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The propagation behavior of nontrivial Ov pulses [f"„8(t,z) dt = 0, f"„g~( zt) dt & ()] fn atten-
uating media is examined. It is found that under appropriate conditions Ox pulses exhibit
anomalously low absorption which is a direct consequency of atomic coherence. Specific
analytical results valid for an unbroadened medium are presented, while the corresponding
solutions for an inhomogeneously broadened resonance are calculated numerically. These
two results are consistent in the limit of T2 ~. Furthermore, the influences of T2, T2,
and level degeneracy on the characteristics of propagation are determined. Finally, the
behavior of more general Ox pulses is studied. The criteria for the production of Om pulses
are qualitatively established by numerical methods, and the influence of the relative phase
of pulse pairs on propagation is examined. The latter indicates a method for the measure-
ment of relative pulse phase.

I. INTRODUCTION

$7
2

8(z)=2@ ~~ dtS(t, z).
~ eo

(2)

The symbol a represents a unit polarization vector,
8 (t, z) is the slowly varying pulse envelope, ' and ]p

corresponds to the dipole moment matrix element
connecting the two levels of the atomic radiators.
In such cases, the area develops according to the
equation

Recent developments in the theory of propagation
of electromagnetic radiation in attenuating media
have focused attention on self -induced transparency '

(SIT) and other coherent radiative phenomena. a In

their initial work on SIT, McCall and Hahn showed
that an electromagnetic pulse of the form

E(t, z) = z8(t, z) cos(kz —vt) (I)

interacting with an attenuator consisting of a reso-
nant inhomogeneously broadened ensemble of two-lev-
el atoms, evolved in a manner that could be deter-
mined by knowledge of the pulse area 8(z) as defined
by

d8(z)
dz

= ——,
' ~ sin8(z) (3)

where e is the weak-field linear attenuation con-
stant. ' Under these circumstances, pulses with
8(0) = 2nz have a constant stable area and pass
through the attenuator with little or no energy loss.
As it propagates, the pulse separates into a series
of n pulses, each of which possesses an area of 27t

with an envelope that is essentially in the shape of
a hyperbolic secant. Pulses with 8(0) = 2nz+ z
(z & z, n= I, 2, ... ) evolve to the closest stable value
[see Eq. (3)], so that, for example, if 8(0) =2z —z.
then 8(z) tends to 2z, or if 8(0) & z, then 8(z) tends
to zero. Consequently, it is held that pulses with
8(0) & z exhibit SlT, while those pulses with 8(0) & v
do not. This argument depends critically on the
absence of any phase shifts, i. e. , that the envelope
function 8(t, z) is always nonnegative. If $(t, z) is
allowed to possess both positive and negative values,
then the possibility arises that pulses with 8(0) & z
might also exhibit SIT. The most obvious case consists
of two mutually inverted 2z hyperbolic secant pulses
of widths tl and t2 well separated by a time T. This
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Since the formulas describing pulse propagation
in an inhomogeneously broadened medium have been
presented in detail elsewhere, ~ only an elementary
outline of the relevant results is given here. The
medium of two-level atoms is analyzed with density-
matrix methods and is characterized by an absorp-
tion constant u, relaxation parameters T& and T3,
and inhomogeneous frequency distribution o((d).
The response of the medium is summarized in terms
of a susceptibility y which is the Fourier transform
of the population inversion:

y(T, t, z) =[2zo(v)] ' f" d(o( d)co(ds[(~ —v)T]

x [p„(~, t, z) —p»((d, t, z)]. (4)

The function D(T) is defined as the normalized Four-
ier transform of the frequency distribution. The
medium responds to the electric field as

S(t )~(~dta S(ta
et 2

to

x [)((T+ t —t', t', z) + y(T —t+ t', t', z)],

paper considers the nature of Ow pulses [i.e. , 8(z)
= 0] and the manner in which they evolve. It is ob-
served that phase shifts are customarily produced
in homogeneously broadened amplifiers and to a
lesser extent in multiple-pass attenuators and sin-
gle-pass attenuators with multiple pulses. Thus,
(hr pulse configurations must be taken into account
to properly describe the behavior of such systems
followed by a single-pass attenuator.

