depend in general on the quantum numbers
m; and mg for each orbital of the pair. Except for
'S states, the effective potential field of the open 3p
shell is not spherically symmetrical, leading to m,
dependence. However, as found previously for
lighter atoms, ! the various 3p? energies can be rep-
resented as linear combinations of only three pa-
rameters, using coefficients given previously, ° to
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TABLE IV. Two-particle net increments of correlation energy e;; for MM pairs (Hartree units).
ij Mg('s) A1(P) Si(P) p(‘s) SCP) c1ip) Ar('s)
3sp  3sa —-0,033751 -0,030004 -0.022 696 -0.012952 -0.012 230 -0.011260 -0.010263
3p.iB —0.001947
3pB —0.003670 —0.001954
3pB - 0.007 126 —-0.005393 —0.001947
3p.& - 0,023 742 —-0.014964 -0.009661 -0,007795
3pe —0,022795 —0.024 383 —-0,019610 -0,013380 —0.007853
3po —0.021493 -0.024028 - 0,023742 - 0.022 588 -0.017694 —-0.007795
3sa 3p.B —0.007795
3pB - 0.008554 —0.007 853
3pB —0.010025 —0.009853 - 0.007 795
3p.a -0.001923 —-0.001995 -0.001935 —0.001947
3poa - 0,003437 -0.001931 -0.001917 - 0.002 039 —0,001954
3p —0.006276 -0,004859 - 0,001923 -0.001995 -0.001935 —0,001947
3p.1B 3poB —-0.010093
3p8 —-0.010120
3p.o —0.013 386
3pya —0.011890
3p, -0, 022 366
3pgB 3p4B —~0.009817 —0.010093
3p.a -0,011783 —-0.011890
3poa -0,024071 - 0,024 477
3p e —0,011908 —-0,011890
3p1B 3pa - 0,021396 -0,022206 - 0,022 366
3pya -0.012205 -0,012308 —-0.011890
3p —0.014589 -0.014610 - 0.013 386
3p.ja 3pya - 0.009 064 - 0.009439 —0,009783 -0,010093
3, - 0,009 094 -0.009479 -0.009816 -0.010120
3pya 3pa - 0,008658 - 0.009 064 - 0.009 439 - 0,009783 - 0.010093
within the accuracy of the calculations. The values sive ionization potentials is not known accurately.

of these parameters are listed in Table VI.

IV. DISCUSSION

The purpose of the calculations reported here is
to provide data for use in semiempirical estimates
of net-correlation-energy contributions to differen-
tial energy changes in atoms and molecules. Such
changes occur in electronic excitation, ionization
or electron capture, and molecular dissociation.
Such studies of net changes of correlation energy in
the dissociation of diatomic molecules have demon-
strated the need for quantitative data on pair-corre-
lation energies. '®!® Reliable data on total correla-
tion energies are not directly available for atoms
heavier than Ne, because the whole series of succes-

Because calculations similar to those reported here
on atoms from Be to Ne! resulted in total energies
varying from 98. 5 to 100. 3% of the estimated empir-
ical total correlation energies, the present results
are expected to have similar accuracy. Thus, the
data given here should be reliable to within a few
percentage points.

Recent calculations on the 'S ground state of Ne
indicate that the convergence limit of the presence
method, for a complete orbital basis set, would be
approximately 106% of the empirical correlation en-
ergy.?® This indicates that there is a cancellation
of errors in the calculations. The error due to ne-
glect of three-and four-particle net correlation en-
ergies is compensated by the error due to use of in-
complete basis sets in the variational calculations.

TABLE V. Summary of one- and two-particle correlation energies (Hartree units).

Na(®s) Mg ('S) Al(*P) si¢p) P(‘s) Sép) C1(P) Ar('s)
Ze,(M) -0.0 -0.0 —0.000898 -0,001050 -0.000318 —0.002465 —0,001886 —0.0
Ze“(LM) —0.007861 —-0.020560 —0.029228 -0.038390 —0.047793 -0.057411 -0,067213 -0,076610
Ze“(MM) —-0.033751 —-0.057773 —0.086473 -0,117818 —0.168997 -0.221459 —-0.272998
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TABLE VI. Parameters for 3p? pair-correlation energies (Hartree units).

siP) P(s) sép) c1(p) Ar('s)
3p%CP) —0.008658 ~0.009074 ~0.009 452 ~0.009800 ~0.010102
3p%('D) —0.014589 -0.014610 —0.013 386
3p2(1s) - 0.042716 —0.042 993 ~ 0. 046 659

However, the results on L-shell atoms indicate that
this cancellation occurs systematically and justifies
the estimate given above of expected error in the
present results.

