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The spin-correlation functions of the one-dimensional XY model are studied in the presence
of a constant magnetic field. We find that the asymptotic behavior of these correlation functions

depends strongly on the various parameters of the Hamiltonian.

N N

H = JZ [(1+y) S;S,"., + (1 —y) S;S,',|] —h y, P S;,
)sf j=1

(1.1)
where, without loss of generality, J may be taken
positive; the symmetry they were interested in
(when h = 0) is the rotational symmetry in the XY
plane which H possesses if

y=0. (1.2)

I. INTRODUCTKNV

In the first paper of this series' we studied the
time-dependent magnetization m, (i) of the XY model
in the presence of certain time-dependent magnetic
fields. We found that this model has the most inter-
esting property that as t ~, m, (f ) does not approach
its thermal-equilibrium value. To understand this
most peculiar property in more detail, we turn to
investigation of the instantaneous spin-correlation
functions as a function of time. However, in order
to make a meaningful study of these time-dependent
correlation functions, it is first necessary to under-
stand the properties of the equilibrium correlation
functions. These functions have been previously
studied only in the following two special cases: (i)
y arbitrary in the absence of a magnetic field, ay

and (ii) y = 1 with an arbitrary magnetic field
(transverse Ising model). Therefore, the purpose
of this paper is twofold. We first show in Sec. II
how to compute the time-dependent correlation
functions for a general h(t ) and then study in detail
the behavior of the equilibrium correlations obtained
by making h(t) a constant independent of time. The
behavior of the correlation functions as a, function
of time will be analyzed in detail in the third paper
of this series.

Lich, Schultz, and Mattis (LSM) originally intro-
duced the M' model to study the influence which
symmetry, or lack of symmetry, has in a many-
body system. The Hamiltonian they studied was
(generalized to finite magnetic field/)

However, there is a second, somewhat less obvi-
ous, "symmetry" in (1.1) if

(1.3)

p„„(R)= (StS"„), v = x, y, z. (1.4)

When h =0 this study was started by LSM and con-
tinued by one of the present authors. This study
indicates that there are several qualitative differ-
ences between y =0 and y4 0. When y =1 a similar
study made by Pfeuty indicates that there are
several qualitative differences between h & 1, h =1,
h& 1. In this paper, we extend these calculations
of M to general values of h. However, the actual
computations are quite detailed. Therefore, in
order to emphasize the qualitative effects of the
symmetry conditions (l. 2) and (l. 3), we conclude
this Introduction with a summary of the major re-
sults of this paper.

The asymptotic behavior of p„„(R)as R-~ when
T & 0 is studied in Sec. III. A high-temperature ex-
pansion is given by (3. 28), but the most interesting
features are seen when 0& T«1. These results
are given in (3. 63)-(3.68). In all cases (—1)
x p„„(R) vanishes exponentially rapidly as R -~.
However, the rate of this exponential vanishing de-
pends on h, and this dependence is qualitatively

i. e. , if the interaction energy with the magnetic
field is equal (in some sense) to the arithmetic av-
erage of the interaction energies in the X and Y

directions. The effects of these symmetries are
most pronounced at T = 0. The first symmetry then
manifests itself in the fact that if lp, h I& J, the
ground-state energy is not an analytic function of
y at y =0. ' The second symmetry manifests itself
in the fact that m, fails to be an analytic function
of h at h p, = J for any y. '

A great deal more information about the influence
of symmetry on the system described by (l. 1) may
be obtained by investigating the three spin-spin-cor-
relation functions:
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different if

0& fhp f& J(1—ya),

or

Moreover, if J& fhp f, but

(1.5a)

(1.5b)

lim (-1) p„(R)= [1/2(1+y)](ya[1 —(hp/J)a)]]~4
R

if fhp f& J

=0

(1.V)

The boundary of the shaded region is the circle

y'[( hp/~)' (1 -y'—)]& (I y'—)(]]/0)', (1.6) (hp/J) +y =1. (1.6)

the approach of the leading term of (-1) ]o„„(R)to
zero is not monotonic, but is oscillatory with a
wavelength that depends on y and h. Note in particu-
lar that qualitative restrictions similar to (l. 5a) and
(1.5b) have already been seen in Paper I. The as-
ymptotic behavior of p„as R-~ for 1&0 is studied
in Sec. V [see (5. 11)]and that of p„ in Sec. VI [see
(6. 3)—(6. 7)]. They also vanish exponentially as
R-~ for all values of h and y. Furthermore, (- I)s
p3]y and p«will have some oscillatory behavior if
(1.6) holds.

The effects of the symmetry conditions (1.2) and
(1.3) are most sharply seen at T=O. This case is
considered for p„„in Sec. IV, for pyy in Sec. V, and
for p« in Sec. VI. The qualitative features of these
expansions are summarized in Fig. I. In particular
we note (4. 13) that for y &0

Inside this circle the approaches of (-1) p,„,
(-1) p,„and p„ to their R- ~ limits contain oscil-
latory terms, while outside the circle the approach
is monotonic. On the circle, the correlation func-
tions are known exactly and are independent of R.
The parameter &z is given by

] =[ p/~ [(hp-/~)'-(I-y')]"']/(I-y). (I ~)

We also note that these asymptotic expansions are
all valid for A, and y fixed and R-~. Thus the ex-
pansions that are valid in the various regions of
the y-h plane all break down when one goes to the
lines y=O, hp =8, and (hp/4) +ya= 1 bounding these
regions. In Fig. 1, the effect of the symmetry
conditions (l. 2) and (1.3) is quite clear. If neither
of the symmetry conditions holds, all correlations
approach their R -~ limits exponentially rapidly.
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However, in all cases where we have results, when

one of these symmetry conditions does i~old, all the
correlation functions approach their limiting values
as some power of R. It is most tempting to spec-
ulate that this distinction between the symmetric
and asymmetric cases is a general property of spin
Hamiltonians and is not just a special property of
the XF model in one dimension.

(We assume as in Paper 1 that for t&0 the system
is in equilibrium at temperature T. )

LSM show that (LSM 2. 31)

P,„(l —m) =-,' (B,A„,B„~ A~, B„&A ), (2. 3a)

p„(l —m)= —,
' (-1)' "(AgB„,A„,B„~ B„,A„,B ),

(2. 3b)
II. FORMULATION

A. General
p (t —B1)=

4 (AI BIA B ), (2. 3c)

Consider the XY Hamiltonian' [(12.1) with J= 1,

p, = 1]:

H = 2 [(1+r) S,"S", , + (1 —r ) S;S,', —&(t) S' ].
2=1

(2 1)

p„„(R, t) = (S,
"(t) Sy, (t)), v = x, y, z . (2. 2)

The three instantaneous correlation functions are
defined as

where A, , B; are given in terms of c;, c, (12. 3) as

A,. = c,'+c, ,

i Ci C
t

(2. 4a)

(2. 4b)

The correlation functions p""(R) are given as ex-
pectation values of products of fermion operators.
Caianello and Fubinis show, by use of the Wick
theorem in quantum field theory, that expressions
of this nature can be expressed as Pfaffians. In

particular, we have

p „,(~ —l ) = -', pf I S1, I 1 S
$ ~l m 1 Gl l+1 Gl 1+2 Gl haft

5e-2, e-1 G e-2, l+1 G e-2, l+2

Gift-i, l+1

Gruff-1,

l C

~l+1 1+2

G

G

@l+1,e

(2. 5)

where we use the definitions and (2. 5) reduces to the Toeplitz determinant

S, „=(B,B )=S(m —t),

Q, ~ = (A, A ~ ) = Q (m —p),

G, , „=(BgA )=G(m —f) .

