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Correlation energies for M-shell and mixed LM-shell electron pairs have been computed

for the ground states of the atoms listed in the title. For open-shell atomic states, one-elec-
tron effective correlation energies are also computed. The method used is a formulation of

Brueckner's theory in which one- and two-particle Bethe-Goldstone equations are solved by
a variational procedure that uses N-particle trial wave functions expressed as linear combina-

tions of Slater determinants. Individual pair-correlation energies are computed to an expected
accuracy of a few percent, based on previous calculations on L-shell atoms. The computed

correlation-energy data are used to analyze the various energy contributions to the first
ionization potentials of the atoms considered.

I. INTRODUCTION

This paper extends calculations of electronic-
correlation energies to atoms of the third chemical
period, using a method applied previously to atoms
of the se "ond period. ' The method used is an appli-
cation of Brueckner's many-particle theory to the

electronic structure of atoms. For closed-shell
states, as in the case of the 'S ground states of Mg

and Ar considered here, the only difference of the

present work from the Brueckner theory is the use
of a Hartree-Fock set of electronic orbitals, avoid. -
ing the higher level of self-consistency implied by

Brueckner's original formulation. This use of Har-
tree-Fock rather than Brueckner self-consistency
for electronic theory has been discussed some time
ago. The essential aspect of Brueckner's theory
that is used is the independent solution of two-par-
ticle equations for each pair of occupied orbitals in

an assumed Fermi sea. This procedure is charac-
terized by Gomes et al. as the "independent-pair
model. "

The two-particle equations of Brueckner's theory,
embodying the independent-pair model, were first
derived as differential equations by Bethe and Gold-
stone, and are commonly known as Bethe-Gold-
stone equations. Several forms of these two-par-
ticle equations have been discussed in the extensive
literature on Brueckner's theory. In the original
formulation of Brueckner, the two-particle equation
took the form of an integral equation. The equiva-
lent differential equation, with an orthogonality con-
straint, was derived by Bethe and Goldstone. The
Bethe-Goldstone equation was shown to be equivalent
to a sum of so-called ladder diagrams in many-par-
ticle perturbation theory by Goldstone. The two-
particle variational equation proposed by Sinanoglu
and referred to by him as an "exact-pair" equation
is equivalent to the Bethe-Goldstone equation as

given for atomic electrons by Szasz, except for a
possibly unimportant difference in treatment of the
residual one-electron perturbing operator.

In the present work, this formalism is recast as
a many-particle method, involving a hierarchy of
variational calculations equivalent to the usual
Bethe-Goldstone equation at the two-particle level
of the hierarchy. ' '" The only aspect of this for-
malism used in the calculations to be reported here
that represents any conceptual advance over the
Brueckner theory is the treatment of one-electron
energy effects in open-shell atomic states. This
requires one-particle Bethe-Goldstone equations,
defined in a consistent way as the one-particle level
of the hierarchy of equations considered in the pres-
ent work.

Previous calculations of electronic pair-correla-
tion energies have been carried out on Be
2s valence pair of several atoms, '3 using Sina-
noglu's method. The present method has been applied
to correlation energies in ground states of atoms
from Be through Ne' and to calculations of hyper-
fine-structure constants. "The calculations to be re-
ported here extend this work to one- and two-elec-
tron correlation energies affecting the M-shell va-
lence orbitals (Ss and 3s) of the ground states of
atoms from Na through Ar.

II. METHOD OF COMPUTATION

If a Fermi sea is defined for N electrons by the
occupied orbitals of a reference-state Slater deter-
minant 4 o, the Bethe-Goldstone equation for pair
ij is a two-particle Schrodinger equation, con-
strained by requiring the wave function to be orthog-
onal to the Ã-2 occupied orbitals P, of Co with k
4 i or j. This is equivalent to a variational calcu-
lation with an N-particle trial function '

4,)=CO++, 4&'; c', +~)~ 4) cj+~P,~ 4', ( c', ) . (1}
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TABLE I. Exponents used for orbital basis sets.