Section II presents the equations governing the
behavior of inhomogeneously broadened and un-
braadened' attenuators. The latter, and considera-
bly simpler model, provides a class of exact solu-
tions for the Oz [8(z) =0] condition, and it is shown
that the pulse evolution obtained from that model
very nearly approximates the behavior in the sub-
stantially more complicated inhomogeneously broad-
ened case. Section III investigates the dependence
of the pulse evolution pattern on dephasing processes,
level degeneracy, and the inhomogeneous linewidth
of the resonance. Section IV establishes criteria
for the production of nontrivial (finite, nonvanishing
energy) On pulses in attenuating media, along with
a description of the circumstances for which pulses
with 8(0) & z will exhibit SIT.

II. Or PULSE PROPAGATION

medium according to the formula

aS(t, z) (1/c) aS(t, z)
ez

'
et

a 'dt' S(t', z) e " ''~ ' y(t-t', t', z),
to

(7)

where

o(= P vNzo(v)/cel. (8)

A is the density of atomic systems, c is the velocity
of light, and & is the dielectric constant of the inert
background. The energy of the pulse is directly
proportional to the quality v(z) which is given by

~(z)=(t8/I)' J" dtS'(t, z}. (9)

With this normalization, 8'(z)/~(z) is the pulse
length. For the case in which the input energy is
sufficiently small, the system behaves linearly and
the energy ~(z) decreases exponentially in z. When
Tz» Tz and the medium is nondegenerate, 7'(z) is
proportional to e '. The small signal attenuation
factor for an absorbing medium of length I- cm is
defined as r(L)/r(0), provided that v(0) is sufficient-
ly small. The modifications that are associated
with degeneracy are examined in Ref. 9, while those
arisinginthecaseof T2= T,*areanalyzedinRef. 6.

In the fully coherent limit of limT, - and limT2
—~, expression (3) can be derived directly from
formulas (6) and (7}. Furthermore, in the limit
T~ -~, the following simple equation governing the
dynamical evolution of the pulse envelope S(t, z)
obtains:

( a()()a)a(a), a~ . aa , '
aa ()(a,

))
.
()a)ez 'c et

where

&'= p vN/zceh.

If the inhomogeneous distribution o(&u) is assumed
to be Gaussian with a standard deviation 2/Tz .
then the connection between & and &' is the follow-
ing:

o= p'vN(z)"'Tf/zcza= (z'(z)"'T,'.
For the solution of Eq. (10), the electric field en-
velope S(t, z} is expressed in terms of a function
Q(t, z) such that a(t) (t, z)/at = ( p/g) S(t, z); then (t) (t, z)
satisfies the nonlinear partial differential equation'

(6)
where p is the dipole matrix element and we have
taken the limit T, -~. Thus, we have

a'y(t', z)
ez et'

= —(z' sin(t)(t', z), (12)

X(T, to, z) = D(T), (6)

where the quantity to represents some time before
the arrival of the pulse. The field responds to the

in which t'= t- z/c. Although the general solution
of Eq. (11) is unknown, a class of particular solu-
tions may be generated by means of a Backlund
transformation. "' Two simple types of Om pulses



760 HOP F, LAMB, RHQDES, AND SCULLY

have been found among these solutions. The first
is given by

fPS(t, z) A[(2/t&) sech X- (2/tz} sech Y]
K 1-8(tanhXtanh Y+sechX sech Y) '

where where

~[1+(tt/&, ) sin Ysechzx]-']

"~(t, z)/K= (4/t, ) sechx([cos Y- (tt/t, ) sin Ytanhx]

A = (t z - t g)/(t z+ Pi)s

8 = 21 ) t 3/(t g+ t g),

X= (t z/v,—}/t„
Y= (t z/v, )—/t „

1/v, = (1/c) + a' t', ,
1/vm —(1/c) -+ a'Fzz.

(14)

X= (t —z/v, )/t„
Y=(t-z/v, )/t„

1/v, = (1/c}+[~/(t, '+tt')],

1/v, = (1/c) —[a'/(t; + t )],

1/1 = (1/t, }+i(1/tt),

1/t =(1/t, ) -t(1/$).

