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butions are of opposite sign, a measured value for
the latter with an improved accuracy of 0. 5% is
obtained.

With regard to other calculations in these states,
two independent values' '" have been obtained for
the 2'P, isotope shift in agreement with the above
theory ' to within 0. 001 cm '; none of these cal-
culations could be distinguished in the present ex-
periment. An earlier calculation of the 2'$O isotope
shift' disagreed considerably with the above theory
and with the present experiment.

A brief remark might be made regarding the iso-
tope shift in the higher (2'So-n'P, ) lines. The isotope
shift for the 5016-A (2'So-3'P, ) and 3964-A
(2'S0-4'P, ) transitions has been measured spectro-
scopically, and these values for v(He')-v(He') may
be compared with the above theory, where the cal-
culation is identical to that for the (2'S0-2'P, ) line
(see Table I). The agreement is very good but the
shifts are primarily due to the reduced-mass ef-
fect. With the reduced- mass contributions excluded,

TABLE I.
Spectroscopy Spectroscopy Theory'

{-So 3 Pt) 0 833 ~ 0 005 0. 849+0. 003 —0. 8443 cm
{2'$0-4'P&) —1. 150+0. 005 —1. 165+0. 005 —1. 1630 cm '

'See Ref. 4. See Ref. 5. See Refs. 2 and 3.

the theoretical shifts would be

(2'So-3'P, ): v, (He')-v, (He') = 0. 0497 cm ';

(2'So-4'P, ): v, (He')- v, (He') = 0. 0320 cm '.
Hence, of the (2'So-n'P, ) series, the (2'So-2'P, ) line
is clearly the most sensitive to the mass-polariza-
tion term.
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A new Fock-type operator is defined which varies between the Hartree and the Hartree-I ock
operator depending on a cutoff parameter in the exchange potential. The corresponding pseudo-
Hartree- Fock equations require each orbital P& to behave asymptotically as exp[—(—2&;) rj.
Calculations are reported for the Ne atom.

I. INTRODUCTION

Handy, Marron, and Silverstone' (heres. fter HMS)
have shown that the long-range behavior of Hartree-

Fock orbitals for atoms is

exp[- (- 2e ii i) I r] as r ~, (1)

except for the case of an atom consisting entirely
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of s electrons, for which the behavior is

(2)@,- exp[- (- 2e,)" r) as r
A particular consequence of Eqs. (1) and (2) is that
Be (ls' 2s ) has orbitals which die away with each
orbital having its own tail, whereas B (Is 2s 2P)
has orbitals all of which die away in the same man-
ner. We feel that this behavior is an artifact of the
Hartree- Fock model.

In this paper an alternative Hartree-Fock proce-
dure is proposed. The model to be developed forces
the Hartree-Fock orbitals to have the behavior of
Eq. (2) in all cases.

H. THE HARTREE-FOCK LONG-RANGE PROBLEM

In the standard Hartree-Fock theory for closed-
shell atoms, one solves the equation

F/)= &fPf, j =1, . . . , N

where F in canonical form is given by

F= —2 ~ —Z/r+Q( (2J( -K(),
with

J,f(1)=f(1) f P(2) P, (2) (1/r, z) dv(2),

K,f(1)= P~(1}f P,*(2)f(2) (I/r~a) dv(2).

(3)

(4)

(Sa)

(sb)

Ffq f = Efgi

where

Ff =F —Jf+Kf .

(6)

A naive approach to the asymptotic problem for
Hartree-Fock orbitals leads to the assumption that
when an electron in orbital j is removed from a
neutral atom at a large distance, the relevant one-
particle equation should be

where

For Eq. (8) to hold asymptotically, K, p& must go to
zero faster than P, /r as r goes to infinity, for all

(r/g&) K, p&, . „= 0 for all i (10)

The HMS paper has shown that Eq. (10) does not

In general, the operator F of Eq. (4) is the same
operator for each orbital, which automatically pro-
duces orthogonality between different orbitals.