Atom

11
12
13
14
15
16
17
18

Na

Mg
Al
Si
p
S
Cl
Ar

3. 191
3.565
3.939
4. 313
4. 687
5. 067
5.447
5. 826

1.035
1.228
1.421
l. 614
1.807
2. 006
2. 204
2. 403

+, =Co+2, C;. cf, (2)

where index i is specified, but a takes on all possi-
ble values.

The coefficients such as c'; or c';& are obtained as
components of an eigenvector of the matrix of the
N-electron Hamiltonian H over the set of Slater de-
terminants included in the variational trial function.
This reduces the Bethe-Goldstone calculation to a
straightforward configuration -interaction calcula-
tion. As indicated by Eq. (1) or (2), it is conve-
nient to normalize the wave function by setting the
coefficient of 4 p equal to unity. The reference state
4p is a Hartree-Fock determinant computed with
the usual symmetry and equivalence restrictions for
open-shell atomic states. '

In practice, the set of unoccupied orbitals P, is
finite. Orbital sets are used that can be extended
to completeness, and this extension is carried out
until computed quantities are observed to stabilize

In the notation used here, a Slater determinant ob-
tained from 4p by rePlacing occuPied orbitals ft) „

(i & j... & H) by unoccupied orbitals P„
Po, . . . (&&a & b . . ), .chosen from a postulated
countable complete set of orbital functions, is
denoted by 4;,"'' . In E|I. (1), the summations
extend over all values of the indices a and 5, but

indices i and j are fixed and denote specific occu-
pied orbitals in Cp. The summation over ab denotes
a double sum with a& b.

A first-order or one-particle Bethe-Goldstone
equation is defined to be equivalent to a variational
calculation with trial function

within a specified error. The pattern of basis trun-
cation used here is expected to give errors no
greater than 0. 001 Hartree a. u. (e /a„ for atom X)
in the largest pair-correlation energies.

The energy eigenvalue computed directly for trial
function 4', &. . . is the gross energy increment
~E,&. .., an energy mean-value correction relative
to the Hartree-Fock energy H«. The net increment
e,&. .. is defined as the difference between LE,&. ..
and the sum of all net increments of lower order,
with indices that are a proper subset of the indices
ij. .. . For example, the net energy increment for
pair 2, 5 is

e» = +Ebs —e2 —es

where &E» is the directly computed lowest eigen-
value of the configuration-interaction matrix for 4'~s,
and ez and es are net increments obtained from first-
order Bethe-Goldstone equations for 4'2 and 4'„re-
spectively. If carried to Nth order, this method of
bookkeeping gives the exact correlation energy (en-
ergy in addition to Hoo)

~=+, e, +Q, & e,&++,» e$fg+ ~ ~ ~ e&. . .„. (4)

Each net increment has been shown to be equivalent
to a particular sum of Goldstone diagrams in the
formal linked-cluster perturbation theory, summed
in each case to infinite order. ' Thus, the decompo-
sition of the correlation energy in the present method
is essentially different from that implied by pertur-
bation theory, although both methods eventually con-
verge to the exact result.

The atoms considered here have single-determi-
nant wave functions in their ground states, if M~ and
M& are taken equal to I. and S, respectively. The
constraints inherent in the traditional Hartree-Fock
method introduce one-particle configuration-inter-
action matrix elements for states other than 'S.
These matrix elements, which cannot be eliminated
without destroying the spherical-symmetry proper-
ties of the Hartree-Fock orbitals, lead to nonzero
one-particle net-correlation-energy contributions.
The configuration-interaction matrix is constructed
in a basis of Slater determinants, taking into account
only the quantum numbers M~, M&, and parity.

3sP
3SQ

3P )P
3POP

3P (P
3p )Q

3ppo!

3p,o.

