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an analysis of the two limits may be easier for
Eq. (6) than for Eq. (14). Another is that only the
diagonal elements of the T matrix enter in Eq. (6)
whereas off-diagonal elements of S are required
in Eq. (14}. However, off-shell matrix elements

of T occur in Eq. (6) with only on-shell elements
of S appearing in Eq. (14} (with above reservations).
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The impact-broadening operator @ for the hydrogen line H is calculated by solving numeri-
cally for the S matrices using the straight-line classical-path approximation. All contributing
multipoles in the perturber- (free-electron-) atom interaction [ V(t)] are included; time order-
ing of the operators in the S matrices is retained. The matrix elements are compared with pre-
vious approximations based on the same model; the effects on the H~line profile are considered.

In a previous paper' we numerically calculated
the S matrices used to compute the impact-broad-
ening operator 4„„.for the Stark broadening of the
hydrogen-line Lyman o using the classical-path ap-
proximation. All contributing multipoles in the
free-electronmtom interaction were included and
time ordering of the operators in the S matrices
was retained.

In this report we apply the same techniques to the
hydrogen line H and compare the results with pre-
vious calculations using the same approximation.
(Details may be found in Ref. 2. ) For ease of com-
parison, the 4„„.matrix elements are expressed in
the form (note the different sign convention as com-
pared with Ref. 1)

Re4„„.= C[ E,(ym„) —K ] dl, Im4'„„. = C &, (1)

where
) 2P2N1/$(2m/k T)1/2

C=
2. 61e cm~

and

61 = [r„r„+r„.~ r„.—2r„. ~ r„]

E,(y „)= —0. 577 —lny „—Z nn!

ample, Ref. 3)
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With this definition of @'„„., the line profile in re-
duced units a(a = —M/Eo) is given by (see, for ex-

FIG. 1. Comparison of H profiles. The SC and BE
curves are not shown. The SC curve lies almost exactly
on top of the KG curve and the BE(GKSII) curve is slightly
narrower than the KG curve.
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FIG. 2. The ratio of the half-widths of this calcula-
tion to the KG half-widths as a function of temperature for
N= 10f7 elcm3.

x&n'i~ i('),
where the symbols have their usual meaning. The
Hooper distribution functions are used to describe
the static ion field W„(f).

In the following we have characterized the pre-
vious calculations as Griem et al. (GKSI), ' Bacon
and Edwards (GKSII),6 Shen and Cooper (SC),'
and Kepple and Griem (KG), which is indicative of
the particular treatment of close collisions used in
the various calculations rather than of the calcula-
tions themselves. This method of comparison was
chosen because previous calculations have utilized
different cutoff procedures at large impact param-
eters (in this report p „=p~) and some have ne-

TABLE I. Values of X [Kq. (1)] determined by the present calculations as a function of temperature. Also shown are
the values of E used by KG as a function of temperature. In addition, we show the values of X determined using the
formalism of Shen and Cooper, as applied to the two-state case. In the GKSI formalism X= 0, while in the GKSII «rmal-
ism, on which the calculations of BE are based, K= —1.

Spherical quantum numbers
specifying upper (n) and lower

(n') states

+f~f 8 lcm~ n'l4m4 nlS~S

300 200 200 300
310 200 200 310
311 200 200 311
320 200 200 320
321 200 200 321
300 200 210 310
310 200 210 300
310 200 210 320
311 200 210 321
320 200 210 310

3
—(a.u. )X(SC)
2%

126.0 0. 132
99.0 —0. 055
99.0 —0. 055
45. 0 —0. 676
45. 0 —0. 676

—29. 4 0. 983
—29.4 0. 983
—20. 8 0. 221
—18.0 0.221
—20. 8 0.221

104

0. 29
0. 09
0. 09

—0. 90
—0. 90

0. 84
0. 70
0. 70
0.70
0. 54

Temperature ('K)

0.30
0. 11
0. 11

—0. 88
—0. 88

0. 84
0.71
0. 70
0.70
0.55

0.33
0. 13
0. 13

—0. 85
—0. 85

0. 85
0.73
0.71
0. 71
0. 56

0.35
0. 16
0. 16

—0. 81
—0. 81

0.86
0.75
0. 71
0. 71
0.57

2x104 3x104 4x10

0. 38
0. 18
0. 18

—0. 77
—0. 77

0. 87
0. 77
0. 72
0, 72
0.58

0. 40
0.21
0. 21

—0. 73
—0.73

0. 89
0. 80
0.73
0. 73
0. 60

5 x104 6 x104

321
311
311
321
300
310
311
320
321
300

200 210 311 —18.0
200 211 300 —29.4
200 211 320 10.4
200 211 310 —18.0
210 210 300 114.0
210 210 310 87. 0
210 210 311 87. 0
210 210 320 33.0
210 210 321 33.0
211 211 300 114.0