If the self-exchange terms are removed from the
operator F, then each orbital becomes an eigenfunc-
tion of a different operator and orthogonality be-
tween orbitals must separately be formally forced.
Techniques to force such orthogonality have been
derived elsewhere, and those results will be used
here. We may remove the self-exchange term by
requiring each orbital f4) f to satisfy the equation

hold for atoms with both s and p orbitals unless the
dipole integral between s and p orbitals vanishes
identically.

One method which will ensure that Eq. (10) holds

is to construct a modified exchange operator K& such
that exchange only occurs within a finite "sphere of
influence" of the electrons. Consider two particles
labeled k and L which interact if particle / is within
k's sphere of influence (call this a kl interaction) or
if k is within l's sphere of influence, i. e. , an /k in-
teraction. The sphere of influence of particle l will

be defined by a radius given by n/(-2e, )', i. e. , n

times the DeBroglie wavelength of particle l. A

similar definition is made for particle k.
If particle I is placed at a distance r» from par-

ticle k, there will be an interaction with k if r»
&& (- 2e,}' '/n & 1; and no interaction if this ratio is
greater than 1. Similarly, if one considers particle
I, its interaction with k will be significant if r»
x(-2e, ) '/n&1. Theexchangetermisamutualin-
teraction and will occur in the framework if

r„, [(- 2&~
'}~' +(-2e()'~')/n & 2.

Diagrammatically the problem can be seen in
Figs. 1(a)-1(c). If particle I has a larger sphere of
interaction than k, and k and l are arranged as in

Fig. 1(a), then I will "see" or interact with k and k

will "see" I. In Fig. 1(b), I will "see" k but k will
not "see" I. In Fig. 1(c) there will be no interac-
tions between particles k and l.

An exchange operator which satisfies the forego-
ing criterion is

Kali = Aa(I) f Aa(2) Ar(2) [[I -u)/r») dv(2}

(12)where
0 if x&0

u=u(x)= . , with x=rqz —r&z. (13)if x&0 '

With this operator K~~ the "sphere-of-influence" idea
is regarded as a gross effect and an average inter-
action radius defined by r» is used for all orbitals.
This simplification should not substantially change
the results to follow.

Other types of exchange cutoffs have been sug-
gested in defining the sphere of influence. Sugges-
ted in the HMS paper was the use of an

-1 - lo l(ry + r2~
. 2 2

r)2 e

potential in the exchange operator, which accom-
plishes a cutoff regardless of the size u if a Slater-
type orbital (STO) basis set is used for the expan-
sion of the Hartree-Fock orbitals. Another possi-
bility is the use of r&z' e ' ~~ in place of I/r&z in
the exchange potential. Both of these suggestions
could in principle easily be used; however, the dif-
ficulties in evaluating the modified exchange inte-
grals between STO basis elements is great. The ex-
change cutoff we have chosen here acts as a cutoff
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FIG. l. (a) Particles k and / inter-
act, (b) particle l "sees" k but k does
not "see" l, (c) particles k and l do not
interact.

potential regardless of the expansion basis set
chosen and is much easier to deal with computation-
ally. Results obtained with alternative cutoff
schemes probably would agree.

III. PSEUDO-HARTREE-FOCK EQUATIONS

will in general be different from that given by

E=Q I;+ Q (2J()-K;().
i f(j

(18}

(19)

The pseudo-Hartree-Fock equations to be solved
in the present sphere-of-influence framework are
given by

(14)

where

Since our purpose is to derive orbitals which satisfy
the long-range behavior given by Eq. (2), but not to
otherwise perturb the conventional scheme, the
formula we choose for the total energy is Eq. (19).
This means that the orbitals are calculated by use
of Eq. (14), but then the total wave function is con-
structed from a Slater determinant of these orbit-

F& = ——,
' V —Z/r+ P (2J, —Kf)+ J&. (15)

F) I'), (18)

where F~ is given by Eq. ('I). When r,z-0, on the
other hand, the operator I'& goes to the Hartree op-
erator, i. e. , Kf -=0.