—0. 0

—0. 0
—0. 0

—0. 000 382
—0. 000 516

—0. 000 457
—0. 000 593

—0. 000 177
—0. 000 141

—0. 000 692
—0 000455

—0, 000649
—0. 000 422

—0. 0

—0. 0
—0, 0

—0. 0
—0. 0
—0. 0

—0. 000 631
—0. 000 150
—0. 000 387
—0. 000 150

—0. 000 096
—0. 000 096
—0. 000215
—0. 000 193
—0. 000215

TABLE II. One-particle net increments of correlation energy e~ in Hartree units (e /ax) for atom y.
Na( $) Mg( $) A]( /) si('s) P(4s) s('P) Cl('S) Ar( S)

—0. 0
—0. 0
—0. 0
—0. 0
—0, 0
—0. 0
—0. 0
—0. 0
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TABLE III. Two-particle net increments of correlation energy e;& for LM pairs (Hartree units).

Na('S) Al('P) Si('P) p(4S) S('P) Cl('P) Ar('S)

2sP 3sP
2s&
2P (P
2ppp

2piP
2p (n
2ppQ

2pgQ

2sP 3sn
2so,'

2p-gP

2P(p
2p)p
2p )a
2ppck

2p,e
2sp 3p gp

2SQ

2P-gP
2p~g

2P&P

2p, n
2ppn

2p, n

2sp 3ppp
2SA

2P &P

2P pP

2P(P
2p (Q

2ppQ

2p iQ

2sP 3PiP
2SQ

2P (P
2P pP

2P(p
2p )0.'

2pp&

2p (Q

2sp 3p (Q
2SG

2P )P
2ppP

2p(p
2p )Q

2ppA

2P go!

0. 000 360
0. 000 178
0. 001 321
0. 001 333
0. 001 321
0. 001 113
0. 001 122
0. 001 113

—0. 000 271
—0. 000 546
—0. 001 410
—0. 001 419
—0. 001 410
—0. 001 737
—0. 001 750
—0. 001 737

—0, 000 546
—0. 000271
—0. 001 737
—0. 001 750
—0. 001 737
—0. 001 410
—0. 001 419
—0. 001 410

—0. 000371
—0. 000 762
—0. 001 707
—0. 001 753
—0. 001 707
—0. 002 171
—0. 002 216
—0. 002 103

—0, 000 715
—0. 000 331
—0. 001 756
—0. 001 929
—0. 002 027
—0. 001378
—0. 001 509
—0. 001 479

—0, 000 441
—0. 000 909
—0. 001 897
—0. 001 873
—0. 001 897
—0. 002 440
—0. 002 330
—0. 002 352

—0, 000817
—0. 000346
—0. 001 658
—0. 001 805
—0. 002 006
—0. 001258
—0. 001 238
—0. 001396

—0. 000 494
—0. 001 013
—0. 001 985
—0. 001 996
—0. 001 985
—0. 002 474
—0. 002 488
—0. 002 474

—0. 000 871
—0. 000331
—0. 001 604
—0. 001 610
—0. 001604
—0. 001 031
—0. 001 036
—0. 001 031

—0, 000 598
—0. 000 402
—0. 001 370
—0. 001 218
—0. 001 687
—0. 000454
—0. 000 985
—0. 001 203

—0. 000 481
—0. 001 062
—0. 001 677
—0. 001 839
—0. 001 788
—0. 001 991
—0. 002 278
—0. 002 379

—0. 000 952
—0. 000 365
—0. 001 753
—0. 001 683
—0. 001 561
—0. 001 051
—0. 001 074
—0. 000 929

—0. 000 380
—0. 000 682
—0. 001 491
—0. 001 264
—0. 000 404
—0. 001 696
—0. 001 213
—0. 001 385

—0. 000 546
—0. 000 461
—0. 001 602
—0. 001 467
—0. 001 645
—0. 000 489
—0. 001 080
—0. 001 315

—0. 000 447
—0. 001 074
—0. 001341
—0. 001 333
—0. 001561
—0. 001703
—0. 001 919
—0. 002 206

—0. 001 019
—0. 000379
—0. 001 699
—0. 001 580
—0. 001 596
—0. 001 067
—0. 001 055
—0. 001 067

—0. 000 516
—0. 000728
—0. 001257
—0. 000 790
—0. 001 133
—0. 001 318
—0. 002 067
—0. 001 323