The pulse profile given by Eq. (13) eventually
evolves into two relatively inverted 2m hyperbolic
secant pulses whose widths are determined by t~
and t~ and which have velocities' v& and v&. A

pulse that behaves in this fashion will be referred
to as a 'separating" 0~ solution. However, if t~&0,
then expression (13}represents a 4w pulse whose
properties have been previously examined. "
Another solution which corresponds to a Om pulse
is given by

In contrast to the previously described "separat-
ing" solution, this latter solution remains compact,
and hence, will be described as "nonseparating. "
The computer calculations performed for an inho-
mogeneously broadened medium show examples of
both types of propogation.

Figure 1 illustrates a comparison which reveals
the influence of inhomogeneous broadening on prop-
agation behavior. As these results show, partic-
ular solutions of Eq. (12), valid in the absence of
inhomogeneous broadening, can be found anal. ytical-
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FIG. 1. Electric field envelope propagation behavior for an inhomogeneously broadened attenuator (upper sequence)
and for the unbroadened model (lower sequence). The parameters for the former are T2 —-1.0 psec, T2=10 psec, and
0.'=0. 0563 cm while those for the latter are t~=2. 7 psec, t2=10. 75 psec, and o.'=0. 002 cm . (a) represents identical
input pulses for both cases, (b) z =50 cm, and (c) z =100 cm. The ordinates are in units of w8(p, L)/I; the abscissas
denote retarded time p = (t —z/c) in psec.
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ly. Equations (13}and (15) represent two explicit
examples. The evolution of expression (13) is
shown in the lower sequence (z = 0, 50, 100) of Fig.
1. The parameters associated with those curves
are t& = 2. V psec, t~ = 10. '75 psec, and a' = 0. 002
cm '. For the case in which inhomogeneous broad-
ening is present, it is necessary to solve Eqs. (5)
and (7}numerically. This solution, for the same
input envelope 8(t, 0) as the former, is represented
by the upper sequence (z= 0, 50, 100) of Fig. 1. The
relevant parameters in this calculation are T~ = 1.0
psec, T3=10 psec, and &=0.0563cm '. It is ap-
parent, for these choices of & and &', that the prop-
agation behaviors differ negligibly. The appro-
priate value of &' was determined by matching
curves of the two solutions.

The solution given by Eq. (13) propagates with

rigorously conserved energy. Although a small loss
is actually present for the inhomogeneously broad-
ened medium, this loss is sufficiently small so that
the inclusion of inhomogeneous broadening modifies
the propagation behavior in a minimal way. A

minor logs term is introduced, but otherwise the
pulse-propagation behavior is essentially unaffected
(cf. Fig. 1).

Physically, a very simple process is occurring.
Absorption takes place at the leading edge of the
pulse while this same energy is returned to the pulse
tail by stimulated emission. The phase reversals in-
dicated by the nodes of 8 (t, z) are associated with the
transitions between absorption and emission. The
radiators that are on exact resonance begin and
terminate their interaction precisely in the ground
state. This is not exactly true for radiators that
are off resonance, and hence, a slight loss results
due to a small net absorption caused by the wings
of the inhomogeneous line.

This considerable similarity among the solutions
of the two models has been previously noted" in re-
gard to 4w and 2n' pulses. Both models are soluble
for the 2m pulse and lead to the identical analytic
result (i. e. , an envelope waveform described by a
hyperbolic secant). These results strongly suggest
that the uncountably infinite class of solutions gen-
erated by the Backlund transformation technique
will closely approximate the corresponding solutions
for propagation in an inhomogeneously broadened
medium; of course, with the proviso that the range
of validity be constrained to sufficiently short dis-
tances so that the loss can be properly neglected.
This restriction is also necessary because the vel-
ocity of propagation of an isolated 2r pulse behaves
like 7 [for pulse widths t short compared to I/
(o."c}~z] intheunbroadened model, whereas inthe in-
homogeneously broadened case this velocity goes
as t ' (for Tz «t). '~ Thus, once the 2nv or Ow pulse
completely separates, the individual pulses will re-
cede from one another at different rates in the two

models.
The 0~ pulse shapes obtained from the unbroad-

ened model rigorously represent propagation with
conserved energy and area and thereby induce a
strict transparency in the medium. On this basis
it is expected that the separating" solutions will
exhibit SIT in an inhomogeneously broadened medi-
um as well. Indeed, the pulse shown in Fig. 1 has
constant energy within the limits of accuracy of the
computer program (2-3%). Section III will deal with
the nature of propagation of this pulse form in the
presence of T& and level degeneracies, and under
the influence of different values of Tz .