Since the operator given in Eq. (15) is not deriv-
able from a particular wave function using a fixed
Hamiltonian, there occurs an ambiguity in the de-
finition of the total energy. The total energy, given
by the formula

E = Q. (I, + cP),

where

(17)

K~~ and 8, are defined by Eqs. (12) and (5a}, respec-
tively. Two limits of the operator E& should be
noted. When r&z approaches infinity it is seen that 0

+12

10.0
5.0
3.5
3.0
2. 5
2.0
1.5
1.0
0.5
0.0

+Total

128.546186
128.546186
128.546186
128.546163
128.545962
128.544937
128.543077
128.543970
128.529632
128.530155
128.475935

32.77334
32.77334
32.77331
32.77711
32.78616
32. 80806
32.83900
32.82184
32.65340
32.63314
32.97038

1.93050
l. .93050
l.93049
l. 93385
l.94241
1.96721
2. 02435
2. 10911
2. 09293
1.70226
1.41183

See text, especially Eq. (15). When r~~ ——~,
function is the Hartree-Fock function; when rf2
wave function is the Hartree function.

—E'2

0.85098
0.85098
0.85094
0.85300
0.85829
0.87242
0.89929
0.92391
0.89697
0.76979
0.67135

the wave
=0, the

TABI E I. Hartree-Fock energies for Ne using exchange
cutoff.
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als and the energy computed from the usual expec-
tation value formula. Therefore, even as r» goes
to zero, the total energy will be greater than the ex-
act Hartree-Fock energy and will not go to the Har-
tree energy for the system. In this limiting case,
our prescription is equivalent to solving the Har-
tree equations for the orbitals and then using these
orbitals to construct an approximate Hartree-Fock
wave function.

IV. RESULTS

In Table I are given the total and orbital energies
for the Ne atom as a function of the exchange cutoff
parameter r,2. The ls Hartree-Fock orbital is a
linear combination of two 1s and one 2g STO. The
STO with the smallest nonlinear parameter, call
this (&„governs the long-range behavior [Eq.
(2)], and(»- (-2&„)' '. The 2s Hartree-Fockorbit-
al is a linear combination of the STO used in the de-
scription of the 1s orbital and two additional 2s
STO. The additional 2s STO with the smallest non-
linear parameter $z, governs the long-range behav-
ior of the 2s orbital and $z, - (-2az, )'~ . The 2P
Hartree-Fock orbital is a linear combination of four
2P STO with the STO having the smallest nonlinear
parameter $2~- (- 2ez~)

' governing the asymptotic
behavior of the 2p orbital.

Initially the linear and nonlinear parameters for
a given r&3 are chosen as those used for the Hartree-
Fock orbital (r,2= ~) given earlier. The pseudo-
Hartree-Fock equations are then solved in the nested

TABLE II. Wave functions for selected values of rf2
for Ne.

TABLE III. Hartree-Fock wave function and

expectation values for ge.

~Tot~] 128 e 546186 EHp=
—128.546980

&g = —32.77334 c~= —1.93050
E2p

———0.85098
S Basis

i
0 0

14.39380
8.80690
8.09609
3.43120
l. 96498

0.07385
—0.24322

1.14380

P Basis

—0.00115
0.01031

—0.30328
0.78600
0.31302

C2p(rf2 = )

0.01753
0.34561
0.58940
0.14824

{ls I rl 2s ) =0.04457
{2pl r I 2p ) =0.96570

{2s I rf2 I 2s ) = 1.27133
{2s I rf2l 2p ) =1.33674

2 9.35500
2 4.45450
2 2. 27170
2 1.30459

{1sI rl 1s) =0.15746
&2s I r I 2s ) = 0.89367

{1s I rf2 I 1s ) =0.23006
{1s'Ir&2I 2s ) =0.91009
{ls I r f2 I 2p ) = 0.98149
{2p„lrf2 I 2p~) =1.38271 {2p~ I rf2 I 2pr = 1.41212

~Wave function of Ref. 5 and present paper with rf2 ——~.
~The expectation values are defined as

(a(rl b) = Ia*( )1r&b(l) dv(1),

(a Ir&ilb ) = mfa*(1)a(l)r&&b~(2)b(2) dv(1) dv(2).