—0, 000 535
—0. 000 760
—0. 001 560
—0. 001 145
—0. 000 548
—0. 001 888
—0. 001 336
—0. 001 537

—0. 000 729
—0. 000 517
—0. 001 646
—0. 001 345
—0. 001 918
—0.000 536
—0. 001 155
—0. 001 420

—0. 000397
—0. 001 069
—0. 001 057
—0. 001 061
—0. 001 057
—0. 001 588
—0. 001 593
—0. 001 588

—0. 001 069
—0. 000397
—G. 001 588
—0. 001 593
—0. 001 588
—0. 001 057
—0. 001 061
—0. 001 057

—G. 000 559
—0. 000 775
—0. 000 561
—0. 001 212
—0. 001 485
—0, 001 607
—0. 001 413
—0, 002 015

—0. 000 559
—0. 000 775
—0. 001 209
—0. 000 843
—0. 001 209
—0. 001 411
—0. 002 224
—0. 001 411

—0, 000 559
—0, 000 775
—0. 001 485
—0. 001 212
—0. 000 561
—0. 002 015
—0. 001 413
—0. 001 607

—0. 000 775
—0. 000 559
—0. 001 607
—0. 001 413
—0, 002 015
—0. 000 561
—G. 001212
—0. 001 485

2sP 3ppQ
2s&
2P |P
2P pP

2P(P
2p (0,'

2ppcg

2P(Q

—0. 000 498
—G. 000329
—0. 001 035
—0. 001 566
—0. 001 037
—0. 000 927
—0, 000 589
—0. 000 848

—0. 000 599
—0. 000402
—0. 001 215
—0. 001 856
—0. 001215
—0. 000 982
—0. 000 681
—0. 000 982

—0. 000 683
—0. 000382
—0. 001 444
—0. 002 206
—0. 001 260
—0. 000 993
—0. 000 755
—0. 001 082

—0. 000 726
—0, 000 510
—0. 001 436
—0. 002 084
—0. 001 333
—0. 001 144
—0. 000 792
—0. 001 144

—0. 000 775
—0. 000559
—0. 001 411
—0, 002 224
—0. 001 411
—0, 001 209
—0. 000 843
—0. 001 209
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TAB LE III. (conti nued)

2sp 3p~n
2SQ

2p )p
2ppP

2p(p
2p )cM

2ppA

2p)A

Na('s) Mg('s) Al('P)

0. 000372
0. 000241
0. 001 092
0. 000801
0. 000 893
0. 000 877
0. 000719
0. 000319

m('P)

—0. 000 510
—0. 000 336
—0. 001 437
—0. 001 040
—0. 001 179
—0. 001 141
—0. 000 851
—0. 000 404

I (4s)

—0. 000 598
—0. 000 402
—0. 001 687
—0. 001 218
—0. 001 370
—0. 001 203
—0. 000 985
—0. 000454

S('P)

—0. 000 681
—0. 000 345
—0. 001 950
—0. 001 468
—0. 001 418
—0. 001 192
—0. 001 074
—0. 000 495

C1( P)

—0. 000745
—0. 000 517
—0. 002 035
—0. 001346
—0.001 537
—0. 001 420
—0, 001 155
—0. 000 536

Ar( 8)

—0.000 775
—0. 000 559
—0. 002 015
—0. 001 413
—0, 001 607
—0. 001 485
—0. 001 212
—0. 000 561

The lowest eigenvalue and eigenvector are obtained

by a rapidly converging iterative algorithm. "
Orbital basis sets capable of giving a reasonable

approximation to an atomic Hartree-Fock calcula-
tion, using the matrix Hartree-Fock method, ' are
extended by including additional orbitals in the form
of exponential functions e' "' multiplied by powers
of r and by spherical harmonics. Optimal values of
the exponent ( were determined by preliminary cal-
culations on Mg, Si, and Ar. Different values of &

were used to represent perturbations of atomic or-
bitals with different principal quantum numbers n.
Exponents &I, and f& were obtained variationally for
virtual excitations of the L and M shells, respec-
tively, of Mg, Si, and Ar. Exponents for the other
atoms considered here, listed in Table I, were ob-
tained by linear interpolation. Virtual excitations
of the K shell were not considered.