(2. Sa)

(2. Sb)

(2. Sc) p..(R) =4

G1 G2

Go G1 GR1

(2. aa)

An important simplification occurs in, 2. 5) when

we restrict our attention to the equilibrium case.
Then one can show that GR-2 GR 3

Ql =S, =0, (2. '7) Similarly, in thermal equilibrium, we have
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Gi Gp ~ ~ G-zis

Gt ~ ~ ~ G sos

(2. Sb)

first introduced by Wu, ~ and k is the mth Fourier
component of inc(e'~), namely,

(2. 12)

GB GR-1

2 1
P gg ~g 4 GRG-Rv

Gi

(2. Sc)

In the process of investigation, we deal with de-
terminants that violate condition (iv). When Ind
x [c(e'~)]=a 1, we use the Wiener-Hopf method in-
troduced by Wu, ~ and when Ind[c(e'~))=- 2, its ex-
tension forms Theorem 4 of Hartwig and Fisher. '

C. Explicit Derivation of G~ (2.6c)

where m, is the z-direction magnetization, given
in general by (I4. 7).

One can immediately see that it is much easier
to deal with p„, since evaluating p„ involves simple
products. On the other hand, p„and 0» are Toep-
litz determinants, whose asymptotic properties
for large R were studied in general by Wu, ~ Szego,
Kac, Hartwig and Fisher, and others. " These
results have been applied to the zero-field case of
p„„and p» by one of the authors. ~

B.Method

To study the asymptotic properties of p,„and p»,
we extensively use Szego's theorem: Let C&

be an RxR Toeplitz determinant

Cp C 1
~ ~ ' C-

((~)=I; (2. 13)

It is clear that our particular h(t) introduces no
loss of generality in the following method of com-
put~ GR.

GR can be rewritten in a more convenient form,
using (I2. 5), as

Z ~m( —— (((P e( ((.]) l~.'
Piegl

+exp [j(-p+(I)+R, 1 a(,a,
2mi

In this section we calculate G„explicitly. We
will confine our attention to a step-function magnet-
ic field h(t), namely,

ci co C R+1
—exp j —q —,a~ta,

where

CR-1 CB-2 ~ . . Cp

(2. S)
2%i-exp ~ I((-p-q(-((. () ~a,).

Elementary manipulation of (2. 14) yields

(2. 14)

c„=e'P L a„a )
asR-

n 1
(2. 11)

where =.'means "asymptotically equivalent, " as

c„=(I/2w) f e '"' c(e'') dP (2. 10)

and c(e'o) is the generating function.
If (i) g Ic„l&~, (ii) p" „ In I Ic„I ~, (iii) c(e )

x 0 on the unit circle, and (iv) inc(e ") is a periodic
function with period 2v (this means that the winding
index is zero, i.e. , Ind[c(e'~}]=0), then the leading
asymptotic value of CR is given as

z~p
Gn = — —2 cos -—R (a a(( +a t a —1)N p&p

-P

+2sin R Re 2ip 1 t2' (2. 15)

Here p(f, (f} is the appropriate element of the pth
sub-block of the density matrix, given explicitly
by (I5. 5), (a~~a&+ a~~a ~

—1) is obtained by looking
at (I4. 3) and (I4. 6). Therefore, we may take the
thermodynamic limit N- and obtain

G(R, &) = —— d(p cos((t(R) '
z f[y sin (t(+ (cos(p —a)(cos(f( —5))

1 tanh(-,' PA(a))
r A(a)A'(5)
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f
x (cos$ —b) —(a —b)y sin tb cos(2h(b)t)] + (y/&) dp sin(QR)

~t p

[r sm p+(cosp-a)(cosp —b)+(a —b)(cosp —b) cos(2A(b)t)] .
tanh( —' Ph (a) )
AaA b (2. 16)

The equilibrium G„can be obtained directly by
setting a= b, namely,

and we have defined

T(e'~) =tanh(~ PA(a))/~ Ph(a) . (3. 3)

G„=—— d@ cosgR (cosP —a)
1 tanh(-,' Ph(a) )

A(a)

tanh(-,' PA(a))

Let

so that

GR cR+1)

c&= —(I/2w) f —,
' pe '~ T(e'~)

(3.4)

where A(a) is given by (13.14) as

A(a) = [y'sin'y+ (a —cosy)~]'~'. (2. 18)
x [e'~(- cosp+a+ iy sing))dp. (3.5)

Note that (2. 1V) can also be obtained for (2. 16) by
setting t=0, as it must be.

From now on, GR will be the equilibrium value
of (2. 1V).

Using the methods of this section, one can easily
obtain Q, and S, . Both vanish for t=0 and t=~.
They do not vanish in general for intermediate
times. In other words, we get block Toeplitz de-
terminants. The authors are unable to give a gen-
eral treatment to these determinants. However,
since (2. 7) holds for t = ~, we are able to study the
ergodic properties of the correlation functions
(2. 2). This study will be published as the next
paper in the present series.

III. EVALUATION OF p FOR FINITE P AND 0&y & I

A. General

Then we obtain

Cp C 1
' ~ ~ CRi1

C1

p (a, R) = ( —1)s—

CpC

C R-1 C1Cp

(3. 6)

We wish to evaluate (3. 6) asymptotically for large
R, by use of Szego's theorem. Define

P,(e'~) = —e'~ (- cosP+a+iy sing)

We devote this section to the evaluation of p„„
given by where

= -', (1+r)(1—&,'e'~)(1 —&,'e"), (3. 7)

G,
Gp

GS &R

~-1 ' ' ~-R+1

~i,a={a+[a'- (I-r ')]'")/(I - y ),
"~=[a+[a —(1 r')]"') (/I —-y),

(3. 8)

(3.8a)

( —I)"
] xx=

4 (3.1) &~=[a-[a'-(1-y')]"')/(I r), (3. 8—b)

GR-2 ~R-3

where from (2. 8a) and (2. 17) 0„is

Gs= —(I/2v) f —,'Pe ' "T(e' )

x (- cosp+a + ir sing) dp, (3. 2)

and the square root is defined to be positive for
a & 1 —y~. In Fig. 2 we show the motion of the two
zeros of P,(e'~) These locatio. ns determine if con-
dition (iv) of Bzego's theorem holds.

In Fig. 2, we distinguish three regions: (i) a & 1,
where P„(e ~

) w 0 for p g [- v, s] and Ind [P,(e ~~) ]= 0;
and Szego's theorem can be applied in a straight-
forward fashion. (ii) a & I, where P,(e")+ 0 for
p C [- v, w] but Ind [P„(e'~)] = 1. Therefore, to apply
Szego's theorem we "shift" the determinant once,
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& (1 —e'ofa) (1 —e 'oga) (1 —e'og„), (3.10)

Wa= (y a —(1 —y ) [y + (ka) P a]Pi a, (3.11)

hp/J. O

UNIT CIRCL

hp/J 0

i ,.I I I+7 ---
V I-y

jI+7~'~~ V I -y

hfdf/J &gI- y~
Ig

hp/J ~ I h~/J. I J

X2 II
/

/
/

/

r
(I+vs -i/~ ii

2 I y

(ka/P)a+ h'= 0, (3. 12)

where h is given by (2. 18). More explicitly one
obtains

a w, (,w]' -«'
Ifal- 1 (3 13a.)

a —W» a —W,
" i/2

Ig. I= 1. (3. 13b)

and f, and g, are two solutions of the quartic equa-
tion

Note that when k = 0, (3.13) reduces to fo i = X| and

FIG. 2. Dependence of A.
&

and A,2 on a.

a

go =]

ifa) g,

if a( g. (3. 13c)

as first studied by Wu. (iii) a = 1, pathological case,
since P,(e 'o) = 0 at P = 0 and therefore Szego' s
theorem cannot be used.