The usual symmetry relations hold, viz. ,

{a I rf2I b ) = (b I rf2 I a ),
{p„'Irf2 I pz) {P„l~f2 I p,') = {pg I &f2 I p

{P I+f2lpy) {P I f2I p ) {py I

A p orbital without subscript indicates that either a p»,
p~, or p~ orbital gives equivalent results.

0
/f2 Cf8

3.0 8.09769
1.97104
1.31025

0.07397
—0.24267

l. 14321

2. 0 8.10420 0.07415
2.01221 —0.24098
1.34137 1.14151

0.0 8.12039 0.06918
1.68037 —0.24605
1.15877 1.15020

1.0 8.08132 0.07136
2. 04601 —0.25098
1.33947 1.15294

0.00214
0.01717

—0.30931
0.77103
0.32657

0.00852
0.03100

-0.31914
0.72498
0, 36749

0.01754
0.02393
0.27366

—0.84984
—0.24992

0.02727
0.05581
0.21554

—0.79117
—0.34034

C2@

0.01726
0.34759
0.58380
0.15278

0.01749
0.34648
0.57521
0.16208

0.01825
0.32982
0.64138
0.09790

0.01373
0.33800
0.56234
0.20814

+&i (r12) ~' (r12) ~i (r12
0 0 0 (20)

are convenient measures of changes in orbitals as
a function of the cutoff parameter. Figure 5 ex-
hibits plots of ~E», &a2» and 6&@ for values of
r» from 0. 0 to 4. 0 a. u. One sees that there is a
nonmonotonicity of the breakdown of the orbitals as

basis framework' for a new set of linear param-
eters. If the new orbital energies e, obtained are
each within chemical accuracy (0. 002 a. u. ) of
--,' $, , then the iteration procedure is stopped;
otherwise, the nonlinear parameters $, are changed
and the iteration procedure is continued.

The best wave functions obtained for selected val-
ues of r&2 are given in Table II. The $, and linear
parameters are listed in this table. The full Har-
tree-Fock wave function is listed in Table III along
with expectation values of r and certain r» expecta-
tion values which should give an indication of the
effective r» regions for the various orbitals. In
Figs. 2-4, radial graphs of r ~t)„, r p~, and
r Q», respectively, are plotted for r» = 0 and r, 2 =

Certain quantities hE;, defined by
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FIG. 5. Plot of &&~ versus ~~& for Ne. Atomic units. FIG. 6. Plot of &E versus r&q. Atomic units.

tree-Fock equations to have the behavior given by
Eq. (2) in all cases. One method which would work
for the first-row atoms is to force the dipole inte-
gral between s and p orbitals to be identically zero.
However, such a rigorous constraint would force at
least one spurious node to occur, probably a radial
node in the 2P orbital. This would imply a ground-
state configuration for Ne of the type [ls' 2s 2P ].
Such a configuration very likely would be unsatisfac-
tory energetically. Also, the introduction of spu-
rious nodes would defeat the purpose of the nested
basis procedure. This procedure was an operation-
al means of eliminating the extra nodes found in the
standard Clementi-type wave functions and instead
calculating wave functions which have Sturm-I iou-
ville-type model properties.

Alternatively, perhaps some nonlinear constraint
based upon Eq. (2) could be directly applied to the
variation procedure. However, a systematic ap-
proach to handling such nonlinear constraints and
the reduction of the resulting equations to an eigen-

vector-type equation has not yet been found.
The apparent ambiguity in the definition of the to-

tal energy formula occurs since as x,z goes from
zero to infinity in Eq. (14), the modified Fock op-
erator varies smoothly between the Hartree opera-
tor (which variationally implies a simple product
form for the total wave function) and the Hartree-
Fock operator (which variationally implies an anti-
syrnmetric product for the total wave function). If
a smooth limiting procedure for the total wave func-
tion could be devised which took a Hartree-Fock
wave function to a Hartree wave function, it would
be possible to variationally construct an operator
of the type given by Eq. (14).
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