0.221
0. 983
0.221
0. 221
0. 018

—0. 307
—0. 346
—0. 668
—0. 724

0. 018

0. 54
0. 69
0. 70
0.54
0, 15
0. 09

—0. 09
—1.38
—1.41

Q. 15

0. 55
0.70
0. 70
0.55
0. 18
0. 09

—0.07
—1.35
—1.38

0. 18

0.56
0. 72
0. 71
0. 56
0.21
0. 11

—0. 04
—l. 32
—1.35

0.21

0.57
0. 74
0. 71
0.57
0.23
0. 12

—0. 01
1~ 27

—1.30
0.23

0.58
0.77
0. 72
0.58
0.26
0. 15
0. 02
10 22

—1.25
0, 26

0. 60
0. 79
0. 73
0. 60
0. 29
0. 17
0. 05

—l. 18
—1.20

0. 29

310 211 211 310
311 211 211 311
320 211 211 320
321 211 211 321
322 211 211 322

87. 0
87. 0
33.0
33.0
33.0

—0. 346
—0. 327
—0. 836
—0. 808
—0. 724

—0. 09
—0. 02
—l. 48
—1.38
—l. 24

—0. 07
—0. 01
—1.46
—1.35
—1.22

—0. 04
0. 02

—1.42
—l. 32
—l. 18

—0.01
0. 04

—1.37
—1.27
—l. 14

0. 02
0. 07

—1.33
—l. 22
—1.09

0. 05
0. 10

—1.28
—1.18
—1.05

K (KG) = 0.78+ 8kT/3E+ (independent of matrix element) —0. 95 —1.12 —1,29 —1, 46 —l. 63 —l. 80
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glected various terms of 8, (in this report the com-
plete (R matrix is used), and hence an absolute com-
parison would tend to hide the essential results of
the present investigation.

The values of K were determined in the same way
as was done in Ref. 1 and are given in Table I as a
function of temperature. These values of K are es-
timated to be accurate to +0. 05. Shown for com-
parison are the values based on the SC and KG de-
velopments. In addition, we have K = 0 according
to the GKSI formalism and K = —1 for the GKSII
formalism on which the calculations of BE are
based.

In order to compute the H line profile, the 4«.
matrix elements using the K's of the present calcu-
lation (given in Tabie I) were first transformed to
the parabolic system. The profile S(a) was then
calculated in the usual way using Eq. (2). Profiles
based on previous calculations were calculated in
similar fashion using the relevant K's. The re-
sulting profiles for an electron density of 10' e/cm
and a temperature of 2x10 K are shown in Fig. 1
(renormalized to a peak intensity of I). The SC
curve lies almost exactly on top of the KG curve and
therefore is not shown. The BE(GKSII) curve is
slightly narrower than the KG curve, but not suf-

ficiently so as to be distinguishable on the scale
used. The profile calculated using the present val-
ues of A is seen to be approximately 5% broader
than that of KG. This relative behavior is a func-
tion of temperature for a given density and is illus-
trated in Fig. 2 where we have plotted the ratio of
the half-width using the present K's to the half-
width using the K's of KG as a function of tempera-
ture for an electron density of 10" e/cm'. The
ratio was calculated at the temperatures 10, 2
x 10, 4x10, and Gx10 and a smooth curve drawn
through the theoretical points (denoted by the small
circles). From this figure we see that the present
calculations are -11% broader at 10 'K and - 5%
narrower at 6x 10 'K. Similar curves may be
plotted for different electron densities.

In the present calculations, 4«. has an imagi-
nary part [Eq. (I)]. The values of S are given in
Table II as a function of temperature. Including
the imaginary part of the 4, matrix elements in
the H profile calculation results in a shift to the
red with no apparent asymmetry about the peak
intensity. At 2&10 K and a density of 10' e/cm
the shift is approximately +0.3 A, while at the same
temperature but at a density of 10" e/cm' the shift
is approximately +1.9 A.

Spherical quantum numbers
specifying upper (n) and lower

(n') states

TABLE II. p [Eq. (1)) as a function of temperature.