B.a(1 P Finite

It is convenient to write T(e 'o) (3. 2) as an infinite
product

By use of (3.5) and (3.8), we may write (2. 12) as

ln [~ P(1 + y) (1 —& i e 'o ) (1 —&a e 'o
) T(e 'o

) )

+ oa

I~o (3. 14)

Elementary algebra yields

ko= ln[-,' P(l + y)]+1 (- 1)'ln [-,
' Pa(1 —y') (ka) f i g I ] .

1=1

[1+P h (2ka) ] " Saa'( ")-g [I,P" (~- I)-"=]-g S,*,'.,

where

3 (&
"

) = (-,
' P)' (I —y') (k ) fs, 'g, ' (1 —e ' f,)

(3.8)
Define XY as

CO

exp 7 mk„k. I=XY,
tit=i

where

(3. 15)

(3. 16)

Q (1 —~i'fai ~) (1 —a i'gu |)(1 —"a'fai i) (1 —~a"gai-|)
(1 —~i'fai) (I —~i'goj) (1 ~a'far) (1 ~a'gai)

(3. 17)

(I -fa 'fat-1) (1 fafar ~ -|)(I gai'gai-1)(1 gaigal ~ -1) (I fat'gal-1)(1 falgal'-1)(I gai'fat-1)(1 gaifat ~-1)
(I-faifai ) (I-fai afa~ i)(I -gaigai )(I-ga~-gaga~ ~-|) (1-faigai )(I-fai gai)(& -fai-igai i)(1-fai igai-i)

(3. 18)

p„='. i(-1) e oXY as R-oo. (3. 19)

Then combining (3. 15), (3. 17), (3. 18), and (2. 11),
we obtain asymptotically, for large R and a & 1,

C. High-T Expansion of p (a&1)

The high-temperature asymptotic expansions of
ko (3. 15) and XY (3.16) are straightforward but
tedious.
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Let

then, f(x) of (3.13) becomes (for large x)

f(x)- —i(1 —y ) t x(znx +tz2x +z2x },

(3. 20)

Taking the limit a- 0 of (3. 28) [and remembering
that in M the ferromagnetic case was considered
instead of the antiferromagnetic a matrices, in-
stead of S matrices, and p„=-,' p(1+y)], we obtain
the known zero-field result (M 3. 15).

D. Evaluation of k for Low T

where we use the definitions

e'= y'[a' (I-—r'}]/(I r'), —

q= —2a(1 —r') "',
6=-1+a2(1+y )/(1 —'r ),

p 82 1 5 + 1 ~2]

z, = [ -', qe2- -', 6q+$ n'],
z2= 28 —25 —2A —Il2 I +fs& 5 ~

(3. 21)

(3. 22a)

(3. 22b)

(3. 22c)

(3. 22d)

(3. 22e)

(3. 22f)

x ln[(-,' Pn 'k ')'f, 'g,'(I-r')ldk. (3. 29)

This is more conveniently written as

In this subsection we evaluate (3. 15) for large P.
Unfortunately, the method used for high tempera-
ture fails, and we proceed as in M (Sec. III A) by
converting the sum into a contour integral as fol-
lows:

kp= ln-,' p(1 +y)+ (1/2i) J csc(nk)

Using (3. 21) and (3. 22} in (3. 15), we obtain kp= —(P/2ni) J dtcschptln(f(t)g(t) ). (3. 30)

2

e 0= —,'P(l ~ &') g ~ 2 ~ l3 cot g ~ 2~ P)Z2 Z2, 2 2

2

4P(1+y) I-—pz ++2~ +o(P4)
12 z2 z2

(3. 23)

Equation (3.30) was obtained from (3. 29) in the
same way (M 3. 20) was obtained from (M 3. 8). It
is clear that only the imaginary part of the logarithm
in (3. 30) will contribute a nonvanishing answer.

Detailed analysis of the analytical properties of
g(t) and f(t) for a & 1 yields division into two regions,
namely,

In the same manner we obtain

X,=y, coty, = 1 —-', y, , i = 1, 21 (3. 24)
a&1 —y2

a &1 —y2.

(3. 31a)

(3. 31b)
i P[ (I 2)-it2&-i 2(1 2)-i&-2 y&2

(3. 25)

(3. 26)

This division to regions is the same as in the time
evolution of the magnetization (paper I). It should
be noted here that (3.31a) is further divided into
two regions. For T = 0 we have

where &; are given by (3. 8) and Y, by

$ P2 [4(1 y2) 22 (2 P}2 (i P)4 2 (I yz}-2]

(3. 27)
Combining (3.19), (3. 23), (3.24), and (3. 26), we

obtain the desired expansion

l1 1z2 z R
p,.= l (- I)",—P(1+r) 1-—+ +'-2 P'+o(p')12 z2 z2

a &1 —y2,

a2& 1 y2

However for finite P we have

r'[a' —(1 —r')] & (I —r') n'P ',

r'[a'- (I —r')]& (1 r') n'P '-

(3. 32a)

(3. 32b)

(3. 32c)

(3. 32d)

&+y2 +0
3

(3. 28)
Let 1 —y & a & l. By use of the dictionary given in
the Appendix, (3. 30) becomes

kn= —pn ' dtcschptarctan 2 2 I 2} I z,a +lntanh(-, p(1+a)).OI —r')' —(a —[r' fa' —(1 —r') ]+ (I —r') t')'")')'"
a — y a — 1 —y) + 1 —y t

(3. 33)
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The second term is exponentially small compared to the first one when P- ~. Terms of this kind will be
consistently neglected throughout this paper.

We obtain the asymptotic expansion of the integral in (3.33}by setting cschPt - 2e s, changing the vari-
able t= 1 -a+s, and replacing the upper limit by ~. One obtains

22 1/2

((a —( '( ' —(( —w'&] ~ (( &'&(( —a s&'&"'&' (3. 34)

There are many ways to obtain the asymptotic expansion of (3.34). All are tedious. Using

arctanz = [z/(1+z')"']'F, {-,'; —,'; —,'; fz'/(1+zz]}

and defining

-{'['-(1- ')]+(1-r')(1- + )'J"' ""'
u(s)=- 1— 21 —y

~i
~ 2 2 2

(3.38}

(3.38)

we can write, (using the first few terms of u(s)
»F&{z.r. z. u'(s)),

2P&&-& -(& &&-~& f &fs s-»
0

ko —' 2&&- P-&/ s-((&&-((&{L&/zl (~)

, (-,'L /'L, +~L',")1'(', )P '-

+ [& L L-&/z LSL-8/z L&/SL +Ls/8]
&&

[u(s)+casu'(s)+$

u'(s)+. . .] . (3.37)
x I (p)p +O(p--')J, (3. 41)

This is useful in obtaining the leading terms of the
asymptotic series since the expansion of uz(s) is
given by

and the limiting value of ko for a = 1 is

limko(a) = —4&(y P-' . (3. 42)
u (s) =Lgs+Lzs+L~s + ~ ~ ~, (3. 38)

L&= 2(1-a)/[a —(1 —y')], (3. 39a)

L,= [y'a' —(1-a)(1—r')]/ [a —(1-r )], (3.39b)

where the first few constant I., are explicitly given
as

Note that (3.41) breaks for a = 1 —y . For the case
a & 1, ko is immediately obtained from (3. 41) by re-
placing 1 —a by a —1.

