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The atomic antishielding factor R for the quadrupole hyperfine structure has been evaluated
for the lowest three excited np states for each of the alkali atoms, i.e. , for a total of fifteen
atomic states. The values of R were determined by means of the perturbed wave functions
v&(nl —l'), as obtained by solving the inhomogeneous Schrodinger equation for each type of ex-
citation of the core electrons by the nuclear quadrupole moment Q. In order to obtain reliable
values of R, we have obtained accurate valence wave functions v(np) for the np excited states
from the requirement that the calculated energy eigenvalues Eo(np) should reproduce the ob-
served ene"gy levels. The wave function v(no&) for the lowest valence np state (n=no, e. g. ,
no=3 for ha) was checked for each alkali atom by calculating the oscillator strength f„,
for the lowest nos —np transition. The calculated values of f&s && were found to be in good
agreement with experiment. As an example of the values of R(np) obtained, we have found for
Rb: R(5t)) = —0. 257; R(6p) = —0. 207; and R(7&) = —0. 190. The resulting correction factors
~ =1/(1-R) are C(5t) =0.796, C(6$) =0.829, and G(7p) =0.840. At the end of the paper
we give the corrected values of Q for twelve alkali isotopes, for which experimental

\
data are available, namely, for the following nuclei: Na ~, K, K4, K ', Rb 5, Hb 7, '

Cs', Cs', Cs, Cs', Cs', and Cs 3 . We have also given abrief summary of the pres-
ent experimental evidence supporting the existence of the quadrupole shielding and antishield-
ing effects for atomic states.

I. INTRODUCTION

The purpose of the present paper is to give the
results of a systematic calculation of the quadrupole
antishielding factor' R for the first three excited nb

states of each of the alkali atoms. The resulting
vatues of R are then used to obtain corrected values
of the nuclear quadrupole moments Q for these ele-
ments, as derived from spectroscopic measure-
ments of the quadrupole hyperfine structure (hfs) in
the excited nb states. In the course of this investi-
gation, we have obtained accurate valence wave
functions for the nP electrons from the requirement
that the energy eigenvalues should reproduce the
observed energy levels. ' At the end of Sec. II,
these wave functions are used to'obtain accurate
values of the oscillator strengths f„, „~ fortransi-
tions from the ground state n s. It is shown that
these osci11ator strengths are in good genera1
agreement with the corresponding measured values
for the transition to the lowest np state, i.e. ,
f (p pp Here np is the pr inc ipa 1 quantum number
for the ground state of the valence electron, e.g. ,
np = 3 for Na. We note that in obtaining the f„, „~,ftpa fthm P

we have employed. the ground-state wave functions
g(n~~) for the alkali atoms, which were previously
determined in a calculation of the alkali atom pole. r-
izabilities. '

The present calculations of R for the alkali aton. s
constitute a substantial improvement over those
carried out previously byone of us (R. M. S. ) in 1956.
Thus the exchange terms with the valence electr on
are inciuded in the present calculations (as opposed
to the earlier ones); the individual angular pertur-
bations of the core v, (nl- l + 2) were calculated in

each case (instead of relying on the less accurate
Thomas-Fermi model), and, more importantly, we
have determined and employed np valence wave
functions v(nP) which reproduce the observed atomic
energy levels for these states. The resulting
vatues of R confirm the existence of the antishieldin~
obtained previously. ' However, the estimated un-
certainty of the present results is considerably re-
duced, as compared to those of the earlier calcula-
tions.

II. CALCULATIONS OF R

The formalism used to calcu1ate R is essentially
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the same as that employed in our earlier papers on
this subject, '4' in particular, Ref. 5, in which we
have presented the results of a calculation of R for
two states of the Cu atom (3d 4s and 3d' 4P), and
for Pr, Tm, Li, and Be. In particular, it was
shown in Ref. 5 that the two very different values
of Q for the copper isotopes as derived from 3d 4s~

and 3d"4p (a difference of approximately 40$) can
be brought into very good agreement by applying
the corresponding correction factor 6 =—1/(1 —R),
which are quite different for the two configurations,
namely, 1/0. 822= 1.217 for 3d94ss and 1/1.175= 0.851
for 3d' 4p.

The radial wave functions v|(nl-l }which describe
the excitation of the core electrons (nl) by the po-
tential due to the nuclear quadrupole moment q are
the solutions of the following inhomogeneous equa-
tion:

(
d l '(l '+1)

p-+ p + Vp —8() vg nl-l '
dr r

I

= u o(nl) ( r —(r )(() El(( )

where u,' is r times the radialpart of the unperturbed
(nl ) core wave function. The effective values6 of
Vo(r) Eo (I'o is the u-nperturbed potential; Eo is the
unperturbed energy eigenvalue) were obtained in
the same manner as in Refs. 1 and 6:

V, „(r}= —4[(3/8v)p]'" Ry, (3)

where p is the electron density in atomic units
(number of electrons /a„', where a„ is the Bohr
radius). In terms of the wave functions uo(nl ),
which are normalized to 1,

J [u,'(nt)]'dr= 1, (4)

V, „(r}can be written as follows:

12 3 ~ (21+1)fu o(nl)]
Ve~h r = — m Ry, 5

7r nj r
where the numerical factor (12/v )" = 1.0873.

The potentials ' V„,(r) have been tabulated in
Ref. 17, which pertains to the calculation of the
alkali atom dipole and quadrupole polarizabilities
c(, and a, . With the experimental value of Eo(nP),
we now write

V„,(np)= V„,+a~ V„~, (8)

where a is an adjustable parameter determined by
the Schr'odinger equation for v(nP), namely,

the purpose of obtaining the radial dependence

(shape) of 5V-=V„,—V„,„we have assumed that this
dependence is given by the Slater exchange poten-
tial. " When this potential is multiplied by the fac-
tor -', introduced by Gaspar and by Kohn and Sham, '

it is given by

I d uo l(i +1)
u' dr' r'

0
(2)

r r ~~s e~ch
~

0
d 2

s ~ )'. . I)'., I-&(()) (()=o ())

The method of solution of Eq. (1) has been described
in Ref. 5 (see the discussion onpp. 13-15). The
core wave functions u o(nl) are the Hartree-Fock
wave functions for the corresponding alkali (posi-
tive} ions. Thus for Na' and K', we used the func-
tions of Hartree and Hartree'; for Bb' and Cs', the
wave functions of Freeman and Watson were em-
ployed. For Li, the 1s function of Jamesg was used.

