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w at which S(w,Tc) takes on its maximum value.
This number can be computed directly from Eq.
(15) as a function of k2, and is presented in Fig. 1
along with the values measured by Cowley and
Woods and reported by Sears.!® Our estimate of
wy is everywhere slightly less than what is ob-
served experimentally, but the trend of this quantity
as a function of % is faithfully reproduced. It is
pertinent to note that a Gaussian expression for
S(w, k) like Eq. (14) would equate w,, with E,(k)
and thus generally overestimate it in the k& region
shown in Fig. 1. Equation (15) is therefore a qual-
itative improvement on the simplest possible approx-
imation. The fact that Eq. (15) slightly overcom-
pensates for the inadequacy of Eq. (14) is in fact
typical of what occurs in a convergent term-by-
term series approximation.

To get some idea of how well Eq. (15) reproduces
the measured S(w, k) aside from the shift in w,, we
have plotted in Fig. 2 the dynamic structure factor

computed from the cross-section data of Cowley
and Woods® at 5.1 A along with our estimate of
S(w,%) at that wave number. The data and the
curve are shown as functions of (w - w,,) so as to
separate the estimate of w,, from a test of the
shape of the theoretical S(w, k). Equation (13) ap-
pears to follow the measured dynamic structure
factor reasonably well, even to the extent of re-
producing some of the asymmetry in the wings.
From this successful comparison we conclude that
our hypothesis on S(w, k) at the lower end of the
region of large momentum transfers is fundamen-
tally sound, especially in view of the fact that
reasonable agreement with experiment has been
achieved without recourse to ad hoc parameters.
The physical information to be gained from our
hypothesis is limited however, since the only
quantities of importance in the theoretical S(w,T{)
are (K) and (AV), which can be computed by other
means.
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Some comments on a recent paper of Dashen, Ma, and Bernstein on an S-matrix formula-
tion of statistical mechanics are made and, in particular, an alternate form of one of their
main results (which was obtained by Watson in 1956) is discussed.

In a recent paper by Dashen, Ma, and Bernstein!
(DMB) a virial-expansion formulation of equilibrium
statistical mechanics was given in terms of formal
scattering theory. If certain limiting procedures
exist (to be discussed below), then they have ob-

tained an expression for the N-particle partition
function (or what is equivalent, the Nth virial coef-
ficient) in terms of an S matrix. In this paper one
of their main results, DMB Eq. (3.35), is put in a
form first obtained in 1956 by K. M. Watson? (W)
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and additional comments are made.
A primary quantity of interest in both DMB and
W is the quantum-mechanical trace

Zy=Tr e, (»

where the Hamiltonian H of the system of N par-
ticles in a volume T is assumed to be of the form

H=Hy+V, (2
with the eigenstates and eignevalues of Hy known:

Ho|k) =Ey | k). (3
The label % stands for the complete set of quantum

numbers. The trace is taken in the representation
furnished by Hy:
Zy=2 (k| |k). (4)

Watson obtains for these diagonal elements the ex-
pression [W Eq. (20)]

(k|e®#|k) =2 e®Bne [ (N, | ) |2+ e 5r
Ay
1 f‘( Ty(E - i)
ryayy ——f'___z-
*om o \(E-in-E,)

T,(E +1in) .
~GeniEy) e O

where the first term on the right is the bound-states
contribution, the second term is the free-particle
contribution, and the last term is expressed in
terms of the diagonal elements T, of the N-body

T matrix. 71s a small positive real number. In
order to compare with DMB we will focus on the
last term, which can be written as

B [ (RE)

(6)
where Im implies taking the imaginary part.
The T matrix is defined by
T(E+in)=V+VG(E +in) V, (7
with G, the resolvent, given by
G(E+in)=(E+in-H™, (8)
GolE+in) =(E +in-Hy) ™, (9)
The wave matrix Q is introduced by
2=GGy'=1+GV=1+G,T, (10)
Q1l=1-G,V, (11)
and the scattering matrix S by
S(E+in)=QYE-in) QUE +in) . (12)

In DMB it is shown that [see DMB Eqs. (3. 32) and
(3. 33)]
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Tr (s“ 3s  as’t

35~ 3F s) =—4iIm [Tr(GiD)], (13)

which follows at once from the above definitions
and the cyclic property of the trace. Combining
Eq. (6) with Eq. (13) yields

1T 1 as™
Zn= 41:1'[, T (s 3E ~ 9
(19

which combined with Eq. (5) gives DMB Eq. (3. 35).
[Note that DMB treat the bound states in a latter
section and therefore the bound-states contribution
does not show up explicitly in their Eq. (3. 35).]