We now turn to the region a & 1 —y . In this case
ko is given as a sum of two integrals,

ko=~(la (1 rz) -I) P-"f"-«cschpt
e

x lm ln{ [z{tz ez) t(1 zz(t&' ez)) &/z]

For L&wO we readily obtain

(3. 39c) where

x [y(t -e')+i(1 y(t —ez))'/ -]], (3.43)

e = y[1 - a'/(1 - r')] (3. 44)

u(s) =I.' s' [1+-', Lz Li's d = a/(1 —y'), (3.48)

+(~LSLi 8LSLi )s +O(s )J.

(3.40)

Note that L, =0whena=1, but LS(a=1)e0. There-
fore, we finally obtain the low-temperature expan-
sion of ko for 1 —y2&a & 1 to be

x(tz ez) &f + (1 yz)-&/2 (t ez )1/2 (3 48a)

y(tz ez) —d (1 y )
&/ (t e )&/ (3 48b)

The square root is defined positive for Ret & 8 and
M(la —(1 —y ) I) is given by (3.41), where
la —(1 —y') I is substituted instead of a —(1 —y ).
Since 1 —a&8 in the region a &1 —y, it is clear that
/if(la —(1 —y ) I) is exponentially small compared
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with the integral in (3.43), and may be neglected.
We make the change of variable in the integral

(3.43) s = t —8 and obtain

result

21/-1p-1/2(28)1/2d-1(1 y2)-1/2e 2 2

Im(20
=' —2P'I e dS e

0 x {r(-,')+ [-,
' 8-' i (1 —/12)-'d-228) r(-,')p-'

2)1/2 y(1 &2)1/2" * ~ (i —s')"'(( —*'('") '

(3.4'1)

[5(1 y2)1(t 2+82(1 y2)2d-2]

where x(s(s+ 28)) and y(s(s + 28)) are given by
(3. 46).

Finally, after sufficient labor one obtains the This completes the evaluation of k0 for all a.

(s. 49)

E. Evaluation of XY

To evaluate XY given by (3. 1V) and (3. 15), we proceed in the same method given by M, Sec. (3.8). We
convert the double product into a double contour integral. The single product X cancels the contributions to
Y from the poles at l =0, E'=0. We therefore obtain

XY=: [y (1 —a )] / exp p (22) dtdt' cschptcschpt'In
("-(t, t') o(o, o)&

(3.49)

where

G(t, t')= [1 f(t)f(t')) [1-—g(t}g(t')] [1-f(t)g(t')][1-f(t')g(t)].
Define the function t1(z) to be

1 if z&0
g(z) =

. 0 if z(0.

(s. 5o)

(3. 51)

Equation (3. 49) becomes

2 t' 1+a ( 1+a
XY=: [y (1 —a'))' e p v1+y

dtdt' [cschptcschpt'lnA(t, t')] t1(1 —y —a) p2&2

1-a 1-(2

x d!dt [cschtitcschtit' lcB(t't)]) . ',

a e
(s. 52)

A(t, t') and B(t, t') have the same formal expression in terms of f(t). However, it should be emphasized
that f(t) in each case is taken from the appropriate range (see Appendix}. The function A(t, t') is given for-
mally as

A(, I [1-f(t)f(t')] [1-f~(- t)f~(- t')) [1 —f(t)f~(- t') ] [1 —f(t')f (- t)] I

I [1 f( t)f(t')] [1 f(—t)f(-t')] [1 f(—t)f (t')-] [1 —f( t)—f*(-t')]I- (s. 5s)

If a)1 y2 the second term va ishes identically, and 0 a&1 y2 theflrstintegrallsexponentlallysmalla d
does not contribute to an asymptotic expansion.

The final expansion of (3. 52) is performed in the same method used before: (i) making the appropriate
change of variables so the lower limit of integration becomes 0, and replacing the upper limit by ~; (ii)
replacing cschpt by 2e ~', expanding the rest of the integrand, and integrating term by term. Using the ex-
pansions

1/2 t1/2 2

lnA(s, s') = ln 1/2 1/2 +s' s" Xi A .s"s'",
s —s ff! Nfff! ~ Nf

(S. 54a)

1/2 l1/2 2

lnB(s., s')=ln '1/2 "&1/2 +s"'s""P B „,s s'
S —S ma'

(3. 54b)



STATISTICAL MECHANICS OF XY MODEL. II 795

we obtain the desired results for 1 —y~ & a & 1:

XY =: [2/(1+ y)] [y (1 —aw)]' 4expfe w" "[4w '+ P 'w ' Z A „„,—,'I'(2m+ 1) —,
' I'(2m'+ 1)P '"' ) ]) (3. 55a)

fftm '

and 0 a& —y:
XY=' [2/(1+y)][y (1 —a ))'t exp/e [8w '+2P 'w Z, B ~ —,

' I'(2m+1)-,'I'(2m'+1) P ™"'I]). (3. 55b)

p ='(-1) -'e'o'"'"(XY)x„, (3. s6)

where ko is given by (3.41) with l 1 —a I, XY by
(3.55a) with &w replaced by )(3 and a multiplicative
factor of (1 —Q)(, '), and xe is given in general by
(Wu 2. 27).

To evaluate xR we make a Wiener-Hopf factoriza-
tion of

F. p „(a)1)for FiniteP

In order to evaluate t)„,(R) by Wu's procedure we
transpose the determinant for p„„. The generating
function for this transposed matrix is C($ '), when

C(g) is the generating function of (3.5). The index
of C($ ') is —1. The correlation function then be-
comes

x exp —2~ 8 dt cschPt

Im([1 —f. f(t)] [1 —
h g(t)])

He([I —t'f(t)] [I —I g(t)])
After some labor we finally obtain the desired

low-temperature expansion of x„ for fixed P to be

xR = &w 4w (2/P)f2 '[(I —)(2) (I —)(p'fp)

x(1 —y') (1 —)(,g, ) (1 —),f,)] '

x [P~(1 —)( )g,)-']

x exp[4w-) P-1/2e -B(a-) ) Q P™AI (m + s)]

(3.61a)

[~ 'c(g ')] '=p(~) q(~ '), (3. s7)
where A are given by

where P and Q are explicitly given for a &1 and P
finite as

P(~) *0(I q~)-) g ( t f2( -1) ( 'k2)-1)
(I —(f2) )(I —$ gw()

(3. S8a)

q($) —(I )(-($)-)g (
(1 —$ fw()(1 —$ gp, )

(3. 58b)

Wu shows

x ='(I/2wi)f $" 'P($ ') [q($)] 'd$ . (3. 59)

After some manipulations, including use of the in-
finite-product representation of x ctnhx, and con-
version of the remaining product into a contour in-
tegral, we obtain

x, ='(I/2wt) f~" '[(I -),~ ') (I - )(,t)] '

x (2 P) '(a PA) coth(2PA) d$

Im] [I —)( f(t)] [1—X g(t) J )
() Re] [1 —)(,f(t)] [I —X, g(t)] j

(3.61b)

Note that (3.61) is restricted by (3.32c). Since
gw- )(z+ const P the term [P (1 —)(p~g 2) '] behaved
as a constant so xR- P

' for large P.
However, when (3.32d) holds for finite P, we have

gz= f2, both terms contribute equally to an asymp-
totic series, and their sum oscillates with R. The
result can be expressed as

xa . (2 P) 2He g2 fwg2[(I 2) (1 2 f2)

x(1 —y ) (1 —)(wg, ) (1 —)(wf, )] '[P (1 —)(p gp) ]

x exp[- 4w 'P "'Z P A I'(m + -', )I, (3 62a)

where A are given by

lm([l -g, g(t)J [I gpf(t)]j-
Re([1 -gwg(t)] [1 -g2f(t)] j

(3.62b)

G. Results for p for Finite Large P

For convenience and easy reference we compile the asymptotic expansions of p„„for large but fixed p and
y ~O.