III. VARIATION OF MEDIUM PARAMETERS

In this section, various numerical solutions of the
nonlinea, r equations (5} and (7) are considered in re-
lation to the influence of different medium conditions
on the development of Om pulses. The properties of
the attenuating medium considered in this section are
Tz, Tz, and level degeneracy. 9 In each case, the in-
put electric field envelope b(t, 0) is identical to that
shown in Fig. 1(a)(i.e. , z = 0).

The existence of 071 pulses in an inhomogeneously
broadened medium was demonstrated in Secs. I and II.
The two solutions shown in Fig. 1 represent a com-
parison between inhomogeneous by broadened and
unbroadened media, in which it was necessary to
determine the appropriate value of &' by graphically
matching curves. It is natural to examine the limit
Tz -~ using the value of a' implied by Eq. (11).
The parameter & varies with Tz such that limn= 0
(Tz-0). Thus since the small-signal absorption
grows as Ta increases, then for a fixed attenuator
length L the product &L is similarly enlarged. '
This implies that the greater variations in the pulse
envelope 8(t, L) are associated with the larger val-
ues of Q., hence T, . The particular parameters
used in this study were u= Q. 0563 cm ', Tz = 1.0
psec; & = 5. 85 cm ', T, = 104. 0 psec; and in the lim-
it T,*-~, &'=0. 0318psec cm . Inthese casesthe
effect of T& was reduced to a negligible level by the
selection of a value significantly greater than any
of the other characteristic times of the system.
The value T&= 10 psec well satisfied this condition.
Figure 2 illustrates the output electric field envelope
waveforms $(t, L) corresponding to the two numer-
ical solutions [Fig. 2(b) and 2(c)] and that given by
Eq. (13) [Fig. 2(d)]. As expected, it is readily ob-
served that the greater waveform changes are as-
sociated with the larger value of T~ and that the un-
broadened medium solution provides the proper lim-
iting pulse shape as T, —~. '

The dependence of the output-pulse configuration
(given identical input data) on the dephasing param-
eter T& as obtained by numerical solution of formu-
las (5) and (7) is shown in Fig. 3. In these calcu-
lations, the small-signal absorption is held constant



762 HOP F, LAMB, RHODES, AND SCULL Y

0.93'- INPUT PULSE 0 9
Z=0

0 ~5O~~ &OO

0 '

T2' =1.0

t
l

0 '50~ 100
p{psec )

(l
v(psec )

(b)

0.66't
T2' =104 5

7 10 0e70 —lim T2' —
2=10

'0
-0.19- 50 ~100 0

0

I"( psec)
(c)

50 ~10
p( psec)

(~)

FIG. 2. Electric field envelope vs retarded time for
four cases. The ordinates are in units of &$(p, L)/I;
the abscissas are labeled by retarded time p = (t —z/c)
in psec. (a) Input-pulse waveform (z = 0. 0 cm) used in
all cases as given by Eq. (13). (b) Output-pulse wave-
form (z =L = 10.0 cm) obtain~d by numerical integration
with T2 =1.0 psec, @ =0.0563 cm, and T2=10 psec.
(c) Output-pulse waveform (z =L = 10.0 cm) obtained by
numerical integration with T2~ =104.0 psec, n =5.85 cm ',
and T2= 10 psec. (d)Output-pulse waveform (z =L =10.0
cm) given by formula (13) with e' = 0. 0318 cm 1, t = 2. 7
psec, and t2=10. 75 psec.

as T& is varied. This involves increasing the value
of the density of radiators A as T& decreases in or-
der to compensate for the greater width of the atom-
ic resonance. The appropriate value of n corres-
ponding to a given T, are determined by methods
developed in Ref. 6. The particular values are
m=0. 0563cm ' for T~=10 psec; &=0. 0573cm '
for T2= 52 psec; and & = 0. 0583 cm ' for T2= 13
psec. It is clear that both the positive and negative
lobes of the pulse are attenuated and the tendency
for pulse separation is suppressed when T, is compar-
able to the pulse width. ' It is also interesting to
note that the delay of the main central peak of the
pulse exhibits an independence of T„at least over
the range of T~ explored here.