As mentioned in the Introduction, the valence
wave functions v(np) were determined from the re-
quirement that they should reproduce the observed
energy eigenvalues Eo(np), i.e. , the atomic energy
levels obtained from the tables of Moore. In sev-
eral previous papers on the alkali atom polarizabili-
ties, ' one of us (R. M. S.) has used potentials which
reproduce for each case the eigenvalue for the low-
est n()s (ground) state, i.e. , the observed ionization
potentials. These effective potentials V„& were
obtained for Li, by Seitz'; for Na, by Prokofjew";
for Hb, by Callaway and Morgan; and for K a'nd

Cs, by Sternheimer. '' The potentials V„&(r)
should form a very good first approximation to the
effective potentials for the excited np states, to be
denoted by V~(r). That V„& will not exactly repro-
duce the observed Eo(np) is presumably due to the
fact that the effects of exchange and correlation are
slightly different for different valence states. For

Thus I V, h I provides the shape of the small cor-
rection to the potential V„&. Equation (7) is an
eigenvalue equation for a, i.e. , the constant a must
be so chosen that v(np} will be well behaved at

The computer program, which integrates
Eq. (7), tries a large number of a values, and by
interpolating between two final functions (both of
which diverge very slowly as r- ~, with different
signs), one obtains a function which behaves prop-
erly, i.e. , it is approximately proportional to
exp[- lED(nP) I" r ] at large r. It may be noted that
the total running time is 24 sec on a CDC-6600,
distributed into three calculations of 8 sec each.
Between each two successive calculations, one nar-
rows down the range of a values which the computer
investigates by a factor of -50. Thus initially a is
allowed to range from —0. 5 to +0. 5 (interval equal
to 1), and after the third (final) set of integrations,
a is determined to 10 '. The values of a are quite
small, as would be expected, since V„, is a goodttpS

approximation to the actual effective potential V„~.
Thus Ia I is less than 0.15 in all cases. Another
way of demonstrating the smallness of the correc-
tion term a I V,~ I is to calculate the energy which
corresponds to it, namely,

5E = a J I V„,„~ v~, dr, (8)
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uo(is) = 2Zs' re (10)

The corresponding perturbation v,'(ls- d) is given
by"

v,'(ls- d) = —,
' Za"a(1+ —,

' Zsr)e

The factor 3 20 equals 1.4706. The function
w,'(Is-d) listed in Table I of Ref. 18 is defined as
v,'(ls- d)(3/Za' ), i.e. , it goes to 1.00 at r=0.

TABLE I. Values of E«e, (np) =—f V«e, [v(np") } Ch,
where V„~ is the Slater-type exchange corrected by the
factor I (Refs. 15 and 16). Ne have n=np+i, i=o, 1,
and 2, and in the table Exd, (np) is written as E~~~(i).
Note that np=3 for Na, np=4 for K, np=5 for Rb, and
np= 6 for Cs. The values of E,„~(np) —= E~,~(i) are given
in Rydberg units.

-E, ~(np) Na K Rb Cs

and to compare 5E to the total binding energy of the
np electron IEa(np) I. In this connection, the in-
tegral of Eq. (8}, to be denoted by —E„,„(np}, is
tabulated in Table I for the first three excited nP
states of Na, K, Hb, and Cs. %e note that for Li,
the procedure of Eq. (7) was not used, but instead
we employed the potential of Seitz' directly, i.e. ,
without corrections. For comparison, the values
of E(np) and also E(nas) as obtained from Moore's
tables are presented in Table II.

The ratio involved is

6E(np) a IE.„„(np) I

IE,(ns) I IE,(nP) I

It is found that 1$(nP)1 is always less than 0.06.
As an example, for K, $(4P) =0.0227, $(5P)
=0.0168, and $(6P) = 0.0141.

In Table III, we have given the expectation values
(r ), (ra), and (r ) over the valence nP wave func-
tions obtained in the present work. A comparison
of the calculated (r ') values with those derived
from the experimental values of the magnetic hy-
perfine structure and the fine structure will be made
below (see Sec. III). For comparison with (r '),
we have also listed in Table III the values of r,„,
the radius of the outermost maximum of v(nv), and
of the resulting I/r „.

The perturbed wave functions v |(nl - I ') obtained
from Eq. (1), as well as the unperturbed functions
ua(nl ), have been tabulated in a separate paper. "
This paper also includes tables of the valence wave
functions v(np) which were determined from Eq. (7).

As mentioned above, for Li, we used the 1s wave
function obtained by James. This function is a
hydrogenic function with effective nuclear charge
Zo= 2.69. Thus,

TABLE II. Values of l E(nps) l and l E(np) I (in Rydberg
units). For the np states, we have n =np, np+1, and
np+2. The value of np is listed in parentheses for each
alkali (e.g. , np 3 for Na). The values of lE(nl) I were
obtained from the tables of Moore (Ref. 2).

State Li (np= 2) Na (3) K (4) Rb (5) Cs (6)

npg 0, 396 29
O. 26O48

(np + 1)p 0. 114 48
(n(} + 2)p 0 063 95

0.377 72 0.31903
O. 223 10 0.20035
0. 101 87 0. 093 82
O. 05839 0. 05472

0.307 02 0.286 20
0. 190 94 0. 180 97
0. 09044 0. 08676
0. 053 15 0. 051 42

Thus we have

v,'(ls-d) =1.4706w,'(ls- d) . (12)

TABLE III. Values of (r ), (r ), and (r ') averaged
over the alkali atom np wave functions ~ For comparison
with (r ~), the last two columns list the values of r~,
and 1/r~~, where r~ is the radius of the outermost
maximum of the np wave function. All values of (r") are
in units of aH .

State (r+) (r ) (r ) rmax 1/ rex
Li 2p
Li 3p
Li 4p

0. 06494 26. 894 0.2714 3. 7
0. 019 83 167.23 0. 11865 11.6
0. 008437 566. 53 0. 066 06 22. 9

0.270 3
0.086 21
0. 043 67

Na 3p 0.2331
Na 4p 0. 07525
Na 5p 0. 03358

39.81 0. 216 5 4. 8 O. 208 3
216. 91 0. 100 0 13.4 O. 074 63
690. 74 0. 057 75 25. 4 0. 039 37

K4p
K Sp
K6p

O. 414 49 52. 42 O. 185 13 5. '7

0. 132 39 259. 65 0. 088 79 14.7
0. G59 12 790. 35 0. 052 51 27. 4

O. 1754
0.068 03
0.036 50

Rb 5p 0. 8651
Rb 6p 0.2862
Rb Vp 0. 13082

57. 82 0. 17306 5 95 0. 1681
2HO. 58 0. 084 43 15.3 0.065 36
838.01 0. 50559 28. 4 0, 03521

The determination of the direct and exchange
terms of R, namely, R~ and R&, from the wave
functions v|(nf - l ') and va(np) will now be outlined.
The formalism is the same as that given in Ref. 5
(see pp. 11-13).

In the following discussion, the principal quantum
number n of the external valence electron will be
denoted by n„ to distinguish it from the principal
quantum number n of the core electron considered.
The contribution to the direct term R~ due to the
interaction of (nl- l ') with the valence electron is
given by

Ro(nl - l '; n, p) = I'o(nl- I '; n, p)/(r )„&, (13}

where Fo (nl - l '; n, O) is defined by

Fv(nl —I '; n, p) = s
' [v(n, p)] dr, (14)

V(nt-I '; ~)

0

E~gch(0) 0 o 051 49 0 065 72 0 069 36 0 076 48
—E~x~(1) 0. 015 48 0. 01936 0. 020 72 O. 021 99
—E ~(2) 0. 006 747 0, 008 460 0. 009 207 0. 009 835

Cs 6p 1.416
Cs Vp 0. 44119
Cs 8p 0.2023

67. 54 O. 15899 6. 7
309. 05 0. 078 61 16. 2
901.32 0. 04779 29. 2

0. 1493
0. 061 73
0.03425
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and the function y(nl —l '; r) is given by

y(nl —l '; r)=c(nl —l ') [J uc(nl)v i(nl —l')r ' dr'

+ r' J u s(nl ) vt(nl - I ') r ' dr '] . (15)

The coefficients c(nl - l ') have the following values:
y for ns- d and nd- s; II for np- p; ~ for np- f;
P for nd- d; and ~M for nd- g.