Orbital basis sets used in the present calculations
have the same structure as those used previously for
the atoms Be through Ne. ' The basis sets contain
orbitals capable of representing virtual orbitals with
all combinations of up to three nodal surfaces super-
imposed on occupied Hartree-Fock orbitals. The
specific basis sets used consist of the "double-&"
basis set of Clementi" augmented by perturbing or-
bitals with exponents gl, and g& as described above.
All basis orbitals of s and p symmetry are included
in a preliminary matrix Hartree-Fock calculation
for each independent Bethe-Goldstone calculation.
Gross energy increments are computed relative to
this particular approximate Hartree-Fock energy
in each case.

For calculations of energy increments e, or e,&,
where i and j both denote M-shell orbitals, only per-
turbing orbitals with exponent f„are included in the
basis set. The basis for Mg is M-9532, denoting
the double-g basis extended to nine s orbitals, five
p orbitals, three d orbitals, and two f orbitals.
For Al through Ar, the corresponding basis set is
M-9632. Intershell energy increments e,~, where
i denotes an L-shell orbital and j denotes an M-shell
orbital, are computed with basis sets LM-11753 for
Na and Mg; LM-11953 for Al through Cl; and LM-
12 953 for Ar.

III ~ RESULTS

The reference-state Slater determinants for the
atomic ground states considered here, denoting
filled inner shells ls and 2s' 2p by K and L, re-
spectively, are

4 0 (Na, 'S) = det(K' L' 3s u},

40 (Mg, 'S) =det(K L' 3sP Ssn),

4 0 (Al, 'P) = det(K' L' 3sp 3s & 3p~ a),

4, (Si, ~P) = det(K' Ls SsP Ss& Spa& Sp~o'), (5)

4 o (p, ~$) = det(K' Ls 3sp Ssa Sp q& Spa& Spq+),

4o (S, 'P) = det(K L' SsP Ssn 3pqP 3p qo' Spa&

Spi&)

4, (Cl, 'P) = det(K' L' 3sp Ss& Sprig Sp~P 3p ~&

3PO& 3&~~)

4 o (Ar, 'S) = det(K L Ss8 Ssu 3p &p Span} SpqP

3p ,o. 3P,»P& ).
One-particle net-correlation-energy increments,

computed as described in Sec. II for the occupied
3s and 3p valence-shell orbitals, are listed in Table
II. Two-particle net correlation energies for inter-
shell LM pairs of orbitals, computed as in Eg. (3}
from directly computed gross energy increments,
are listed in Table III. Two-particle net correla-
tion energies computed for intrashell M-orbital
pairs are listed in Table IV. These data are summa-
rized in Table V by listing for each atom the subto-
tals, respectively, of M-shell one-particle correla-
tion-energy increments, of LM-shell pair-correla-
tion energies, and of MM-shell pair-correlation en-
ergies (net energy increments}.

Pair -correlation energies computed by the method
used here depend in general on the quantum numbers
m, and m, for each orbital of the pair. Except for
'S states, the effective potential field of the open 3p
shell is not spherically symmetrical, leading to m&

dependence. However, as found previously for
lighter atoms, ' the various 3p energies can be rep-
resented as linear combinations of only three pa-
rameters, using coefficients given previously, ' to
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3sp 3so.'

3p ip
3ppP

3pip
3p iQ

3Pp&

3pi@

Ar( $)

—0. 010 263
—0. 001 947
—0. 001 954
—0. 001 947
—0. 007 795
—0. 007 853
—0. 007 795

—0. 003 670
—0. 005 393
—0. 009 661
—0. 013380
—0. 017 694

—0. 007 126
—0. 014 964
—0. 019 610
—0. 022 588

—0. 023 742
—0. 024383
—0. 023 742

—0. 022 795
—0. 021 493 —0. 024 028

TABLE IV. Two-particle net increments of correlation energy e;& for MM pairs (Hartree units).