The equivalence of Watson’s result with that of
DMB is clear. The question is whether one form
is more useful than the other in performing calcu-
lations. In principle, if one “knows” the S matrix,
one “knows” the T matrix and conversely, so there
is no apparent preference. However, there are
some significant differences which are worth
pointing out.

In the expression for the virial coefficients there
are two limits to be taken: first the volume to
infinity and then 7 to zero. This order is of ex-
treme importance. Strictly speaking one does not
have the usual S matrix of scattering theory in Eq.
(14) until one carefully investigates these limits.
This will have to be done with each individual cal-
culation since it is not proven in general that the
limit of the product in Eq. (14) is equal to the
product of the limits. Crudely speaking, one must
investigate whether

aS
Lim Lim (s" ——)
n0* L~ 22

s) ePEdE,

]
= (Lim Lim S") (Lim Lim _§)
70+ L~ w0t L-o OE/,

which would be required in order to have S stand
for the traditional S matrix. This must be inter-
preted as being schematic since one knows that
the large volume limit does not exist until the
“connected” part of Eq. (14) is taken (see DMB
Sec. IIIA). However, this introduces a new dif-
ficulty in analyzing the limits since in general the
limits of the connected part of the product is not
equal to the product of the limits of the connected
part of each factor. This has been discussed by
Résibois® and others.

The reason for emphasizing the need for a care-
ful investigation of the limits is that one of the
main results of DMB, namely that only the “on-
shell” matrix elements of the S-matrix enter,
rests on the implicit assumption that Eq. (15) or
the equivalent statement for the connected parts is
valid.

One possible advantage of Watson’s form is that

(15)
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an analysis of the two limits may be easier for
Eq. (6) than for Eq. (14). Another is that only the
diagonal elements of the 7 matrix enter in Eq. (6)
whereas off-diagonal elements of S are required
in Eq. (14). However, off-shell matrix elements

of T occur in Eq. (6) with only on-shell elements

of S appearing in Eq. (14) (with above reservations).
The author wishes to express his thanks to Max

Dresden and Leo Mascheroni for several enlight-

ening discussions on this topic.
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The impact-broadening operator ¢ for the hydrogen line H, is calculated by solving numeri-
cally for the S matrices using the straight-line classical-path approximation. All contributing
multipoles in the perturber- (free-electron—) atom interaction [ V()] are included; time order-
ing of the operators in the S matrices is retained. The matrix elements are compared with pre-
vious approximations based on the same model; the effects on the H,line profile are considered.

In a previous paper! we numerically calculated
the S matrices used to compute the impact-broad-
ening operator &,,, for the Stark broadening of the
hydrogen-line Lyman « using the classical-path ap-
proximation, All contributing multipoles in the
free-electron-atom interaction were included and
time ordering of the operators in the S matrices
was retained.

In this report we apply the same techniques to the
hydrogen line H, and compare the results with pre-
vious calculations using the same approximation,
(Details may be found in Ref. 2.) For ease of com-
parison, the &,,, matrix elements are expressed in
the form (note the different sign convention as com-
pared with Ref, 1)

Re@nn' = C[El(ymln) _K] ® ’ Iménn' =CH4 ’ (1)

where
C- - XgﬁaN”a(Zm/k T)l/z
- 2.6lecm?

and

(R=[?"-F"+'f":-?".-Z-f":--fn] y

El(ymln):"o. 577_1nymln"i (_ 1)";_;;“ ,

natl nn!
Ymin =(47TN/3m)( eh’nz/kT)z .

With this definition of ®,,., the line profile in re-
duced units a(a = - AN/F,) is given by (see, for ex-

ample, Ref. 3)
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FIG. 1. Comparison of H, profiles. The SC and BE
curves are not shown. The SC curve lies almost exactly
on top of the KG curve and the BE(GKSIID curve is slightly
narrower than the KG curve.