The expectation value (r ')~~ in the denominator
of Eq. (13) is given by

K(nl-l'; n, p; L)= J u (snv, p)gz dr . (19)

In Eq. (18), C(nl - l '; n, p; L) is an angular coeffi-
cient whose values for the cases of interest will be
listed below. The function g~(r) in Eq. (19) is de-
fined by

gt, (nl -I '; n, p}= z,, v,'(nl-I ')v(n, &)r' «'r '
o

+r gq nl -l' p ne& r' dr' . 20
r

The values of C(nl -l'; np; L} are given in Table II
of Ref. 5. For the cases of interest here, they are
as follows:

&r '}„,~= f [v(n, P)]sr dr . (16)

The values of (r ')„,~ are listed in Table III. We
note a slight change of notation from that of Ref. 5.
Thus n, l, is replaced by n, p, and w(n, l, ) is changed
to v(n, p) for the valence electron wave function.

For the exchange term due to the angular rqo-
mentum L interaction between the perturbation
(nl - l') and the valence electron (n, p), we have

Rs(nl - I '; n, p; L) = Is(nl '- l '; n, p; L)/(r }„&,
(17)

where I',.(nl - l '; n, p; L) is defined by

I"z (nl l '; n, P; L ) = —C (n l - l '; n, P; L }
xK(nl-l'; n, P;L), (18)

and the integral K(nl - l '; n, p; L) is given by

RE(nl l'; 6p) (21)

It is seen that except for the 1s-d excitation, where
t) = 0. 710, t) is indeed small in all cases (t) & 0. 25),
and for the combined radial and angular terms, we
have g,~= 0. 0135 and p, = 0. 298, respectively.

The resulting values of R(nl l';n, P) for the
lowest three excited nP states for the five alkalis
are listed in Tables V-X. Note that all values of
R have been multiplied by 10, except for Li (Table
V), where no factor has been used, and for the
angular terms for Cs (Table X), where the factor
is 10.

In Tables VI-X, the last column gives the contri-
butions y„(nl -l') to the total ionic antishieiding

TABLE IV. Values of the direct and exchange con-
tributions to R(nl —l'; 6p) for Rb 6P. The direct and
exchange terms are denoted by RD and RE, respectively.
As indicated, these terms have been multiplied by 10 .
For each mode of excitation, the ratio q listed in the last
column is defined by ti=-ltz/Rz. The radial terms
are listed first, followed by the corresponding sums,
denoted by Total (rad). The angular terms are listed
in the bottom part of the table, followed by the corres-
ponding sums: Total (ang). In the fourth column,
R =Rg+RE.

integral for I'v(nl -l'; n, P) [see Eq. (14)]. These
double integrals were evaluated by means of the

computer program which has been described in
Ref. 5 (see p. 15).

Because of the external nature of the valence np
functions for the alkalis and the consequently small
amount of overlap with the core wave functions, it
had been previously expected that the exchange
terms of R would be relatively small compared to
the direct terms. This expectation was indeed
borne out by the present calculations (except for Li).
As an example, Table IV gives the terms
Rv(nl -l'; 6p) and Rz(nl -l'; 6p) for the 6p state of
Rb. The values of the ratio g are also listed, where
t)(nl - l'; 6p) is defined by

C(ns-d; n, p; L =1) =&~, C(np p;n, p; L =2}=~4,

C(nP f; n, P; L = 2}=@ C(nd d; neP; L =1)=y,

C(nd-d;n, p; L =3) =py, C(nd g; n, p; -L = 3) =Q.
(20')

The L values are as indicated for each mode of ex-
citation nl -l'. We note that only for the case
nd-d do we have two different L values contributing
(L = 1 and L = 3). The total RE (nd -d; n, p) is the
sum over the two L contributions, as explained in
Ref. 5 [see Eq. (37}].

In view of Eqs. (19) and (20), K(nf -l'; n, p; L) is
actually a double integral over the wave functions
u'„v't(SI -l'), and v(n, p). The same is true of the

nl -l'
2P -P
3p ~p
3d ~d
4p-p

Total (rad)

1s —d
2s d
2p-f
3s-d
3P -f
3d ~g
4s —8
4p ~f

Total (ang)

10 Rg)

- 1.116
— 4. 189
— 1.299
-16.88
-23.49

0.8840
0.2816
0. 5401
0. 2150
0.3607
0.4363
0. 2458
0 ~ 3996
3.3631

10 RE

-0. 017
~ Q

+0. 240
+0. 094
+0. 317

-0. 6275
-0. 0279
-0. 1228
-0. 0215
-0. 0535
-0. 0413
-0. 0579
-0. 0491
-1.0015

10 R

- 1.133
- 4. 189
- 1.059
-16.79
-23. 17

0. 2565
0. 2537
0.4173
0. 1935
0. 3072
0. 3950
0. 1879
0. 3505
2. 3616

-0. 0152
~ Q

+0. 185
+0. 0056
+0. 0135

0. 710
0. 099
0. 227
0. 100
0. 148
0 ~ 095
0. 236
0. 123
0. 298
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TABLE V. Values of the terms of the shielding factor
R for the 2p, 3p, and 4p excited states of lithium. RD
refers to the direct term, and RE refers to the exchange
term of R. The values of (r 3)„&are in units aH.

RD
Rg
R (total)
1/(1 -R)
(r 3)„&(calc)
(r )„&(exp)

0, 1824
—0. 0658

0. 1166
l. 132
0, 06494
0. 06451

0. 173 8
—0. 072 3

0. 1015
1.113
0.019 83
0. 019 09

0. 1712
—0. 0742

0. 0970
1.107
0. 008 437

factorao y %'e ha, ve

y (nl-l') = c(nl-1'} f, uo(nl}v', (nl-1')r'dr
(22)

(23)

(24)p„=-- y. . .(n, p)/y„, ~(n,P),
pertaining to the atomic correction factor R and
the ionic factor y„, respectively. It is seen that
the values of pR and p„are always small compared
to 1 and p„&pR. Both p„and p~ decrease with in-
creasing Z. Thus p„decreases from 0. 113 for Na
to 0. 0191 for Cs. On the other hand, for a given
atom, p& increases somewhat with increasing n, of
the valence electron, e. g. , from O. OS91 for Rb