(i) 0&a&1 —y . Combine (2. 11), (3.48), and (3. 55b),

P„,(R)=: 4( —1) [2/(1+y)][y (1 —a )]' exp( —2w RP ' (28)' d '(I-y )
'
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"{I"(-')+ [-,'8 '+ (1 —y') '&I 28]I'(-,')p '+ O(p~)))

&&exp{e [8«+2p «2 8 ~ 21'(2m+I}-,'I'(2m'+1}p "' ']}.
mm'

(3.63)

(ii) 1 - y ««1. Combine (2. 11), (3.41) and (3. 55a,):

(R}=' -'(- I)"[2/(I+ y)][y'(I —e')]'" em{- 2« 'Rp-'"e-"'"' [I,"I'(-',)+ (-'I, "I, + i- I,"')I (~)p-'+ O(p-')])

xexp{e ' [4« '+ p && Z A ~ ~ I'(2m+ 1)2 I'(2m'+ 1)p ' '])
fftfft

(3.64)

(iii) «&1 and y [&&
—(1 —y )]&(1—y )«P . Combine (3.56), (3.41), (3.61), and (3. 55a):

p,„(R)=: —,
'

( —I)"C),"8 ' exp{- 2« 'Rp '/'e~"-"[g'/'I'(-', )+ (-,'g +g, + &g&/&'}I (5)p-&+ O(p~)]~

"exI(- 4v 'p-&/ae-"'-"Z p™AI (~+ —.'))

xexP{e ' "[4«'+ p '«p A„,-'I'(2m+I)-,'I'(2m'+1}p-' ' '&])

where C is given by

(3.65)

C=4&& &[X2&&'(1 —y ) '(1 —Ag) (1 —X& Aj )] [(1—Xg )(1—X2)(l —&j &2) ]

&: {[y'(«'- I+ y')]' "+[«- y(&z'- 1+y')'"][(1—y')y(«' —1+y')] '"
[y(+ 1 +y)l /2]2& /2

X 4 —)(1-y)
(s. 66}

(3.67a)

[s2 (1 P)]k/I
Aa=-

) —@
(s. 67b)

Z& is obtained from I
&

of (3.34) by replacing 1 —a by ) I —a l.

(iv) a&1, y [a —(1 —y }]&(1—y )«p . Combine (3. 56), (3.41), (3.62}, and (3.55a):

P~(R) =, 4 (- 1)"[(1—A
& )(1 —X~) (1 —X,'Xz) ]'/'(-,' P} '[1+ O(P~)] 2 Re [g~

' C'exP(- 4«-'P-'/~ P g I'(m+ —,')P-~) ]

xexI {-»-'RP-'"-" -"[Z'/'I (-*) O(P-&)]]

+ p && ~ A ~ g I"(2m+ 1)-1'(2m'+ 1)p & ' '~])
haft tft (3. 66)

where C' is obtained from C by replacing y[e —1+ y ]'/~ by qy[«2 1+ y~]'/'
(v} a = 1. In this pathological case one might consider studying the limit a -1 in (3. 63) or (3. 64).

ever both limits vanish. We return to this case in Sec. IV for zero temperature.

IV. p„FOR T= 0

This section is devoted to the ground-state cor-
relation function p (R}, Some of the results can
be obtained from the finite-p cases by the limiting

procedure P-~. For the other cases, one can
obtain in the zero-temperature correlations by hold-
ing Rp fixed (as was done in M Sec. 4) or substitut-
ing p= ~ in (3. 2), (3. 5), etc. In this paper we use
the latter procedure.
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This long-range order vanishes at a= 1, which is
where Szeg5's theorem is invalid. Setting a=0,
one obtains the long-range order found in (M 3.36)
for zero field.

Similarly, in the Ising limit y -1, (4. 1) special-
izes to

limp (R) = '- (- I}"(I —a~)"4

z- (4. 1')

9.Special Cases

For the case a = 1 —y we are able to calculate
p„(R) exactly for all R, and we find that the exact
result is the long-range order (4. 1):

A. Long-Range Order for a&1, y&0

By Ioolong at (3.62) and (3.63), and letting R and

P be independently large, we obtain the long-range
order for a&1:

limp„(R) = ( —1) [2(1+y)] [y (1 —a~)]~~ . (4. 1)

p„(R)~ —'( —1) [2y/(1+y)](yR) ' e' 2' ' A

x[1+O(R') "]
where A = 1.28242V 130 is Glaisher's constant. '

Note that when y -0 and R -~ such that yR is
fixed, (4. 7) vanishes, in agreement with (4. 5).
Note further that (4. 7) is valid in the limit y —l.
Indeed, in this case p„reduces to the determinant
which was evaluated exactly in Sec. 4 of Wu.

When a&1 and y=0, if T 0, the asymptotic ex-
pansion of p,„can be studied by taking the limit
y-0 directly in (3.19). However it is not possible
to recover the T= 0 expansion from the resulting
expression. Indeed, we have not been able to obtain
the T =0 result at all.

C. Asymptotic Approach to (4.1) for a(1

When a & 1, we have ), & Xa & 1 for a & 1 —y and

A, = Xz for a &1 —y . Accordingly, the generating
function C($) of (3. 5) is conveniently written as

1( 1}e

1 —a a(1 —n ) ~ ~ (r" i(1 —a~)

o)e-2(I a~)

R-3(1 2)

(r(I —(r )

(1 —X,'])(I—~,'[ )
(1 —X '$ ')(1 —X '( ')

whose Wiener-Hopf factorization is given as

(4. 6)

(4. 9a)

(4. 9b)

(4. 9c)

where

o. = [(I —y)/(I+ y)]'"
so

(1 —a')

(4. 2}

(4. 3)

Wu defines xo(m) such that p„,(T = 0, R) is given as

~„.-,'( ))" (p()- ')]"'() Z Ix, (m)-))) .2 1/4 i
1+y m=Z

(4. 10)
By substitution of (4. 9) in (Wu 3. 13) we obtain

p„=.' —,'(- 1)"[2/(1+y)][y (1 —a )]'

p,.= —.'(- I)"2y/(I+y) . (4.4)

p„(R)=o . (4. 5)

By the same method we find that for a&1 and y=O

p„(R)= p,„(R)= o . (4. 6)

The case a =1, y+0 is very closely related to
Wu's T=T„so by the use of (Wu 5. 31), we obtain

The determinant also gives the result for special
case a=1 y=0:

x [I+(2v) gd$d'g$ q (q- $) M(q ()]
(4. 11)

where

(I —&j'$ ')(1 —Xm'$ ')(1 —X,'$)(I —X2't') '

(I —Z g-'}(I—X q-')(I —X )7)(I —X )7)
~~

(4. 12}

Brute force (Wu's most accurate choice of words)
is the only way to expand (4. 11) for large R. We
do not wish to tire the reader with algebraic details
and feel that it is sufficient to state that (4. 11) was
expanded in the method used to expand (Wu 3. 15).