The theory of pulse propagation in a degenerate
inhomogeneously broadened attenuating medium is
developed in Ref. 9. It is shown there that pulses
with stable areas 8(z) &0 do not induce strict SIT
in the medium. However, for Q(j) transitions,
there exist particular pulse shapes having 8(z) = 2jII
which essentially drive each sublevel through a
multiple of 2n. This greatly minimizes the attenua-
tion and leads to propagation with small (- 5-10%%uo)

loss through many absorption lenghts. However,
the On pulses represent a constant area condition
for all degenerate media [not just Q(j)] and leave
the radiators, for all sublevels sufficiently near
resonance, ' back in their respective initial states.
Thus it might be expected that degenerate media
would be transparent to such pulses. However, it

.0 I I I I I I I I I

ft r INPUT
II/

2=52
-&o'

g=13

0 I
~~v&

0 50
p( psec )— 100

FIG. 3. Dependence of the output-pulse waveforms on
T2 for fixed small-signal attenuation. The ordinate is
in units of PS(p, z)/h; the abscissa is labeled by retarded
time p = (t —z/c) in psec. The waveforms shown corre-
spond to the input pulse $(t, 0) and to the output pulses
for T2= 10, T2= 52, and T2= 13 psec.

is impossible for the separating solutions to exhibit
transparency in this manner, since 2n pulses are
normally absorbed in degenerate media.

The results of some nuriierical calculations for
certain types of degenerate media are illustrated in
Fig. 4. The parameters of the media are adjusted
so that the small-signal attenuations are identical
in all cases. The graph of normalized pulse energy
r(z)/&(0) vs propagation distance z indicates that the
attenuation increases with the number of degenerate
levels. ' Itisapparentfrom Fig. 4(e) thatSIT, even
in approximate form, does not exist for On pulses
in degenerate media. Furthermore, the pulses do
not separate in the fashion suggested by the nonde-
generate case. Indeed, the development of the
pulses in the Q(4) and Q(8) bears a strong resem-
blance to the behavior of a "nonseparating" On pulse
[cf. Eq. (15)]. This result is a consequence of both
the nonlinear nature of the interaction and the
pulse-shape-dependent response of radiators in the
wings of the inhomogeneous distribution.

IV. GENERAL 07F PULSES

This section summarizes the results of several
numerical calculations which utilize more general
input-pulse waveforms than the particular one used
in the previous computations [see Fig. 2(a)]. For
the present calculations, the electric field envelope
is constructed by a superposition (relatively inver-
ted) of two hyperbolic secant pulses which are 4
psec in width and are separated by 10 psec. The
initial area (at z = 0 cm) of these two constituent
pulses are designated by 0& and 82. For appropriate
values of 8, and 8&, th. se pulses approximate the
type of waveforms which are produced in an ampli-
fier and exhibit a phase reversal. Since our inter-
est is primarily directed at On pulse configurations,
we restrict our attention to inputs for which
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FIG. 4. Dependence of propagation on level degeneracy
for Q(2), Q(4), and Q(8) transitions (Ref. 19). For insets
(a)-(d), the ordinates are in units of e 8(p, z)/8'; the
abscissas are labeled by retarded time p = (t —z/c) in

psec. For (e), the ordinate denotes normalized pulse
energy v(z)/v(0), while the abscissa is in units of pro-
pagation length z cm. (a) Input pulse used in all calcula-
tions. (b), (c), and (d) Output pulses at z = 80 cm for
Q(2), Q(4), Q(8) attenuators, respectively. (e) Normalized
pulses energy v(z)/7(0) vs z.