Temperature ('K)

nl (mg

300
310
311
320
321
300
310
310
311
320

321
311
311
321
300
310
311
320
321
300

310
311
320
321
322

n'Epm2

200
200
200
200
200
200
200
200
200
200

200
200
200
200
210
210
210
210
210
211

211
211
211
211
211

n'l4m4

200
200
200
200
200
210
210
210
210
210

210
211
211
211
210
210
210
210
210
211

211
211
211
211
211

nl3m3

300
310
311
320
321
310
300
320
321
310

311
300
320
310
300
310
311
320
321
300

310
311
320
321
322

104

—8. 77
—5. 91
—5. 91
—2. 81
—2. 81
—0. 10
—0. 38
—0. 23
—0. 20
—0. 23

—0, 20
—0. 38

0. 12
—0, 20
—9.28
—7.54
-6.87
—4. 19
—4. 17
—9, 28

—6. 88
—7.25
—4. 14
—4. 04
—3. 96

2 x104

—12.36
—8. 74
—8.74
—4. 04
—4. 04
—0.32
—0.68
—0.34
—0.30
—0.34

—0.30
—0. 68

0, 17
—0, 30

—13.35
—10.97
—10.21

—6. 01
—5. 96

—13.35

—10.22
—10.69
—5. 88
—5.82
—5.79

3 x104

—15.19
—ll. 10
—11.10

—5, 11
—5. 11
—0. 54
—0. 91
—0.44
—0.38
—0.43

—0.37
—0. 91

0. 22
—0.37

—16.62
—13.78
—12. 99

—7. 52
—7.46

—16.62

—13.00
—13.53
—7.34
—7.31
—7.35

4 x104

—17.66
—13.20
—13.20

—6. 12
—6, 12
—0. 73
—l. 11
—0.52
—0.45
—0. 50

—0. 43
—I.11

0.26
—0. 43

—19.49
—16.26
—15.47
—8. 91
—8. 83

—19.49

- 15.48
—16.04
—8. 67
—8. 68
—8.77

5 x104

—19.91
—15, 14
—15.14
—7. 11
—7, 11
—0. 89
—l. 26
—0.59
—0. 51
—0. 57

—0. 49
—1,26

0. 29
—0.49

—22. 11
—18.51
—17.74
—10.21
—10.12
—22. 11

—17.75
—18.32
—9.94
—9.98

—10.12

6 x104

—22. 03
—16.95
—16.95

—8. 08
—8. 08
—1.02
—1,39
—0.65
—0. 56
—0.62

—0. 54
—1.39

0.32
—0. 54

—24. 55
—20. 61
—19.85
—ll. 48
—11,38
—24. 55

—19.86
-20. 44
—11.18
—11.24
—11.41
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In conclusion it should be pointed out that the use
of the classical-path approximation down to ~ is
rather extreme and quantum effects are possibly
significant in this region. Nevertheless the present
treatment of strong collisions should be an improve-
ment over previous treatments.
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The entropy is determined of a quantum-mechanical system whose statistical state is char-
acterized by a Wigner distribution function that is Gaussian in form. It is found to depend only
on the variance of the distribution function. This enables us to study quantum mechanically
the approach to equilibrium of coupled harmonic-oscillator chains, a system for which a clas-
sical treatment has been given recently by Robertson and Huerta.

In this paper we calculate the entropy of a quan-
tum-mechanical system that is in a state charac-
terized by a Wigner distribution function'~ which
is Gaussian in form. We then study the approach
to equilibrium of a system of an infinite harmoni-
cally bound weakly coupled quantum -mechanical har-
monic-oscillator chain. The approach to equilibri-
um of this system, when each harmonic oscillator
is replaced by a classical harmonic oscillator, has
been recently studied in great detail by Robertson
and Huerta. ' We find that the reduced N-particle
Wigner distribution function is the same as the
classical one that was calculated by Robertson and
Huerta [Ref. 3(a), Eq. (9)]. We also find that in
the limit as t- ~ the entropy is the same as the
equilibrium entropy for a system of ¹independent
quantum oscillator s.

Let the quantum-mechanical system be in a state
characterized by a Wigner distribution function of

the form

1 (yq +Pp —2yqp
2 zP —y~

The parameters n, p, and y may be shown to be
related to the average values of the operators
q~, P~, and qp by the following relations:

We shall show that such a Wigner distribution func-
tion occurs in the problem mentioned above. It al-
so occurs in other problems such as parametric
amplification'"' and Browian motion. " '

The entropy of a quantum-mechanical system in
a state characterized by the density operator p is
given by