The result for 1 —y~&a~&1 is

p = ( 1) (1+y) [y (1 a )] ~ f1+ (2v) R~&~e(& & 1) ~ [I (& ~& ~(I (( 1& 1) 1 7) (1 X )
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—(1 —}{,'}{} ——)R + O(R )]) (4. 13)

This expansion breaks when A.1=X2t i. e. , a =1-y, and when a=1. For u &1 —y, we obtain2- 2 2

=' —'( —()"((~ y) '[ '(}—»')]'~'(}~ 'R a' Re(e"*(a 'e" —ae")

x {( —,'[» (( —a } ' —ya e ' (( —a e '
)

' —(( —e '
)

' ——']}(' O(R }})) (4. 14)

where a is given by (4. 3), }[,2 by (3.8), and g by

y = arctan[(1 —y' —a')'/'/a] (4. 15a)'

or

I'(R)F(-'2+ m)-
~p I'(R+-,'+m)

where A is defined by

(4. 22}

cosy=a(1 —y')-'" . (4. 15b)

It is clear from (4. 14}that for a &1 —y,(- 1) p„(R) is an oscillating function of R with a
period of oscillation that decreases as a increases.

D. p„, (T= 0, 0& I)

To evaluate p„„when T=O and a&1 we consider
the transpose of the determinant (3.6} which has the
generating function:

(4. 23)
In particular

1/2
I (1 —}{,'}{2')(1 —X, '}{2)~

(4. 24a)

X1 A.2
A1 —2 A0

1 2 1 2

1/2
(1 —}{'}{2'—y) (I —}{i'}{2+}{i'"2y}

1 —&2+ &2g m=0

C(5)=C(t' ')= — ' ' . (4. 16). (1 —}{,'])(1—~ &)

Since IndC($} = —1 we may instantly apply the results
of Sec. 2 of Wu. In particular (using Wu's R„}

A.2
2

1-X22

Therefore we explicitly find that

(4. 24b}

and in the factorization
(4. 17)

lim( —1)"R„,, = [(1-}{22}(I—}{2}(I—V, 'Z2)-2]»'
a. ( 1)R } }}-1/2R-1/2}{R[(1 }{2)-1(1 }{M)

x(1 —}{,1yz') ]1R[1+2R 1(—,'~A1/Ap)+ O(R )] .

—$ 'C($}= P ($)Q '($ '), (4. 18)

(4. 19a)

(4. 25)

Note in particular that when y=1 then ~,'=0, X2=a ',
and (4. 25) specializes to

Then

p (R) = ( —1) —, [lim(-1} R)}(„]xRe

(4. 19b)

(4. 20)

( 1)R }}}-1/2R-1/2 -R(1 -2)-1/1

x {I—
2 R '(1+ a )/(1 —a ) + 0 (R 2}j .

(4. 26)
This has been previously obtained by Pfeuty. '

where

d~ ~R-ip ~-1 q g
-1

ICI =1

V. EVALUATION OF p

A. General

Define

b„= (1/2w} J ' ('2P )T(e ' )e ' "P„(e 'P)d{t), (5. 1)

where T(e") is given by (3.3) and2}n, , (1 —x2$ ') (1 —A.2$)

For large R this is easily expanded as

(4. 21) P, (e' )=-,'(( —y) ( — e ' ~ e '
)1 —y 1-y

(5. 2)
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Then p„„can be written as

bp bq - ~ ~ b„„
bo

p„„= 4( - 1)' (5. 3)

f
~ s (1 —t'fa~)(1 —$A~)

q(]) g (1 —kfah 1)(I —kg2k 1)
(1 —(fq~) (1 —$gq~)

Therefore (5.7) can be rewritten as

(5.3)

(5. 9)

bR f, bo
Y„=. (1/2vi)fd( $" '( —'P) [—'PAcoth( —'PA)]

Once again we obtain three regions:

(i) a & l. Ind[P„] =- 2. We "shift" twice'0 in order
to apply Szeg5's theorem.

(ii) a & l. Ind[P, (e"}]= —l.
(iii) a= 1. P„(e ~) vanishes on the unit circle, and

Szeg5's theorem is invalid.

B.p (a(1) for P Finite

By inspection one obtains

C„,2- b„

where c„ is given by (3. 5) and b„by (5. I).
Let Ue~ be the (R+ 2) x(R+ 2) ToePlitz determinant

x [(1 —X,'t')(I —A, '$ ')(1 —&p $)

x(1 g ]-')]-'exp{-2pv '

x f dt cschPt Im ln[(1 —$f(t))(1 —$g(t})])

(5. 10)

The asymptotic values of YR for a & 1 and fixed
large P are (i} (1 —y )'t &a&1:

Y —' P-te-»(-'P)-'[(I P-'y-')(I P-'P )(1 y-~)]-~

xexp{- 4w 'e ~ '
P 't'P P A. r(m+ —,')),

(5. 1la}
(ii) 1 —y & a & (1 —y )'~:

Cp

C )

C 2

Cg

Cp

C g

C2 ' ' ' CR4g

Cg ' ' CR

Cp '' ' CR-1

Ye-'(-,'P) '2Re{A,'" "[(1—A, 'A, ')(I —&, 'a, )(1 —a2~)] '

xexp[ —4w 'e ' '
P Z„P A r(m+ —,)]].

(5. 1 lb)
(iii) 0&a&1 —y':

CR+1 CR+2 CR+S ''' C2

CR CRig CR+2 '' C1

CR 2 CR CR~1 ' Cp

(5. 5}

The determinant U„,z is exactly p (R+2), and
its asymptotic properties were studied in Secs. III
and IV.

Theorem 4 of Hartwig and Fisher' yields

Ye='(-'P)- 2Re{yg e- '[(1 —y-'), - )(l P-'y }(1 y-~)] '

exxp[-4 vP
' e ~'P„P "A r(m+ p)])

(5. 11c)
where A is defined by Eq. (3.62b).
Substitution of (5. 11) into (5. 7) yields the desired
results. Note in particular that (- I)a p„„(R)so ob
tained is an oscillatory function of R if 0 & a2 & I —p.

C. Ground State of p |T=o)xr

By substitution of p= ~ in (5. 10), we obtain

Y„(r=o)=. (I/2vt}jt"-'[(I —~ t)(I —~ t-')

p„„(R)=: p„(R+ 2)

where

YR YR+

YR g YR

(5.5)

(5.7)

x(1 —xzg)(1 —xz$ ')]' d$ . (5. 12)

This is precisely the integral of (Wu 2. 29} with
a, replaced by ~&' and ~2 replaced by A.&. There-
fore (i) 1 —a'& a'&1:

(i) 1 —y3&a~ &1
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x [1+ e R Ai&+ieR (Ae& —~+)y ~ ~ ~ ] (5. 13a}

where A» and Ae& are given by (Wu 2. 3g) as

Ai&= —-'(x, —x, + x,), (5. 13b}
3 2 2

2&= 3 (xi+ xe+ xe) —e(xexe —xexi+ xixe}, (5. 13c)

where x„xs x, are given by (Wu 2. 31}-(Wu 2. 33)
as

K=ce",

~ '=me'"=x '*
2 1

So [using also definitions (4. 15)]we have

YR YR+1
~ 4c2(RR)-1 ~2R

YR-1 YR

(5. 20b)

(5. 20c)

xi= (I+&1'2.2') (1 —X,'22') ',
"2= (I+&1'&2) (1 —&,'Ze) ',
xe= (I+&22) (I —122) '.