5P to 0. 1080 for Rb 7P.
Ir. connection with Tables VIII and X for Rb and

Cs, we note that we have not listed the small con-
tributions due to Rb 3d-s and Cs 3d-s and 4d-s.
In order to estimate these terms, we note that the
perturbations v', (nd- s) have been previously cal-
culated ' for the three following cases: vq{3d-s)
for Cu'; vf(4d-s) for Ag'; and v', (5d-s) for Bi (see
Sec. III of Ref. 21). The functions v', (nd s) have
the same general behavior and the same number of

TABI E VI. Values of the contributions to R and to
y„ from the core excitations nL —L' for Na 3p, 4p, and
5p. The values of R(nL —L'; np) have been multiplied
by 10, as indicated. In the rows labeled "total, " "ang"
refers to the angular perturbations nL —L' with L' & L;
"rad" refers to the radial perturbations nL —L. The last
row lists the values of p defined as pR =—-R~(np)/R, ~
(nep) and p7 = &~~ anal ~ ~ rM.

nL —l' 10 R (3p) 102R (4p) 102R (5p) y„(ylL —L')

2p-p
ls —d
2s —d
2P-f
Total (ang)
Total (ang+ rad)
pRor p„

-23. 84
1.657
1.613
2. 515

5.785
-18.05

0. 243

-19.02
l. 611
l.417
2. 239

5. 267
-13.75

0. 277

-17.26
l. 598
l. 343
2. 141

5. 082
-12. 18

0. 294

-5. 389
0. 0641
0. 2286
0. 3179

O. 6106
-4. 778

0. 113

The last row of Tables VI-X gives the ratios p of
the angular to the radial contributions for each case.
Thus p is defined as

pR =-Ra I(neP)/Rraa(neP)

TABLE VII. Values of the contributions to R and to
y„ from the core excitations nL —L' for K 4p, 5p and 6p.
The values of R(nL —L'; nP) have been multipled by 10,
as indicated. In the rows labeled "total, " "ang" refers
to the angular perturbations nL-L' with L' & L; "rad"
refers to the radial perturbations nL-L. The last row
lists the values of p defined as pR —=-R~(np)/R, ~(ng)
and p„=—-y, ~/y, ,~.
nL —L' 10'R(4p) 10'R(5p) 10 R (6p) y„(nL —L')

2P -P
3P -P
ls —d
2s —d
2P-f
3s —d
3P -f
Total (rad)
Total {ang)
Total 10 R ory„
pR ol py

- 4. 73
-20. 49

0. 655
0. 715
1.075
0. 533
0. 963

-25. 22
+ 3. 94
-21.28

0. 156

— 4.41
-16.60

0. 645
0. 689
1.040
0. 469
0. 852

-21.01
+ 3.70
-17.31

0. 176

— 4. 30
-15.17

0. 644
0. 680
1.029
0. 445
0. 813

-19.47
+ 3. 61
-15.86

0. 185

1.217
-17.14

0. 0368
0. 1016
0. 1366
0. 2979
0.4775

-18.36
+ 1.05
-17.31

0. 0572

nodes as the corresponding perturbed functions
vf(nd- d), although the v,'(nd-s) are considerably
smaller in magnitude and have opposite sign to
v,'(nd-d). In fact, by comparing the two types of
functions in detail, it was found that v', (nd-s)/
v~(nd-d) is of the order of —0. 1 throughout the
range of r. Since the ratio of the angular coeffi-
cients c(nl —l') is

c(nd- s) 8/5 7
c(nd d} 16—/7 10 (25)

we expect that y„(nd-s}- —0. 07y„(nd-d). We

2P -P
3P -P
3d —d
4p-p
ls —d
2s —d
2P -f
3s —d
3P -f
3d ~g
4s —d
4p f

1.18
— 4. 61

1.19
-21.29

0. 258
0. 258
0. 423
0. 205
0. 325
O. 416
0. 221
0.409

l. 13
— 4. 19

1.06
-16.79

0. 257
0. 254
0.417
0. 194
0. 307
0. 395
0. 188
0. 351

l. 12
— 4. 04

l. Ol
-15.21

0. 256
0. 252
0. 415
0. 190
0. 301
O. 388
O. 176
0. 330

— O. 45
— 3. 93

l. 23
-43 ~ 8

0. 0185
0. 0444
0. 0609
0. 1033
0. 1587
0. 1926
0. 3145
0. 5522

Tctal (rad)
Tctal (ang)
Tc tal 10 R or y„
p&or p

-28. 27 -23. 17 -21.38 -49.4
+ 2. 52 + 2. 36 + 2. 31 + 1.45
-25. 75 -20. 81 -19.07 -48. 0

0. 0891 0. 1019 0. 1080 0. 0294

TABLE VIII. Values of the contributions to R and to
y„ from the core excitations (nL-L') for Rb 5p, and 6p.
7p. The values of R (nL -L'; ng) have been multiplied by
10, as indicated. In the rows labeled "total, " "ang"
refers to the angular perturbations nL -L' with L' ~ L;
"rad" refers to the radial perturbations nL —L. The last
row lists the values of p defined as pz —=-R~(np)/R, ~
(ng) and p„=—-y„,~/y„, ,~.
nL —L' 10 R(5p) 10 R(6p) 10 R(7p) p (nL —L')
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TABLE IX. Values of the contributions to R and to

y„ from the radial core excitations nl -l for Cs 6p, 7p,
and Sp. The values of R(nl —l; np) have been multiplied
by 102, as indicated. The last four rows of the table give
the sum over the radial terms [Total (rad)], the corres-
ponding sum over the angular terms fTotal (ang) )as ob-
tained from the next table (see Table X), and the resulting
total 10 R and y„, as well as the ratios p.

nl -l 10 R(6p) 102R(7p) 10 R(8p) y„(nl -l )

2p-p
3P-P
3d —d
4p ~p
4d-d
5p-p

— 0. 575
1.57

- 0. 369
- 4. 56
- 1.05
-17.77

- 0. 564
1.50
0. 355

- 4. 19
- 0. 95
-14.92

— 0. 559
- 1.47
— 0. 349
—4. 03
— 0. 90
-13.59

- 0. 2669
1.660

— 0. 3596
- 9.77

2. 912
-90.32

Total (rad)
Total (ang)
Total 102R oz'y~

poor py

-25. 89 -22. 48 -20. 90 -105.29
+ 1.90 + 1.83 + 1.80 + 2. 01
-23. 99 -20. 65 -19.10 -103.28

0. 0734 0. 0814 0. 0861 0. 0191

thus obtain the following estimates: y„(3d-s)
—(O. OV)(1. 23)-0.09 for Rb; and for Cs

y„(3d- s}+y„(4d-s):-0.07(0. 360+ 2. 912)

=-0. 23 (26)

where we have used the values of y (3d-d) and
y„(4d-d} given in Tables VIII and IX. Thus the
final value of y„, ,(Rb') is 1.54, giving y„(total)
= —4V. 9. Similarly, the final value of y ~,(Cs')
is 2. 24, and hence y„(total) = —103.05. It should,
however, be noted that the above values of y (sd-s)
may be underestimates, and the actual values may
conceivably be of the order of twice as large. In
this case, y„,would be increased to 1.63 for
Rb' and to 2. 47 for Cs'. In any case, it is seen
that the correction to y„due to the nd-s modes is
quite small for both Rb' and Cs'.