MK( S) Al(2P) Si('P) I (4s) S('P) Cl('P)

—0. 033 751 —0. 030 004 —0. 022 696 —0, 012 952 —0. 012 230 —0. 011260

3sG

3P-&P

3P &P

3ppp

3pgp
3p i'
3ppQ

3p io(

3ppp

3pip
3p io!

3pp 0(

3pi 0!

—0. 003 437
—0. 006276 —0. 004859

—0. 001 923
—0. 001 931
—0. 001 923

—0. 010 025
—0. 001 995
—0. 001 917
—0. 001 995

—0. 008 554
—0. 009 853
—0. 001 935
—0. 002 039
—0. 001 935

—0, 007 795
—0, 007 853
—0, 007 795
—0. 001 947
—0, 001 954
—0, 001 947

—0, 010 093
—0. 010 120
—0. 013 386
—0. 011890
—0. 022 366

3PpP 3P&P

3p ioj!

3pp

3pi cj!

3pi p 3p io.'

3pp Qt

3pi 0!

3p-&& 3pp0.
3P) Q

—0. 009 064
—0. 009 094

—0. 021 396
—0. 012 205
—0. 014 589

—0. 009 439
—0. 009 479

—0. 009 817
—0. 011783
—0. 024 071
—0. 011908

—0. 022 206
—0. 012 308
—0. 014610
—0. 009783
—0. 009 816

—0. 010 093
—0. 011890
—0. 024 477
—0. 011890

—0. 022 366
—0. 011890
—0. 013 386

—0, 010 093
—0. 010 120

3ppe 3p, 0. —0. 008 658 —0. 009 064 —0. 009 439 —0. 009 783 —0. 010 093

within the accuracy of the calculations. The values
of these parameters are listed in Table VI.

IV. DISCUSSION

The purpose of the calculations reported here is
to provide data for use in semiempirical estimates
of net-correlation-energy contributions to differen-
tial energy changes in atoms and molecules. Such
changes occur in electronic excitation, ionization
or electron capture, and molecular dissociation.
Such studies of net changes of correlation energy in
the dissociation of diatomic molecules have demon-
strated the need for quantitative data on pair-corre-
lation energies. ' ' Reliable data on total correla-
tion energies are not directly available for atoms
heavier than Ne, because the whole series of succes-

sive ionization potentials is not known accurately.
Because calculations similar to those reported here
on atoms from Be to Ne' resulted in total energies
varying from 98. 5 to 100.3% of the estimated empir-
ical total correlation energies, the present results
are expected to have similar accuracy. Thus, the
data given here should be reliable to within a few
per centage points.

Recent calculations on the 'S ground state of Ne
indicate that the convergence limit of the presence
method, for a complete orbital basis set, would be
approximately 106%0 of the empirical correlation en-
ergy. This indicates that there is a cancellation
of errors in the calculations. The error due to ne-
glect of three-and four-particle net correlation en-
ergies is compensated by the error due to use of in-
complete basis sets in the variational calculations.

TABLE V. Summary of one- and

Na('S) MK('S) Al('P)

two-particle correlation energies (Hartree units).

sl( p) p( s) S{'P) Cl( P) Ar(i$)

Qei(i+

Q e(i(LM)

Qe(i (MM(

—0. 0 —0. 0 —0. 000 898 —0. 001 050 —0. 000 318 —0. 002 465 —0. 001 886 —0. 0

—0. 007 861 —0. 020 560 —0. 029 228 —0. 038 390 —0. 047 793 —0, 057 411 —0. 067 2 13 —0. 076 610
—0. 033 751 —0. 057 773 —0. 086 473 —0. 117818 —0. 168 997 —0. 22 1 459 —0. 272 998
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TABLE VI. Parameters for 3p~ pair-correlation energies (Hartree units).

Si('P) I {4S) s('J) Cl('P) Ar('S)

3P2 (3P)
3p2 (ia)
3P'('S)

—0, 008 658 —0. 009 074 —0. 009 452
—0. 014 589
—0. 042 716

—0. 009 800
—0, 014610
—0, 042 993

—0. 010 102
—0. 013 386
—0. 046 659

However, the results on L-shell atoms indicate that
this cancellation occurs systematically and justifies
the estimate given above of expected error in the
present results.