Straightforward algebra then yields

(S. 13d)

(5. 13e}

(5. 13f )

Y

YR+1
~= v-'K'R '2. "[-'+-'A R '+O(R")]

(5. 14)
where K is given as

K = [(I —X22) (1 —Xiike) (1 —Xi X2 )] (5. 15)

The correlation p~(R) becomes

p (R)= ——,'(-1} 2 K R /1 ['+ -Ai)R —+O(R )]

x sine/[1+ —,'A,R 'coss+O(R )].
(s. al)

The first two terms do not oscillate with R, but
the term of O(R ) does oscillate. This expansion
clearly breaks down for a = 1-& . Combining
(5. 7) and (5. 21) with (4. 14) we obtain

p (R}=(-1)R [2/(1+y)] [y'(1 —a )]' c (3/R) '/2

x sine' [1+-,'A, R 'coss+O(R 2)].
(s.22}

(iv) R= 1: The generating function specializes to

x [2/(1+y)] [y'(1 —/2 )]"'.

0, n)0

(ii)a 2= 1 —ye: For this case p~(R) may be
evaluated exactly for all R. Indeed we have

(5.16}

y-1 1/2

O(g )
ex 1 /2( -3/2 1

1 ]-1

If we consider the case y=1

OO(t ) eer//2( -3 2/

then Pfeuty has shown that

(s.as)

(s. 24)

5„=

cell-1(I 2)

n=1

n)1.
(5.17)

Therefore (5. 3) becomes an upper triangular deter-
minant, hence for R40

p"'(R) = —(4R —1) 'p,', '(R) . (5.25)

For y111 but y&0 we may easily combine (5. 25)
with (5.31) of Wu to find asymptotically

p,„(R)=.
—-'(- 1)'y(1+y) l(yR)

p„„(R)= 0. (5. 18) x e 2 "A [1+O(R )j . (5. 26)

(iii) 132(1—ye: Wu's analysis can be carried out
word for word, but the contribution to the asymptot-
ic series comes from both branch points &1' and

~2, with one contribution being the complex con-
jugate of the other. Therefore we have

I/ ~ (RR)-1/2{K& R+Kg &
-R-1R-I

+~

(v} a) 1: In this case Ind P„=—1 and p„„can be
studied by use of (2. 6) and (2. 27) of Wu just as
p was studied for a) 1. We find that

P„(R)=. —(-1)"-', 2 '
X R '"

x [(I —z')(I -~ )(1 —a 'A, ) ]"'
(Ai) K&2 "+A/ &K~ 21 )

+~«R-2[(Ag, -22-)K+VR+(A„-&)KX;"]+ . ],
r(R)r(-,'+ ~)

"r(R+-,'+3 )
' (s. 27)

where K is given by (5. 15).
Define

A, )=A,e",

(s. Ig)

(S. aoa)

where

1 —A.
2 - 1/22+ 23' m

(1 —X X +A X y)(1 —X A — )

(s. as)
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In particular we have

Ca= ([2 y/(1+ y)](1 —yi ga))- a(1 y&g&&a (5 2ga)

C~=aAa([2y/(I+y)](1-X xa)+(1-xaa)(I a.;&a. )

p (R) =' -(-I)'-'a-'"~"R""

&& [(1 —&')'(I - a.,')(I —a.-' x-') -']"4

x(I -yi'&a) '[1+ aR (C,/Ca--,')+O(R )]

—(1 —~a) a i' ~a[2y/(1+ y)] ], (5. 29b) (5. 30)

YI EYALUATION OF p„

We finally turn our attention to p„, which is given by (2. 6c). The magnetization is clearly R independent

and will be the first term in the asymptotic expansion of p„ for large R.
The next-order term is obtained where T& 0 by using the partial sum decomposition of (tanh-,'pA}/(a'pn)

to find

1
d$ $

' (1 —&i'h)(1 —a.a t')(I —y) —Z (2k —l)aaaSa~
~

Ig lwi %~i

(R ~ 1) (1 y-1])(I )„-1)
2 y„,., ' '1y 2

"~faa-1 gak 1[(I -~ faa-1)(I ffak 1)(1 kgaa -f)(1 -$ gaa-1)]
a=1

Therefore if yw0, we have

(6. 1)

GR (1 +y) ' (a@ ' ~ 0'aa aaa i [(I -fa'a i}(1 -faa aaa i) (1 -faa' ggaa i) ] '01 —~i'faa i) (1 -~a'faa i}
k 1

+gaa-If aa-1 [(1 g2a-1) (I faa-1gaa-1) (I gaa-ifaa-1)] (1 1 gaa-1) (I a gaa-16 (6. 2)

As in (M Sec. 2A), when To 0 and R is sufficiently
large, only the first term contributes to an asymp-
totic expansion, and the second-order term in p„
can be easily written down using the relations Gs(y)
=G a(-y).

Therefore for any a and T fixed and positive

P'(1 —y'—) '(1 fg ) '(g ' f-') '-
y, (A~f + Aag~i}(A +1~+ Aagl }, (6 3)

where

y'[s' (1 —y')] & (1 -y') (a/—P)' (6. 5)

Then f, is complex, and (6. 3) specializes to

p„-ma. —&-a(1- y') '(1 —lfil'} a(gi'-fi') '
&:Re [A lgl ]Re [&1g1]. (6.6)

The case y=0 may be studied by letting y-0 in
(6. 6), and we find that for all a and T & 0,

!-P '(I-y') '(1 —lf, l') '

A, = (1-f,) '(1 —a, 'f, ) (1 —aa'f, ),
Ag= (I -fg') '(I —&afg) (1 —&sf') ~

Aa= (I -gg) ' (1 —a i A) (1 —&a gt) ~

A, = (I -gf) '(1 —bragi) (1 —~egg).

(6. 4a)

(6.4b)

(6. 4c)

(6. 4d)

x(gq f, ')- (ReA, ga)a (6. 7)

It is clear from (6. 6) and (6. 7) that the approach of

p„ to m, is not monotonic. Indeed, when a = 0 the
oscillations in p„are quite pronounced and p„(R)
= 0 when R is even, while if R is odd it decays as

As in the previous sections of this paper, there
are two cases to consider according to whether

f, (and g,) is real or complex. Consider first the
case (6. 6}
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However, as a~ increases, the wavelengths of
these oscillations become longer and longer until at G d g-&4 (R+1)1

R 2'

r'[a'- (1 —r')]= (1-r') (v/0)' (6.9)

p-- m. - & (1-y') '(I -f,g ) '(g '-f ') 'W, X

(6. 11)

It should be noted that (6. 11) holds for all values
of a satisfying (6. 10) and that there is no distinc-
tiona& lora&1. However, asseenfrom (3.12), g, is
not a monotonic function of a but rather is a function
which reaches a maximum value as a increases
towards 1 and then decreases to zero as a-~.