In connection with the preceding discussion,
it may be of interest to list the accurate values of

y„,~, which have been obtained in Ref. 5 and in the
present work: 0. 248 for Li', 0.611 for Na', 1.050
for K', 1.464 for Cu', 1.54 for Rb', and 2. 24 for
Cs'. These values show that y„,~, increases slowly
with increasing Z, much more slowly than )y„,~l,
and this accounts for the decrease of p„with Z,
which has been pointed out above.

The contribution of the (nd s) modes to R is even
smaller than the contribution to y„. In fact, the
change of R for Rb' and Cs' is only-0. 001, as will
now be shown. In order to estimate the terms
R(nd-s), we note that the exchange integrals in-
volved are the same as for R~(nd-d), namely the
I.= 1 exchange interaction with the valence elec-
tron, with the same coefficient (~~) in both cases.
(There is also an L = 3 interaction for nd d, which-,
however, does not concern us here; see Table II of
Ref. 5. ) Thus we have

TABLE X. Values of the contributions to R and to
y„ from the angular core excitations nl -l' for Cs 6p,
7p, and Sp. The values of R(nl -l'; np) have been
multiplied by 10, as indicated. (Note the larger factor,
as compared to 10 used in the preceding tables. ) The
last row labeled "Total (ang)" gives the sum over the
angular contributions te 10 R and p„, with the eRception
of the small nd- s terms which are estimated in the text.

nl —l' 10 R(6p) 10 R(7p) 10 R(Sp) y (nl —l')

ls-d
2s —d
2p-f
3s d
3p-f
3d~g
4s-d
4P-f
4d-g
5s —d
5P -f

l. 597
1 ~ 486
2. 600
1.249
1.679
2. 243
1.294
1.618
2. 106
1.293
1.836

1.593
1, 475
2. 586
l. 221
1.645
2. 203
1.231
l. 541
2. 003
1.167
1.645

1.591
1.470
2. 578
1.210
1.631
2. 186
1.203
1.508
l. 957
1.103
1.558

0. 01241
0. 02790
0. 03914
0. 06837
0. 08660
0. 09964
0. 1681
0. 1998
0. 2677
0.4568
0. 5874

Total (ang) 19~ 001 18.310 17.995 2. 0139

Rs(nd-s) ——0.07 Rs(nd-d} (27)

Rz(sd -s):——0. 1 Rs(nd -d; L = 1), (28)

where Rz(sd -d; L = 1) is the L = 1 term of the total
Rz(nd- d). As an example, for Rb6p, where'(3d- d)
= —1.299x10, Rs(3d-d; L= 1)=+0.204x10 3, we
find

R(3d -s; 6p) —[(0.0?)(1. 299) —(0. 10)(0. 204)] x 10~

=0. V05x10 (29)

and similarly small values are obtained for Rb
5p(0. 796x10 ) and Rb 7p (0.675x10 ). Qf course,
it should again be noted that these values may be
underestimated, but even if they should have to be
multiplied by a factor of 2-3, they would still rep-
resent a very small correction (& 2x 10 ~), presum
ably smaller than relativistic effects (which have
not been included in the present work) or effects
due to the inaccuracies of the core Hartree-Fock
wave functions on the large terms of R, in particu-
lar, on R(4p-p) for the Rb.

For the case of Cs, a similar estimate using the
values of Rn(Sd d), Rs(3d-d; L =1), Rn(4d-d),
and Rz (4d- d; L = 1) gives the following values for
R(3d-s}+R(4d-s}: 0. 94?x10 for Cs 6P, 0. 864
x10 for Cs Vp, and 0. 830x10 for Cs Sp. In
view of these results for both Rb and Cs, we have
increased all values of R by+0. 001, which is, of
course, an essentially negligible correction, as
discussed above.

The final values of R for the five alkali atoms are
listed in Table XI. The bottom part of this table
lists the resulting values of the correction factor
8 -=1/(I —R) for the nuclear quadrupole moments.
These factors will be used in Sec. III to obtain cor-
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TABLE XI. Values of the quadrupole antishielding
factors R and the corresponding correction factors
6 =1/(1-R). The n values of the states are written
as n=np, np+1, and np+2, where np is the principal
quantum number of the ground state (nps), and is listed
in parentheses for each alkali.

Alkali Li (np= 2) Na (3) K (4) Rb (5) Cs (6)

R(npp) +0. 117 -0. 181 -0. 213 -0. 257 -0. 239
R(np+ 1~ p) +0. 102 0. 138 0 173 0. 207 0 206
R(np+ 2, p) +0. 097 -0. 122 -0. 159 -0. 190»0.190

e «pp) 1.133
G (n + 1,p) 1.114
6 (np+2, p) 1.107

0. 847 0. 824 0.796 0. 807
0. 879 0. 853 0. 829 0. 829
0. 891 0. 863 0. 840 0. 840

rected values of Q for a number of alkali isotopes.
The oscillator strengths of the np -noP transition

in the alkali atoms have been recently evaluated
in a paper by Hameed, Herzenberg, and James. ~3

These authors used Hartree-Fock-Slater wave
functions which include the effect of exchange in an
approximate manner, but do not include correlation
effects of the valence electron with core electrons
having antiparallel spin to that of the valence elec-
tron. Since our wave functions v(nos) and v(nap) in-
clude the effects of both exchange and correlation,
they are expected to give more reliable values of

f„+ „& than those of Ref. 22. [We note that the
alkali ground-state wave functions v(nos) were ob-
tained previously in connection with the calculation
of the alkali atom dipole polarizabilities &~. They
are listed in Table I of Ref. 14, and also in Ref.
17. ]

It is thus of interest to calculate the oscillator
strengths using the wave functions v(nps) and v(naP).
In fact, we can also calculate the corresponding

oscillator strengths f„+ ~ for n =no+ 1 and n =no+ 2,
since we have the appropriate np wave functions.

From Eq. (4. 2) of Ref. 22, f~, „~ is given by

f„„.„~=(2m/31'}(E„, E„~)-~ Jo v, v„,rdr~' .
(30)

With the present normalization of v„, [see Kq. (4)],
and with E„, in Rydberg units and distaaces in units

a„, Eq {3.0) becomes

f„,.„='-(E„I,—E,}[(r),]' (31)

where (r)& is the matrix element (integral) of Eq.
(30), with i =n no. T-he-values of (r), in units a„
are tabulated in Table XII, together with the energy
differences E„~-E&, (in Rydberg units), denoted by
~E„ i.e. ,

(32)&E, -=E„~—E, for n =no+~ ~

In addition to (r)„DE{i and the oscillator
strengths f, =f„,.„~—(i =n —no), Table XII also lists
the matrix elements of r between nos and np, i. e. ,

(33)

These matrix elements are presented because they
were readily obtained from the computer program,
and because the integral of Eq. (33) enters into the
calculation of the core polarization effects on the

f&, as was pointed out by Hameed et al.
The values of f~, „0~ {denoted by fo in Table XII)

are generally in good agreement with the corre-
sponding experimental values, as listed in Table 4
of Ref. 22. We will list here the calculated values
of Table XII of the present paper, followed by the
range of experimental values for each alkali: (i)
Li calc: 0. 753; expt: 0. 72+0. 03; (ii) Na calc:
0. 966; expt: 0. 99+0.06; (iii) K calc: l. 087; expt:
1.00+0. 06; (iv) Rb calc: 1. 133; expt: 0. 99+0.06;

TABLE XII. Values of the matrix elements (r)@, „p and (r )&ps pp and the energy differences Epp Ebs bE and

the resulting oscillator strengths f„p, „&. If we write n=np+i(i=0, 1, or 2), the matrix elements are denoted by (r)&,
(r )~, and the bE by bE;, the oscillator strengths by f;. Note that np=2 for Li, np=3 for Na, np=4 for K, np=5 for Rb,
and np= 6 for Cs. Thus for Na, f&=fs, 4p (r")~ is in units a~H, bE; is in Rydberg units.