As an illustration of the use of the data computed
here, the electronic correlation energy contribution
to the first ionization potentials of the atoms Na

through Ar can be estimated. Neglecting KM inter-
shell correlation, the sum of one- and two-particle
net correlation energies e, +g& &» for the valence
orbital f, is obtained from Tables II, III, and IV
and listed in Table VII. In Table VIII, these data
are combined with the Hartree-Fock energy differ-
ences (rearrangement energy) to estimate the ion-
ization potentials. The discrepancy with respect
to spectroscopic values of the ionization potentials
is considerably larger than the expected error in the
computed correlation-energy contributions.

The only relativistic effect expected to be signifi-
cant for valence-shell ionization potentials is the
spin-orbit splitting. The observed ionization poten-
tial is the energy difference between the lowest J
level of the ground-state L-S term of the positive
ion and the lowest level of the neutral atom. The
computed ionization potential, which neglects spin-
orbit coupling, is the energy difference between the
weighted average of J levels in each L-S term. The
correction bE„, to be added to the calculated ion-
ization potential, has been computed by averaging
the relative excitation energy of the observed J lev-
els. This correction is given in Table VIII, and is
obviously too small to account for the difference be-
tween computed and observed ionization potentials.

The remaining relativistic contribution to these
ionization potentials is indicated by the calculations
of Clementi ' to be less than 0. 001 Hartree units
(0. 03 eV) for the ground states of the atoms consid-
ered here. However, a complete quantitative treat-

ment of relativistic and electrodynamic effects
(Lamb shift) has not yet been carried out for many-
electron atoms, and all published numbers must be
considered somewhat tentative.

The effect of three- and four-particle correlation
has not been taken into account in the present calcu-
lations. Results for lighter atoms indicate that
these higher-order correlation terms tend to reduce
the magnitude of the correlation energy computed
from one- and two-particle terms only. ' In particu-
lar, recent calculations on Ne('S) indicate that the
sum of two-electron net correlation energies is 6'Po

larger than the empirical total, ' so this amount of
reduction must be attributed to three- and four-par-
ticle terms. The dominant effects are due to cou-
pling of virtual excitations of valence-shell orbitals.

The discrepancy, shown in Table VIII, between
computed and observed ionization potentials in-
creases as the valence M shell fills, and requires
a reduction of the magnitude of the correlation en-
ergy bE„„to bring the computed values into agree-
ment with experiment. This is exactly the behavior
expected of three- and four-particle correlation ef-
fects in the valence shell, and suggests that this is
the principal cause of the discrepancy. This point
will be considered in more detail in a later publica-
tion.

V. REMARKS

The present work is based on Brueckner's many-
particle theory, but with modifications appropriate
to the study of the electronic structure of atoms.
In particular, the orbitals of the reference state are
determined by Hartree-Fock equations, avoiding the
time-consuming higher level of self-consistency im-
plied by the original statement of Brueckner's theo-
ry. This is justified for atomic electrons because
of the general validity of the Hartree-Fock approxi-

TABLE VEI. Correlation contribution to ionization energy of orbital i {Hartree

Na( S) Mg( S) Al( P) Si( P) P( S) s( P)

units).

Cl('P) Ar(i$)

3sp
3sn
3p ip
3ppp

3pip
3p in
3ppn
3pin

—0. 044 031 —0. 064 669 —0. 084 115 —0. 099 905
—0. 007 861 —0. 044 031 —0. 047 920 —0. 042 109 —0. 027 988

—0. 051 740
—0. 041 719 —0. 052 374

—0. 033 083 —0.044 443 —0. 051 740

—0. 090 705
—0. 037 985

—0. 074 487
—0. 066 028
—0. 061 802
—0. 066 863

—0. 073 291
—0. 045 460

—0. 079 031
—0. 083 592
—0. 074665
—0. 080 726
—0. 075252

—0. 048 964
—0, 048 964
—0. 087224
—0. 087 891
—0. 087224
—0. 087224
—0. 087 891
—0. 087224
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mation. 3 The other, and more important, aspect
of Brueckner's theory, the independent-pair model,
is used here explicitly in the form of variational equa-
tions equivalent to the two-particle Bethe-Gold-
stone equation given for atomic electrons by Szasz.