The opposite extreme occurs if both lobes possess
angles in the vicinity of 2w(i. e. , 8, :-2v, 8z = —2v).
"Separating" Om pulses result in this case. The
computer estimated limits for this situation are
8& - ~m and 83- -~. Two examples are presented:
Figure 5 illustrates the energy-vs-distance [v(z)]
curves, while Fig. 6 shows the time dependence and
evolution of the pulse envelope. The second row

(b) in Fig. 6 is an exemplification of direct separa-
tion of the two lobes. The areas of both lobes tend
to 2z pulses. The corresponding curve (b) of Fig.
5 indicates that very little loss is associated with
this propagation. In the third row of Fig. 6, the
pulse behavior for the reversal of the lobe order
(smaller first) is shown. ' If 8, is small enough,
it forms into the wider, hence slower, of the
resulting 2m pulses and "passes through" the other
lobe. Surprisingly, the nonlinear features of the
interaction occurring when the two lobes are super-
imposed are not conspicuous. Curve (c) in Fig. 5

presents the corresponding r(z) curve.
Another possibility involves pulses which have

envelopes resembling the form expressed by Eq.
(15) (i. e. , a modulated hyperbolic secant). One
example is illustrated in row (a) of Fig. 6; the cor-
responding energy curve [~(z)] is curve (a) of Fig.
5. These pulses give no indication of any separation
into individual components. However, they appear
to go asymptotically to a nonvanishing energy. '
This behavior is similar to simple m or 2w in the
case of ordinary SIT. They exhibit large "delays"
at various input energies down to some critical value.
This value is not easily determined because of the

0 ~ 8, + 8, & m is valid. The media considered in this
section are identical to that described in Sec. II.

In the absence of analytic techniques, there does
not appear to be any way of precisely determining
the conditions for the development of SIT for gener-
al values of 8g and 8p, Therefore, the values of 8&

and 8& used as limiting values must be regarded as
highly approximate. Nevertheless, three clearly
distinct pulse behavior patterns were found. The
first is represented by a pulse that is absorbed in
a straightforward manner. In that case, 8& and 82

are small (i. e. , «z) and the energy-vs-z curve
[7(z)] conforms to Beer's Law. " For sufficiently
small 8& and 8&, this is expected on the basis of an
argument which considers the two lobes as interact-
ing independently with the medium. This approach
is equivalent to a superposition principle and ex-
plicitly ignores the nonlinear properties of the in-
teraction. Hence, its validity is restricted to a
certain domain of sufficiently small angles 8& and
82. The computer results indicate that this domain
is given by l8& I& &r. This is consistent with the
results for a single pulse, "since max(8, + 8,) & v.

1.0

0
60

2lcm}
120

FIG. 5. Normalized pulse energy v{z)!~{0)vs pro-
pagation distance z in cm. {a) For the pulse sequence
(a) of Fig. 6; {b) for the pulse sequence (b) of Fig. 6;
{c) for the pulse sequence (c) of Fig. 6; (d) the result cor-
responding to a pulse with e(0) = 0. 9~ (no phase reversals)
propagating in an attenuator identical to that for {a)—{c)
above.



764 HOP F, LAMB, RHODES, AND SCULLY

0+7-

o of so 100

p(peso )

o ll v=1'00
-O.24-

)a( peso )
-0.10-

p(peso)

X=0

T o
-0.72-O g So 100

p,(peso )

0.87—
PL

O ~SO 1OO

peso )

0 84u Zo120

0 44 0 ~ 100

p{ peso )

0V so-0.72- v
100

W{ peso)

X=60

-0 28 So
P( peso )

1 0'i Zo120

~0 4 0 ~ 100

P{peso )

FIG. 6. Three propagating pulse sequences (a)-(c).
(a) is the top line (i), (ii), (iii); (b) is the middle line (iv),
(v), (vi); (c) is the bottom line (vii), (viii), (ix). The
ordinates are in units of f)pS(p, z)/I; the abscissas are
in units of retarded time p = (t —z/c) in psec. The pro-
pagation distance z in cm is noted in each frame.

limitations of the computer program. At that point,
no 'delays" will occur. An example of a simple
(no phase reversal) 0. 9v pulse is offered in curve
&d) of Fig. 5 as a contrast to the other cases. That
pulse while developing nonlinearly is, neverthe-
less, very strongly absorbed.