Quantity

—(r),
—(r) )
—(r)2

(r 2)

2)

—(r )2

Li

+4. 078
-0. 2280
-0

~ 2026

0 ~ 06405
0. 02261
0. 01265

Na

4. 329
0.4169
0. 1818

0. 07346
Q. 03537
0. 02247

K

5. 241
0.4469
0. 1758

0. 05197
0. 02482
0. 01583

5.411
0. 5932
0. 2637

0. 04936
0. 02466
0. 01595

Cs

5. 851
0.6783
0. 2933

0. 04302
0. 02099
0. 01366

DEp 0. 13581
0. 28181
0. 33234

0. 15462
0. 27585
0. 31933

0. 11868
0. 22521
0. 26431

Q. 11608
0. 21658
0. 25387

0. 10523
0. 19944
0. 23478

fp
fi
f2

0. 7530
0. 00488
0. 00455

0. 9659
0. 01598
0. 00352

1.0868
0. 01499
0. 00272

1.1328
0. 02540
0. 00588

1.2007
0. 03059
0. 00673
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III. DETERMINATION OF NUCLEAR QUADRUPOLE
MOMENTS Q

The values of 6 calculated in Sec. II have been
applied to obtain corrected values of the nuclear
quadrupole moments Q for a number of alkali iso-
topes. In this connection, a recent review article
of Fischer 6 was particularly useful. Thus in
Table 13 of Ref. 26, Fischer has tabulated the most
accurate available values of the uncorrected quad-
rupole moments Q„,t for the nuclei Na, K, Rb",
and Cs"~, as obtained from spectroscopic hyper-
fine measurements in several excited nP P3&~
states The v.alues of & =1/(1 —R) which were used
in this table were those previously calculated by
one of us (R. M. S), bothin Ref. 4 andinfurtheresti-
mates. In the present work, we have recalculated
the corrected values of Q, denoted by Q~«, using
the values of 6 = I/(I-R) obtained in Sec. II. Thus

Q...r= Qo~tc= Q~(II/(I -ft)] . (34)

The resulting values of Q„,„ together mith the ex-
perimental values Q„„are given in Table XIG.
The experimental errors are indicated in paren-
theses (in units of 10 'b).

The present values of Q„«do not differ appreciably
from those given by Fischer. This is obviously
due to the fact that the present values of 6 do not
differ by a large amount from the estimates pre-
viously made, which were based on Ref. 4. How-
ever, it should be pointed out that the present val-
ues of 8 have a much smaller uncertainty (probably

(v) Cs calc: 1.201; expt: 1.09+0. 10. The rele-
vant experimental references are listed in Ref. 22
in connection with Table 4. Ne note that the agree-
ment of our theoretical values with experiment is
generally within one standard deviation, except for
Rb, where the apparent disagreement is - 2 standard
deviations. For Cs, we note there are two experi-
mental determinations which differ appreciably,
both as to the best experimental value and the mag-
nitude of the experimental standard deviation. Thus
Minkowski and Muhlenbruck in 1930 obtained fo
=0.980+0.10, whereas the more recent experiment
of Kvater and Meister (in 1952) gave f0= l. 188
+ 0. 012. If the latter experimental value should be
the more reliable (as indicated by the smaller as-
signed error), then our calculated value (1.201)
would indeed be in very good agreement with experi-
ment.

In connection with the present calculations of R,
we note that the same method of solution of the in-
homogeneous equation (1) (with r ' replaced by r')
has been used to calculate the dipole and quadrupole
polarizabilities ' &~ and o., of several ions and
atomic states, and also the shielding factors ' o~
for the 4f electrons in the rare-earth ions Pr
aIld Tm

&0.03) than the previous estimates, where the un-

certainty was -0.15.
From the values of Table XIII, we have obtained

the following weighted averages for the four nuclei
Na K Rb and Cs'

7 2

Q(Na ) = + 0. 101t 0. 008 b;

Q(K ) = —0. 067 + 0. 008 b;

Q(Rb ) =+ 0. 127 + 0. 001 b;

Q(C s'" ) = + 0. 364 + 0. 002 b

(35)

Upon making use of the ratio

Q (K )/Q (K ) = 0. 8215s 0. 0001

obtained by Bonczyk and Hughes, ~9 we find

Q«„(K )=+0.060+0. 005 b.

Similarly, upon using the moment ratio

Q(Rb )/Q(Rb ) = 2. 0669,

also obtained in Ref. 29, we find

Q„„(Rb ) = + 0. 263 + 0. 002 b.

(37)

(38)

(39)

(40)

%Ye will now discuss the cesium isotopes Cs'",
Cs', Cs', Cs 3, and Cs~ . It should be noted at
the outset that since the correction factors 86~,
87&, and 68& for Cs differ only by small amounts
from those used by zu Putlitz and co-workers, the
resulting corrected moments will not differ appre-
ciably from those previously obtained.

%e thus find for Cs'3~6P

Q „(Csi'i 6P ) = —0. 572(10)x (0. 807/0. 791)

= —0. 583(10).

Here —0. 572(10) b is the value obtained by Acker-
mann et al. ,

' and 0. 807/0. 791 is the ratio of the
revised to the previous value of the correction fac-
tor 86.

Similarly, upon correcting the value of Ref. 30
for Q(Cs 7P), we find

Q,«,(Cs"' 7p) = —0. 562(8)x (0. 829/0. 81V)

= —0. 5VO(8),

In obtaining these averages, we have used I/o, for
the weights, where 0, is the standard deviation as
listed in the last column of Table XIII (for Q„„).
The resulting standard deviation of the averages
listed in Eq. (35) is given by 1/o' = g, (1/o3).

%'e mill now obtain the corrected values of Q for
the other alkali isotopes. For the case of K, the
measurements of Schrnieder, Lurio, and Happer
give Q„„=0.05'7+0. 004 b for the uncorrected value
in the 5 P~iz state. Upon applying the appropriate
correction factor, namely @~~ = 0. 853 (see Table
XII}, me obtain

Q«gp(K ) + 0 049 + 0 004 b
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TABLE XIII. Values of the experimental quadrupole moments @4~ (without correction factor 8) and of the corres-
ponding corrected moments Q,~ fsee Eq. (34)]. The values of+ =1/(1-R) are listed in the fourth column of the table.