It has been shown that Brueckner's theory, as
used here, can be put into the context of an ultimate-
ly convergent computational procedure based on the
definition of Bethe-Goldstone equations for clusters
of n particles of an N-particle system, where n
= 1, 2, . . .N. Correlation energy and mean values
of physical operators are computed by succesive
calculations of terms of increasing order in this
hierarchy of Bethe-Goldstone equations. ' The
principal corrections to two-particle net correlation
energies, as computed here, are expected in this
procedure to come from three-and four-particle net
correlation energies, computed from the appropri-
ate variational equations. ' Calculations of such
three- and four-particle energy terms, carried out
in special cases, ' indicate that they are individual-
ly small compared with two-particle terms, although
there is always the possibility that a large number
of small terms could add up to a significant correc-
tion.

The present calculations use orbital basis sets of
exactly the same form as earlier systematic calcu-
lations on the ground states of atoms from Be to
Ne. ' These calculations gave total correlation en-
ergies, evaluated as the sum of two-particle net
correlation energies, varying within 1 or 2%%up of the
empirically known total correlation energies. It
would be surprising if the present results were
significantly less accurate, but no direct test is
possible because the empirical correlation energies
are not known for the atoms considered here.

In the case of Ne ('S), it has been possible to car-
ry out a calculation with an orbital basis set very
much larger than those used for the series of atoms
considered previously. This calculation, with or-
bitals up to I = 6, is a tour de force that could not be
repeated for the whole series of atoms up to Ar.
The resulting sum of pair-correlation energies indi-
cates that the limit of completeness is roughly 6%
greater than the empirical correlation energy, and
8/p greater than the original calculation with a
smaller orbital basis set. In the hierarchical for-
malism used here, this excess mustbe compensated
by higher-order net energy terms, presumably by
the three- and four-particle terms. Hence, the
originally computed value, 98% of the empirical. cor-
relation energy for Ne ('S), involves a fortuitous
cancellation between the truncation error (orbital
incompleteness) and the compensating effect of
three- and four-particle terms. Because the pres-
ent calculations on heavier atoms are identical in
structure (choice of basis sets) to the earlier work,
the same kind of fortuitous cancellation is expected
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in the present results.
It should be emphasized that the exact (nonrela-

tivistic) many-electron Hamiltonian is used in eval-
uating matrix elements used in the variational cal-
culations of the present work. Details of the method
have been given in earlier publications. Two-
electron corrections are automatically taken into
account in the formulas for diagonal energies of
virtual excited states. This contrasts with the case
of perturbation theory, where these two-electron
effects appear as explicit corrections to one-elec-
tron Hartree-Fock energies.

Thus, no special provision has to be made for
these effects in the present formalism.

Further work is needed to resolve the discrepancy
indicated here in the attempt to estimate the effect
of electronic correlation on ground-state ionization
potentials. Because the correlation correction is
found to be too large, the discrepancy will be in-
creased by use of a more complete orbital basis
set, which will increase the magnitude of computed
pair-correlation energies. The effect of three-par-
ticle terms is the most likely source of the discrep-
ancy, which increases markedly with the number of

valence electrons, as would the total effect of three-
particle terms. However, it is also necessary to
do comparable two-electron calculations on the
positive ions rather than assuming, as is done here,
that the individual pair-correlation terms are the
same for atom and ion. There is an expected dif-
ferential effect on the ionization potential, of the
right sign to diminish the present discrepancy, due

to the contraction of the valence orbitals in the ion
with respect to those of the neutral atom. This will
increase the magnitude of pair-correlation terms
in the ion, and reduce the net contribution of elec-
tronic correlation to the ionization potential. Sys-
tematic calculations on the positive ions, and calcu-
lations of three-particle net-correlation-energy
terms are needed.
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