The presence of a phase shift can influence the
gross properties of the pulse evolution pattern. In
order to isolate the phase-shift effect, further com-
putations on the propagation of pulse pairs were
performed. The shapes of the two pulses were as-
sumed to be hyperbolic secants with l8, I

= I83I.
The widths of these pulses were 4 psec, while the
relative delay (peak separation) was 10psec. The
evolution behavior of the pulse pairs, with and with-
out phase reversal, was examined as a function of 8. ~
For these calculations, "the small-signal attenua-
tion constant & was 0. 0563 cm and the attenuator
length L corresponded to 120 cm. T2 was 1 psec,
and T& was 10 psec. The relevant comparison ex-
amined the intensity 1(t, J.) of the output pulses for
the phase reversed and nonphase reversed inputs.
It was found that for 8= 2m, the output intensity
showed a negligible dependence on the phase rever-
sal. This is expected, since the first 2m hyperbolic
secant pulse leaves the atomic systems back in their
ground states throughout the entire inhomogeneous
distribution. Since no phase information is con-
tained in this state, the propagation of the second
pulse is unaffected by the relative phase of the first.
However, for 84 2m, the atomic radiators do pos-
sess phase information significantly altering the be-
havior of the phase reversed and nonphase reversed
pulse pairs. The general tendency of this difference
is indicated by consideration of the case 8 = 1.25n.
The in-phase pulses evolved into a single 2m pulse,
while the phase reversed case maintained two clear-

ly distinct pulses. The difference in the output
waveforms, between one pulse and two, was obvious.
In fact, if w &8 & zp, there is a general inclination
for the in-phase pairs to merge into a single pulse
while the phase reversed pairs favor a multipulse
configuration. Also, the loss associated with prop-
agation is significantly less for the phase reversed
situation. This behavior is preserved, with slight
modification, when degenerate levels are considered
as explicit calculations for a P(V) transition indi-
cate. This effect enables the determination of re-
lative optical phase and is a nonlinear aqplog of
ordinary interference.

V. CONCLUSIONS

The nontrivial Og pulse has been shown to exist,
and by virtue of an energy loss associated with short
T&, is clearly a direct consequence of atomic co-
herence. The waveforms produced in an inhomo-
geneously broadened medium are similar (but not
identical) to those associated with the unbroadened
model. ' It is noted that two different forms of 0~
pulses are expected to occur. The "separating"
variety, which is the analog of the well-known 4n

pulse, evolves into two distinct (relatively inverted)
2p pulses. The second type or "nonseparating"
pulse, which is the analog of the ordinary 2w pulse,
remains intact. It evolves into the form of a rapid-
ly modulated hyperbolic secant with large delay
times determined by the input-pulse widths and en-
ergies, and whose modulation is specified by the
initial peak separation. The former results are
expected whenever the positive and negative lobes
are near 2m, and the latter when both lobes are near

These two species of Ow pulses exhibit SIT.
However, if both lobes are small («v), the pulse
is absorbed in the normal fashion according to
Beer's Law. Furthermore, it is possible to pro-
duce curves of output energy vs input energy and
delay time vs input energy, using only Om pulses as
inputs, which closely approximate those obtained
from the ordinary SIT effect without phase
reversals.

Therefore, it is clear that considerable care
must be exercised in predicating predictions on Eq.
(3) if pulses possessing pulse shifts are involved.
These shifts can occur in amplifiers and multiple-
pass attenuators. They can also originate in an
attenuator in which T, and T, are as long as or
comparable to the pulse width. These conclusions
can be inferred from the following: (i) the fact that
the waveforms calculated for the inhomogeneously
broadened medium go smoothly over into those as-
sociated with the unbroadened model for the limit
T, —~"; and (ii) that input pulses which have areas
differing from 2nn develop phase reversals in the un-
broadened attenuator. Thus, for example, a pulse
with 8(0) & w could form phase shifts and separate
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into a sequence of alternately inverted 2m pulses.
It should be pointed out the e(z) = 0 condition does