Q and Q are in units of b=10 4 cm . The experimental values Q, were taken from the compilation of Fischer~4~ an 4'
(Ref. 26).

Nucleus

Na"

Na

K40

K40

Rb87

Rb87

Rb87

Cs"'

( si34

Cs 134

State

3p P3/2

4p P312

4p P312

5p 83&2

5p Pg(2

6p Pp)2

7p P3)2

8p P312

6p P3(2

7p P3(2

8p P3i2

@4m

0. 121(14)4

0, 114(12)

-0.081(12)~

-0. 079(14)b

0 ~ 160(1)

0. 153(1)4

O. 147(2)'

0. 153(9)r

0 ~ 455 (3)I

0 436(3)h

0.427(8)i

i//(1- R)

0. 847

0. 879

0.824

0.853

G. 796

0. 829

0.840

0. 844

0.807

0 ~ 829

0.840

0. 102(12)

0 ~ 100(11)

-0.067(10)

-0. 067 (12)

0. 127(1)

0. 127(1)

0. 123(2)

0. 129(8)

0. 367 (3)

0.361(3)

0. 359(7)

~D. Schdnberner and D. Zimmermann, Z. Physik 216,
172 (1968).,

~J. Ney, R. Repnow, H. Bucka, and S. Svanberg,
Z. Physik 213, 193 (1968).

G. zu Putlitz, I a Structure Hyperfine Magnetique
des Atomes et des Molecules (C. N. R. S. , Paris, 1967),
No. 164, p. 205; H. A. Schilssler, Z. Physik 182,
289 {1965).

G. zuPutlitz and A. Schenck, Z. Physik 183, 428
(1965).

4 Reference 39 ~

iG. zu Putlitz and K. V. Venkataramu, Z. Physik 209,
470 (1968).

g Reference 26.
"Reference 33.
' Reference 38.

where 0. 829/0. 817 is the ratio of the corresponding
factors t'-7~.

Finally, upon weighting the two results (41) and
(42) according to the inverse-square standard de-
viations I/o„we obtain the following final value:

Q(Cs ') = —0. 575+ 0. 006 b. (43)

The same procedure can be used for the values
of Ackermann ef af. ' for Q(Cs "a 6P) and Q(Cs'~a 7P).
We find

For Cs'3' and Cs'", we use the quadrupole cou-
pling constants B(Cs' ) = 2. 19+0.09 Mc and
B(Cs'3~) = 2. 23+0. 09 Mc, which were determined
by Bucka, Kopfermann, and Otten. ' By comparing
these values with that for Cs' ', namely, B(Cs" )
=18.07+0. 12 Mc (in the same 7 P, ia state), as ob-
tained by Heinzelmann et al. , we can deduce the
corrected values of Q(Cs"') and Q(Cs"') from that
of Q(Cs" ) =+0. 364+0. 002 b [see Eq. (35)]. We
thus obtain

Q„„(Cs'Ba 6p) =+ 0. 459(10)x (0. 807/0. 791)

=+ 0.468(10),

Q „(Cs' 7p) =+ 0. 46V(30) x (0. 829/0. 81V)

=+ 0. 474(30).

(44)

(45)

Q (Cs"') = [(2. 19 %0. 09)/18. 07]x 0. 364

= + 0. 044 a 0. 002 b,

Q(Cs"') = [(2.23+ 0. 09)/18. OV]x 0. 364

=+0.045+ 0. 002 b.

(48)

(49)
The resulting weighted average is

Q (Cs i~
) = + 0.4 69 s 0. 010 b. (46)

= —0. 0030+ 0. 0011 b. (47)

In order to obtain the corrected value of Q(Cs' 3),
we use the uncorrected value —0. 0036+ 0. 0013 b,
which was derived by Bucka et al. "from the earlier
measurements of Althoff. 3 Since this result was
obtained for the 7~P3+ state, we use the correction
factor 6~~=0. 829, and obtain

Q (Cs' ) = (- 0. 0036a 0. 0013) && 0. 829

For convenience, we have listed in Table XIV the
12 alkali isotope Q values which have been deter-
mined above [Eqs. (35)-(49)]. This table also in-
cludes the corrected values of Q(Cu ) and Q(Cu ').
As mentioned above (in Sec. II), these values were
previously obtained by Sternheimer from a. calcula-
tion of the correction factors 6 for the configura-
tions 3d 4s and 3d' 4P of copper. The correspond-
ing experimental values Q,~, were obtained by
Fischer et al. and by Ney, respectively, for the
two excited atomic states.

In connection with the calculations of the wave
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TABLE XIV. Values of the corrected quadrupole
moments Q,~ (in units of b= 10 4 cm ).

Nucleus

Na

K40

K4'

Cu

Cu"

( sf31

Cs132

Csf33

( s134

( si35

Cs13?

+0. 101 + 0. 008

+0. 049 + 0. 004

-0.067 + 0. 008

+0. 060 + 0. 005

-0. 211 + 0. 004

-0. 195 ~ 0. 004

+0. 263 + 0. 002

+0. 127 +. 0 ~ 001

-0.575 R 0. 006

+0.469 + 0. 010

-0.0030+ 0. 0011

+0. 364 + 0. 002

+0. 044 + 0. 002

+0. 045 + 0. 002

functions s(nP) from which the values of R are de-
rived, it is of interest to compare the calculated
(x ')„~ values with those which have been derived
for Rb np from the fine-structure splittings, by
Feiertag and zu Putlitz. Upon multiplying the en-
tries for (r ),~ in Table 3 of Ref. 36 by (a„/A)'
= (0. 5292)' = 0. 1482, we obtain (r '),~

= 0.8006,
(r )»= 0. 2611, (r ')» =0.1183az'. The correspond-
ingvalues calculated from thepresent wave functions
are (r ')»= 0. 8651, (r ')»= 0. 2862, (r ),~= 0. 1308a„
(see Table III). The agreement between the two
sets of values is very good, with a maximum dis-
crepancy of - 10%%upfor 7P. The good agreement which
has been obtained here is presumably due to the in-
clusion of an effective correlation between the va-
lence electron and the core by the use of the experi-
mental energy eigenvalue Eo(nP} in the equation de-
termining v(np) [Eq. (7)]. The agreement to within-

10%%uo may also be contrasted with the discrepancy
which exists for Na 3p between the value of (r '),~
obtained from the valence wave function of Fock and
Petrashen'7 (see Ref. 4, Table I), and that obtained
in the present work. The two values are 0. 145a&,
and 0.2331a„', respectively. Thus the Fock-Petra-
shen value which includes exchange effects but not
correlation is too small by a factor of 1.61.