As an illustration of the use of the data computed
here, the electronic correlation energy contribution
to the first ionization potentials of the atoms Na
through Ar can be estimated. Neglecting KM inter-
shell correlation, the sum of one- and two-particle
net correlation energies €; +}, €;; for the valence
orbital ¢; is obtained from Tables II, III, and IV
and listed in Table VII. In Table VIII, these data
are combined with the Hartree-Fock energy differ-
ences (rearrangement energy) to estimate the ion-
ization potentials. The discrepancy with respect
to spectroscopic values of the ionization potentials
is considerably larger than the expected error in the
computed correlation-energy contributions.

The only relativistic effect expected to be signifi-
cant for valence-shell ionization potentials is the
spin-orbit splitting. The observed ionization poten-
tial is the energy difference between the lowest J
level of the ground-state L-S term of the positive
ion and the lowest level of the neutral atom. The
computed ionization potential, which neglects spin-
orbit coupling, is the energy difference between the
weighted average of J levels in each L-S term. The
correction AE,,, to be added to the calculated ion-
ization potential, has been computed by averaging
the relative excitation energy of the observed J lev-
els. This correction is given in Table VIII, and is
obviously too small to account for the difference be-
tween computed and observed ionization potentials.

The remaining relativistic contribution to these
ionization potentials is indicated by the calculations
of Clementi® to be less than 0.001 Hartree units
(0. 03 eV) for the ground states of the atoms consid-

ment of relativistic and electrodynamic effects
(Lamb shift) has not yet been carried out for many-
electron atoms, and all published numbers must be
considered somewhat tentative.

The effect of three-and four-particle correlation
has not been taken into account in the present calcu-
lations. Results for lighter atoms indicate that
these higher-order correlation terms tend to reduce
the magnitude of the correlation energy computed
from one-and two-particle terms only. !° In particu-
lar, recent calculations on Ne('S) indicate that the
sum of two-electron net correlation energies is 6%
larger than the empirical total, 2° so this amount of
reduction must be attributed to three-and four-par-
ticle terms. The dominant effects are due to cou-
pling of virtual excitations of valence-shell orbitals.

The discrepancy, shown in Table VIII, between
computed and observed ionization potentials in-
creases as the valence M shell fills, and requires
a reduction of the magnitude of the correlation en-
ergy AE,, .. to bring the computed values into agree-
ment with experiment. This is exactly the behavior
expected of three-and four-particle correlation ef-
fects in the valence shell, and suggests that this is
the principal cause of the discrepancy. This point
will be considered in more detail in a later publica-
tion.

V. REMARKS

The present work is based on Brueckner’s many-

particle theory, % put with modifications appropriate
to the study of the electronic structure of atoms.
In particular, the orbitals of the reference state are
determined by Hartree-Fock equations, avoiding the
time-consuming higher level of self-consistency im-
plied by the original statement of Brueckner’s theo-
ry.? This is justified for atomic electrons because

ered here. However, a complete quantitative treat- of the general validity of the Hartree-Fock approxi-
TABLE VII. Correlation contribution to ionization energy of orbital ; (Hartree units).

i Na(2s) Mg ('s) Al(P) SiP) P(s) S¢p) c1¢p) Ar(ls)
3sB -0.044031 -0.064669 —0,084115 —0,099905 —0,090705 —0,.073291 —0.048964
3sa  —0.007861 -0,044031 —0.047920 —0.042109 —0.027988 —0.037985 —0.045460 —0.048964
3p.1B —0.087224
3p8 -0.079031 —0.087891
3pB —0.074487 —0.083592 —0.087224
3p_a -0.051740 —0.066028 —0.074665 —0.087224
3pea -0.041719 -0.052374 —-0.061802 —0,080726 —0.087891
3p,a -0.033083 —0.044443 —-0.051740 —0.066863 —0.075252 —0.087224
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Analysis of first ionization potential (IP) (Hartree units unless otherwise indicated).

TABLE VIII.

Ar('s)

3[)_1ﬂ

C1(P)

3poB

SCP)

3pB

P(4S)

Si(P)

3po

AL(P)

Mg('s)

3sB

Na (25)

Atom
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3p.

3pia

3sa

Orbital

-526,81705
—-526,27429

—459.48179
—459.04 839

—397.504 69
—-397.172 85

—340.718 57
—340.349 47

—288.854 20
—288.572 76

—241.876 30
—241.674 08

-199.614 32
—-199.371 32

—161.85857
—-161.67676

Escr(N)?
Egcp(N-1)*%

AEgcF

0.243 00 0.202 22 0.281 44 0.369 10 0.331 84 0.433 40 0.542'76

0.044 03

0.18181

0.087 22

0.033 08 0.04172 0.051 74 0.074 49 0.07903

0.00786
0.18967

AE orr °
1P

0.629 98
17.142
15.755

-0.059

0.51243
13.944
13.01

-0.006

0.406 33
11.057
10.357

0.024

0.420 84
11.451

11.0
-0.039

0.32316

8.794

8.149
-0.005

0.235 30
6.403
5.984
0.009

0.287 03
7.810
7.644

0.0

.161
5.138

0.0

IP (eV)

1Py (€V) €
AEg, (eV)®

3R, Clementi, Tables of Atomic Functions (IBM Corporation, San Jose, Calif., 1965).