not necessarily imply nearly lossless propagation.
The nonlinearity of the interaction manifests itself
in such a way that sufficiently weak zero-area pulses
are damped in the normal Beer's law fashion.
More precisely, the pulse-evolution patterns shown
in Fig. 1 do not follow for a similarly shaped input
pulse whose amplitude is reduced by an order of
magnitude. Strong damping results. Thus, under
comparable input conditions, this feature causes
degenerate attenuators to have more losses thannon-
degenerate ones, since the ensembles with the re-
latively small dipole matrix elements experience
a correspondingly weaker interaction. This pro-
duces a residual attenuation which is roughly pro-

portional to the degeneracy.
These calculations also reveal the sensitivity of

the propagation behavior on the relative phase of
pulse pairs. This optical phase can be determined
by its influence on the propagation. Less loss also
generally results for the phase reversed pairs
vis-a-vis the in-phase pair.
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signal attenuation constat 0. in cm . More precisely,
v(z)/v(0) = e

~2This domain is then equivalent to the interior of a
square of side 7r, centered at the origin, in the 8~-82
plane.

~~It is well known that single pulses with an area 8(0) & 7l
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near its Critical Point*
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The intensity and spectral width of light scattered by a critical mixture of phenol and water
have been measured as a function of temperature both above and below the critical tempera-
ture T,. The temperature dependence of the scattered intensity was fitted to Icr- (T- T~) " for
T& Tc and I oc (Tc —T) " for T& Tc. Also measured was the ratio Rl ——l(4T)/I( —&T) of inten-
sities scattered at a given temperature interval &T above and below T,. The measured values
of p p', and Rl were quite close to the predictions of the 3-D lattice gas model. The spec-
tral width I' was measured using a photon correlation method, and the data were fitted to
I'=DK (1+K~$z), with the diffusion constant D=DOI T-T~I" and $r —-$0&I T- T~I The
Fixman term K $r (K being the photon momentum transfer) was observed only above the cri-
tical temperature. The value of v and the values of + both above and below T~ were in fairly
good agreement with the theory of Kadanoff and Swift. The spectral width measurements also
provided the ratio Rp —=D(- AT)/D(b, T), a quantity for which no theoretical prediction exists.
Comparison of this work on phenol-water with that of Swinney and Cummins and others on
CO2 near its gas-liquid critical point reveals remarkable similarities between the two systems.

I. INTRODUCTION

The last few years have witnessed a rapid growth
of interest in the critical behavior of systems under-
going a second-order phase transition. Experiments
in a wide variety of systems including ferromagnets,
simple fluids, and binary liquid mixtures, reveal
a striking similarity in their behavior near the
critical point. This similarity is a reflection of
the fact that fluctuations which develop near the
critical point are of sufficiently long range as to be
remarkably insensitive to the detailed form of the
atomic interactions in the system. ' As a result,
the critical behavior of many of these systems can
be characterized by a small number of dimension-
less parameters.

The work described here is a study of the tem-
perature dependence of the magnitude and lifetime
I' of concentration fluctuations in a critical mix-
ture of phenol and water. Measurements were
made both above and below the critical temperature
T,. The lifetime measurements below T, appear to
be the first which have been reported for a binary

mixture. A preliminary account of this work has
already appeared. '

The temperature dependence of the magnitude of
the fluctuations, which can be characterized by
the exponents p and t ', was measured by following
changes in the average intensity I of light scattered
by the system. The lifetime of the concentration
fluctuations was determined by using a photon cor-
relation method to analyze the fluctuating light
intensity. The lifetime is inversely proportional
to the mutual diffusion coefficient D whose temper-
ature dependence is described by the exponent &~.

In addition to determining p and y~, measure-
ments were made of the following dimensionless
intensity and diffusion coefficient ratios:

RI=I(&T)/I( —&T); Ro=D( —&T)/D(&T) . (1)

Here the argument &T( —&T) refers to measure-
ments made at equal temperature intervals above
(below) T,. The experimentally determined values
of y and R, can be compared with predictions of
the three-dimensional (3-D) lattice gas model. '
Recent theoretical work of Kadanoff and Swift '~