Besides the values of (r ~) for Rb, we note that
for Cs Vp and Cs 8p, values of (r ')„„have been
obtained by Heinzelmann et al. and by Knohl
et al. ,

' respectively. In units of aH, these values
are (r '),~= 0. 39VS and (r ')» = 0.1814. For com-
parison, our calculated values are (r )7~= 0. 4419
and (r )»= 0. 2023 (see Table III). As for Rb nP,
the agreement is quite close, with the discrepancy

eqgc» = 0. 840/0. 796 = 1.055, (51)

which is also in essential ap;reement with the exper-
imental result [Eq. (50)].

In a similar manner, for the case of Cs, Knohl
et al. have calculated

QBp, yt/Q»„, ~t(Cs ) = 0.977 + 0. 020, (52)

which they compared with the earlier value of the
ratio e,ge»= 0. 817/0. 832 = 0. 982. This ratio is
practically unchanged, i.e. , its present improved
value is

evge8~=0. 829/0. 840=0. 987, (53)

also in agreement with the experimental result,
Eq. (52).

It can be concluded, in particular for Rb, that the
slow increase of e„~ with increasing n is verified
experimentally, thereby giving additional support
to the calculations of the quadrupole antishielding
effect for atomic states.

In this connection, the experimental results for
Cu 3d 4s and 3d' 4P, together with the calculations
of Ref. 5 for copper, probably provide the strongest
evidence for the atomic shielding and antishielding
effects. Besides these two verifications (Rb and
Cu}, we may also note the earlier results of Mura-
kawa40 on the 5d and/or 6p states of La'~9, Lu'~',
and Hg ', and the evidence obtained by Barnes,
Mossbauer, Kankeleit, and Poindexter ' for the ex-
istence of a weak shielding (R-+0. 2) for the 4f
electrons in the rare-earth ion Tm'. This value
of R+, as well as Murakawa's result for R~- -0.4,
have been confirmed theoretically4~ by Sternheimer
in Refs. 5 (see Table VI} and 42 (see Table VII).

In this connection, we note that Childs and Good-
man in a series of papers, have investigated the
existence of quadrupole shielding and antishielding
effects for atomic states. Thus, in connection with
measurements43 on the hyperfine structure in two
configurations of V" (3d'4s' and 3d44s), Childs44

being & 12% in both cases.
The results of Table XIG give strong support to

the assertion of zu Putlitz and co-workers ' that
the inclusion of the correction factor I/(I-R} re-
sults in a better agreement between the values of

Q~~ obtained from different atomic states, as com-
pared to the poorer agreement among the uncor-
rected values Q„„. This is particularly in evidence
for the cases of Rb and Cs'

For the case of Rb, this point was made by Bucka
et al. by calculating

Qs~~t/Qw„)Rb, Rb ) = 1.07m 0. 03, (50)

which they compared with the ratio e,g8»= 0. 845/
0. 787=1.074, using the earlier values of 8„~, as
derived from Ref. 4. With the present values of
6„~ we have
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has concluded from the result = 1.44+0. 08. (s9)

5 M(d'sp)/sM(d s)
a,„(d's ')/a M(d's )

(54)

that the shielding effects are nearly the same for
both configurations. (Here a and 5 are, respective-
ly, the magnetic moment and quadrupole moment
coupling constants. )

On the other hand, for the case of Co which has
been investigated for the two configurations 3d74s~

and 3d 4s, Childs and Goodman ' found a differential
shielding effect given by

Q(co", 3d'4s'; 'F) b~ ~M

Q(Co; 3d 4s; F) aM My4, p ap~ p~p~

The close agreement of (58) and (59) is well with-
in the limits of error of the theoretical and experi-
mental determinations.

The magnitude of the effect (1 —RM)/(1 —R&) is
very similar to that previously found for Cu, in
which case (1 —R4p)/(I —RM) = 1.429. It is also
noteworthy that if we denote by n,l, the values of nl

pertaining to the R factor in the numerator, and by
npf p the values of nl in the denominator, the two
atomic states are related by n2=n, —1 and E2=l&+1
in both cases, i.e. , the state with the larger n and
the smaller l value shows an antishielding effect,
while the other state gives a shielding of Q.

= 1.10a0.02, (ss) IV. SUMMARY

which indicates that the ratio (1 —RMv4, p)/(I —Rpg84 )
is also given by Eq. (55), i. e. , 1.10+0.02.
ever, for Nis', a similar differential effect was
not observed, to within 3%.

We note that in a recent determination of Q(La'")
by Childs and Goodman, ~ the application of an anti-
shielding correction factor 1/(1 —RM), with' RM
=- —0. 3, results in a value of Q(La" ), which is in
good agreement with the earlier determination of
Murakawa.

In a recent paper, Childs has investigated the
hyperfine structure of 17 low-lying atomic levels
of Tb", for both the configurations 4f 6s and
4f 5d6s . For the latter configuration, the magnet-
ic dipole and quadrupole coupling constants (a„,
and b„,) were obtained both for the 4f and 5d valence
electrons. The situation is thus similar to that for
Cu, where both the 3d and 4P coupling constants
have been obtained. ' ' In fact, it was found in
Ref. 48 that, whereas

a~ /aM = (r )pf/(r p) M
= 2. 96,

the ratio

(ss)

(1 —R M)/(I —R~) = 2. 96/2. 02 = 1.47 . (58)

This value of 1.47 can thus be regarded as the ex-
perimental value of (I -R~)/(I -R&).

On the other hand, upon using the values R&
=+0.10+0.05 and RM = —0. 3, which were estimated
by one of us (R.M. S. ) on thebasis of the results of
Refs. 5 and 42, we find the following theoretical
value of the ratio:

(1 —R )/(II —Rpl) = 1.3/(0. 90s 0. 05)

bpf/bM=(r ')&(I-R+)/(r ')s, (I-RM) (57}

equals only 2. 02, and is thus smaller than (56) by
a factor

In the present work, we have calculated the quad-
rupole antishielding factors R for 15 excited atomic
states, namely the lowest three excited nP states
for each of the five alkali atoms. Special care was
taken to obtain accurate nP valence wave functions
v(nP), by requiring that the effective potential should
be so adjusted as to reproduce the observed atomic
energy eigenvalue Ep(nP) for each state. The re-
sulting wave functions e(nP) have been checked by
calculating the oscillator strengths f„, „~, where
no is the principal quantum number of the ground
state. For n =no, the resulting calculated values
are in good agreement with the corresponding ex-
perimental values of f„, „&, as obtained by optical
measurements. Furthermore, the expectation
value" (r ')„p which enter into the quadrupole hyper-
fine structure, are in good agreement with those
derived from experiment by zu Putlitz and co-
workers 3' 6' for the cases of Rb and Cs.

The resulting values of R and 6 = 1/(1 —R) are
generally close to the previous estimates made by
one of us (R. M. S.}basedon Ref. 4. However, the
uncertainty in e, is considerably reduced, from- 0. 15 to - 0. 03 for the present values. The applica-
tion of '.he correction factors 6 to the values of
Q„, is shown in Table XIII. The final weighted av-
erages of the corrected quadrupole moments are
listed in Table XIV, which includes values for 12
alkali isotopes, and in addition, Q(Cupp) and Q(Cupp),
which have been previously determined by the same
procedure in Ref. 5.
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