We now turn to the case T = 0, where we have
already seen in p„„and p,„that the cases a = 1 or
y =0 are to be distinguished. When T =0, we may
set P =~ in (2. 17) to find

g, and f, become real and p„becomes monotonic.
When T & 0, the other case to consider is

r'[a' (1—- r')] & (1 r') -(v/P)'. (6.10)

Then f, and g, are real, f, &g, &1, and (6. 3) reduces
to

(1-X e' )(1, —X e' )
'l

X
((1 ) -i e -44) )(1 y-le-(4 })I

(6. 12)

sin(R cos 'a)
mg a&1, RIO

(R)
' sR

1
4 y a ~~1

(6. 13}
which is an exact and not an asymptotic result;

(b) a=1, yc0:
p, (R) m'. ---.'(vR) ' [I+,'-(rR)-'+O(R 3)];

(c) a =1 —y', y4i0:

p„(R)=m'„Rs 0

which also is an exact result;

(6. i4)

This is simply expanded as R -~, and using (2. 7)
we find the following results:

(a) y=O:

(d) ywO, 0&a &1 —y

e„(R) m, —u R '
ReIe' ' ' '[() —e u)/(( —u e ' )]'ee

~8
4R

2 1 shiit +
1 aR +

1 at -ai4)

(1 Qtea(4) &&3 1 1 Q2

(1 e2(i)) +R 4+ 1 tlie+ 1 g +
1 a2 -Iii)) t

L
(5. 16}

(f) 1&a:

pRR- —,
' —

() &2 R v [1 —R (xi+xa —xs)]. (6. 18)

(e) 1 —r'&a'& 1:
-2R-~ -1p«(R)-m, ——,'&2 v '[1 -R (xq+xq+xq)]e (6. 17)

where the xi are given by (5. 13);
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APPENDIX

For easy reference, we give in this Appendix a dictionary of f(t) for the various ranges of t and the param-
eters involved. Note that g(t) =f"(- t) .
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a &1 —y; a&1 —y

a+{y [a —(1 —y~)]+(1 —y')PP/ a+{y~[a~ —(1 —y2)]+(1 —y~)taj'/~

t&0

a —{y'[a —(1 —y')]+ (1 —y')Pj' ' a —{y'[a' —(1 —y')]+ (1 —y~)tg'/'
f(t) =

1 a

—(1 —a) & t&0 (A2)

a —{y'[a' —(1 —y') ]+(1 —y') tg'/' . a —{y~[a' —(1 —y') ]+ (1 —y')t'p/ ~

1 —y2 1 —y

—(1 + a) & t & —(1 —a) (A3)

{r2[aR (1 y2)]+ (1 y2)tR'jl/2 a {y2 [a2 (1 y2) ]+(1 yR)Pj1/2 2
t

1/2f(t)=, +, —1

t & —(1+a). (A4)

II. a (1—y a&1 —y

+ [(1 y2)t2 y8(1 yR aI)] i/2 (a + [(1 y2)t2 y2(1 y2 a2)] 1/2 2 j/2
f(t) =

g
—1

1 —y 1-y2 t&0 (As)

a+i[- (1-y')t'+y'(1-y'-a')]"' a+i[- (1-y')t'+y'(1 —y' —a')]"' '
f(t) = —1

1 —y 1 —y
(A6)

a —[(1—y~)P —ya(1 —y~-a~)]'/~ a —[(1—y')t~-r~(l —y —a )]'f(t) = 1-y 1 —y
(A V)

a —[(1—y )P —y~(1 —y -aI)]i & . a —[(1—r )t —y (1 —r —a )]
1 —r 1 —y

—(1+a) & t & —(1 —a) (A 8)

o((( —r'1)' —r'(( —r' — '))'" ( —((( —r')t' —&'(( —r'- ')I'")'
t & —(1+a) . (AQ)

IG. a(1 —y2

a ~ [(1—y~)P —ym(1 y~ —am)] ~ a + [(1 —y2)t2 y2(1 y2 a2) ] 1/2 8 g 1/2
f(t) = +1, t&1 —a1-y 1 —y

(Al 0)
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a+ [(1—y )t - y (1-y —a )]' a+ [(I- y2)t~ y~(1 y~ a2)]&» I g i/a
+1 «1&1—a

(A11)

f t)=a+i[-(1-y')t'+y'(1 —y'-a')]"' .' a+i[-(i —y')t'+y'(1-y'-a')]"'
1-y y2 (A12)

f(t) =
a —[(I —y')t'-y'(1 y'-a-)] / . a —[(1—y~)t3- y~(I-y~-a~)]~/2

s —1,-(1+a &t& —81-y 1 —ym

(A13)

a —[(1—'y )t —'y (1 —'y —a )] ta —[(1—y2)p —ym —y~(I -y~ a&)]&/& 3 - &/2

f(t) =
1 —y 1-y t & —(1+a).

(A14)

Present address: Department of Mathematics,
MIT, Cambridge, Mass. 02139.

'E. Barouch, B. McCoy, and M. Dresden, Phys. Rev.
1075 (1970). Hereafter this paper will be referred

to as Paper I.
E. Lieb, T. Schultz, and D. Mattis, Ann. Phys.

(N. Y. ) ~16 406 (1961). Hereafter this paper will be re-
ferred to as LSM.

B. McCoy, Phys. Rev. 173, 531 (1968). Hereafter this
paper will be referred to as M.

4P. Pfeuty, Ann. Phys. (N. Y. ) 57, 79 (1970).
S. Katsura, Phys. Rev. 127, 1508 (1962).

~E. R. Caianello and S. Fubini, Nuovo Cimento 9, 1218

(1952); E. R. Caianello, ibid. ~10 1634 (1953).
T. T. Wu, Phys. Rev. 149, 380 (1966). Hereafter this

paper will be referred to as Wu.
G. Szeg5, Commun. Seminair. Math. Univ. Lund,

Suppl. 228 (1952).
9M. Kac, Duke Math. J. ~21 501 (1954).
R. Hartwig and M. Fisher, Arch. Rational Mech.

Anal. 32 190 (1969).
t'I. Hirchman, J.Anal. Math. ~14 225 (1965); A. Devinatz,

Illinois J. Math. 11, 160 (1967).
Note that 2(1++ t.7 (1 —a )] = [(1—Q )

g(1 Q 2) O g i y i)2)1/4

3J. W. L. Glaisher, Messenger Math. ~24 1 {1894).

PHYSICAL REVIEW A VOLUME 3, NUMBER 2 FEBRUARY 1971

Generalization of Boltzmann's Kinetic Theory. The Lorentz Gas.
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We present in this paper a new formulation of the kinetics of the Lorentz gas, based on an
analysis of statistically independent collisional events. We give a method in which the general
collision operator is expanded in terms of functions of the density, and we carefully treat the
p~ approximation (p is the density parameter and s is the dimensionality of the gas). The
method is applied to the calculation of the self-diffusion coefficient.

INTRODUCTION

From the point of view of Boltzmann's early work
in kinetic theory, one considers a particle of a gas
at time t with velocity v(t) and evaluates the transi-
tion probabilities associated with the various pos-
sible binary collision processes. Molecular chaos
(MC) is then assumed, wherein each collision is a

random event having no correlation with the past
history of the particle. One can then derive the
increment dII(t) of the particle distribution function
f(v, t) between times t and t+dt in terms of these
transition probabilities and f(v, t) The kinetic.
equation thus obtained is local in time, and in the
case of the Lorentz gas, the successive deflections
of the velocity vector constitute a Markov chain.