PData from Table VII.

¢C.

Std. (U. S. GPO, Washington, D. C. 1949), Vol. I

E. Moore, Atomic Enevgy Levels, Natl. Bur.

d8pin-orbit contribution to the observed ionization potential.

mation.® The other, and more important, aspect

of Brueckner’s theory, the independent-pair model, 4
is used here explicitly in the form of variational equa-
tions equivalent to the two-particle Bethe-Gold-
stone equation given for atomic electrons by Szasz. 8

It has been shown'? that Brueckner’s theory, as
used here, can be put into the context of an ultimate-
ly convergent computational procedure based on the
definition of Bethe-Goldstone equations for clusters
of n particles of an N-particle system, where n
=1,2,...N. Correlation energy and mean values
of physical operators are computed by succesive
calculations of terms of increasing order in this
hierarchy of Bethe-Goldstone equations.'® The
principal corrections to two-particle net correlation
energies, as computed here, are expected in this
procedure to come from three-and four-particle net
correlation energies, computed from the appropri-
ate variational equations.'® Calculations of such
three-and four-particle energy terms, carried out
in special cases, '° indicate that they are individual-
ly small compared with two-particle terms, although
there is always the possibility that a large number
of small terms could add up to a significant correc-
tion,

The present calculations use orbital basis sets of
exactly the same form as earlier systematic calcu-
lations on the ground states of atoms from Be to
Ne.! These calculations gave total correlation en-
ergies, evaluated as the sum of two-particle net
correlation energies, varying within 1 or 2% of the
empirically known total correlation energies. It
would be surprising if the present results were
significantly less accurate, but no direct test is
possible because the empirical correlation energies
are not known for the atoms considered here.

In the case of Ne (*S), it has been possible to car-
ry out a calculation® with an orbital basis set very
much larger than those used for the series of atoms
considered previously.! This calculation, with or-
bitals up to I=6, is a four de force that could not be
repeated for the whole series of atoms up to Ar.
The resulting sum of pair-correlation energies indi-
cates that the limit of completeness is roughly 6%
greater than the empirical correlation energy, and
8% greater than the original calculation with a
smaller orbital basis set. In the hierarchical for-
malism used here, this excess mustbe compensated
by higher-order net energy terms, presumably by
the three-and four-particle terms. Hence, the
originally computed value, 98% of the empirical cor-
relation energy for Ne (*S), involves a fortuitous
cancellation between the truncation error (orbital
incompleteness) and the compensating effect of
three- and four-particle terms. Because the pres-
ent calculations on heavier atoms are identical in
structure (choice of basis sets) to the earlier work,
the same kind of fortuitous cancellation is expected
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in the present results.

It should be emphasized that the exact (nonrela-
tivistic) many-electron Hamiltonian is used in eval-
uating matrix elements used in the variational cal-
culations of the present work. Details of the method
have been given in earlier publications.!® Two-
electron corrections are automatically taken into
account in the formulas for diagonal energies of
virtual excited states. This contrasts with the case
of perturbation theory, where these two-electron
effects appear as explicit corrections to one-elec-
tron Hartree-Fock energies.

Thus, no special provision has to be made for
these effects in the present formalism.

Further work is needed to resolve the discrepancy
indicated here in the attempt to estimate the effect
of electronic correlation on ground-state ionization
potentials. Because the correlation correction is
found to be too large, the discrepancy will be in-
creased by use of a more complete orbital basis
set, which will increase the magnitude of computed
pair-correlation energies. The effect of three-par-
ticle terms is the most likely source of the discrep-
ancy, which increases markedly with the number of

valence electrons, as would the total effect of three-
particle terms. However, it is also necessary to
do comparable two-electron calculations on the
positive ions rather than assuming, as is done here,
that the individual pair-correlation terms are the
same for atom and ion. There is an expected dif-
ferential effect on the ionization potential, of the
right sign to diminish the present discrepancy, due
to the contraction of the valence orbitals in the ion
with respect to those of the neutral atom. This will
increase the magnitude of pair-correlation terms

in the ion, and reduce the net contribution of elec-
tronic correlation to the ionization potential. Sys-
tematic calculations on the positive ions, and calcu-
lations of three-particle net-correlation-energy
terms are needed.
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