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' (4 sin'q, —1}e ~"r dr .x dg
~0 dE

(28)

But these are effective properties. We may say
that a gas of unstable particles with negative life-

We have argued in the subjunctive sense for the
adoption of the term "unstable pseudohole gas"
when the lifetimes of unstable particles become
negative. Regarded as a gas of particles, pseudo-
holes have negative number densities given by Eq.
(28) and from Ref. 1 tend to exert negative pres-
sures:

times behaves as if it were a gas of holes. But
as individuals, pseudoholes lack the identity of
unstable particles because it is impossible even
to consider writing down localized wave functions
describing them. Unlike holes or bubbles in a
degenerate Fermi sea, pseudoholes only exist in
the contrary sense of removed-particle pairs. As
such, they are only intended as a conceptual con-
venience with which to extend the unstable-particle
formalism to the negative-lifetime case. The
formal equivalence of Eqs. (2}, (3}, and (4) with
Eqs. (28), (26), and (27), respectively, was dem-
onstrated without recourse to this interpretation,
and should therefore indicate the permissibility of
extending the formulas of Ref. 1 when dry/dE & 0.
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General formulas for the factorial cumulants of the photocounting distribution and the cumu-
lants of the integrated intensity are obtained for chaotic light superposed with coherent light,
for experiments involving N different counting intervals. The chaotic light may be partially
polarized, need. not be time stationary or single mode, may differ in frequency from the co-
herent light, and may have any spectral distribution.

I. INTRODUCTION

Chaotic light superposed with coherent light is
one of a small number of cases for which an exact
solution can be found for the probability distribution
of photoelectric counts, or for arbitrarily high mo-
ments of this distribution. As in other areas of
physics, exactly solvable problems in photoelectric
counting facilitate physical understanding of prob-
lems which are less tractable theoretically, such
as the counting statistics of scattered light.

The probability distribution of the number of
photoelectrons produced in a counting interval T by
chaotic-plus-coherent light incident on a single de-
tector has been studied theoretically by several
authors. ' ' Closed general formulas for the gen-
erating function, or the factorial moments, or the
probability distribution itself, were derived by
Lachs, Glauber, and Magill and Soni, assuming
that: (i) The incident light is fully polarized; (ii)
the counting time is short compared to the coherence
time of the chaotic light; and (iii) the incident light

is confined to a single mode of the electromagnetic
field (which implies that the mean frequency of the
chaotic light & equals the frequency of the coherent
light (uc). Without using (ii) or (iii), Korenman
calculated both the generating function and the fac-
torial cumulants of the photocount distribution;
the latter have proved to be a particularly simple
and useful form for summarizing the complete
photocounting statistics. Assumptions (ii) and (iii)
were removed in the formalism set up by Lachs,
although closed formulas for the generating function
and the higher-factorial moments were obtained
only in the limit of short counting times. Jakeman
and Pike calculated the photocount generating func-
tion without (ii) or (iii} for the case of chaotic light
with a Lorentzian spectrum'; results for an arbi-
trary spectral distribution were obtained by Perina
and Horak. Recently, Jaiswal and Mehta derived
the factorial cumulants without any of these
assumptions. '

Photoelectric counting experiments involving
more than one counting interval and more than one
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detector contain information on both spatial and
temporal coherence properties of the light incident
on the detectors. The generalization of the gen-
erating function, cumulants, and factorial cumulants
to such N-fold counting experiments has been dis-
cussed elsewhere. "' In this paper, the factorial
cumulants will be calculated for N-fold photocounting
experiments on chaotic-plus-coherent light, for
arbitrary counting times, for arbitrary values of
&T-&, and for partially polarized multimode cha-
otic light of arbitrary spectral distribution. The
coherent light is assumed to be fully polarized, but

may be multimode. A different method due to
Jaiswal and Mehta yields the same results.

The N-fold cumulant K, „(x„.. . , x„) of N

variables x1, . ~ . , x„ is a measure of the "true"
m1. .m „-order correlation among the variables
x1, . . . , x„, with all lower orders of correlation sub-
tracted away. ' ' The N-fold cumulants K,.. . „(I„.. . , I„)provide a formally convenient and phys-
ically appealing summary of the statistics of the
optical intensities I1,. ~ ~,~N at N different detectors.
Onefold intensity cumulants have been discussed
and used to analyze experimental data, by Chang
et al. 15

The quantities which similarly measure the "true"
correlations in the distribution of the numbers
n1, ~ ~ . , n„of photoelectric counts received at N de-
tectors in the time intervals [t f tg+T f](. . . ,
[t„, t„+T„] are the factorial cumulants k, ... „
(n„. . . , n„}, which are e(lual to the cumulants (of
the same order) of the integrated intensities ~' ~~

k . .. (ng, ~ ~, n„)=K~ . ..~ (Wg, ~ ~ ~, W„) .
In this equation, we have

Wg = &t J It(t) dt,
ty

where I&(t) is the intensity of light incident on the jth
detector, and the mean number of photoelectrons
emitted is

(n, ) = c(~T, (I,) =(W, ) .
All the factorial cumulants with g, m~ & 1 vanish when
the intensities at the N detectors are statistically
independent (in which case all correlations in the
photocounts are accidental}.

To derive K, „(W„.. . , W„) it is convenient to
calculate K, „(I„..~, I„) first, since the latter
cumulant can be found by purely algebraic methods
using the Gaussian moment theorem, Eti. (6}, and
the relation between cumulants and moments, Eq.
(3). This is done in Sec. II. The results from
combinatorial analysis which are needed for this
purpose have recently been discussed in the context
of photocounting experiments, ' and hence are sum-
marized very briefly. The factorial cumulants can
be found from the intensity cumulants by integration,

&&K......„(I,(t ',), . . . , I„(t,')) .
The results for coherent light plus fully polarized
chaotic light are discussed in Sec. III, and are gen-
eralized to include partially polarized chaotic light
in Sec. IV.

II. INTENSITY CUMULANTS OF MIXED CHAOTIC AND
COHERENT LIGHT

The values of the optical field at the N detectors,
and at times t„~,t„, are

Vq (t) ) = V) + U~, (2)

where V,(j =1, 2, . . . , N), the values of the chaotic
field, are Gaussian random variables with zero
mean and covariance matrix 1,

r„= r„(t„t,)=(v,* v, ),
and (U&j are the values of the coherent field. Here
and in Sec. III the optical fields are assumed to be
fully polarized.

It is convenient to define the intensities

I&=lv, l

of the chaotic and coherent light alone.
The cumulants are related to the joint multivari-

able moments by the formula'

K, „(x„.. . , x)

(3)

where 6' is any partition' of the set of numbers
1, 1, ~ ~ ~, 1(m, times);. . . ; N, N, , N(m„ times)
into n((y) disjoint subsets S. The N-fold factorial
cumulants k, ... „(n„.. . , n((() are related to the N
fold factorial moments

=Ku "i(l vil'+ vf Ui+ vi f+ I U~l

It can be shown from the cumulant generating func-
tion' that when

( „~ ~ ~, „(=- n ( —() ( — ~ (()

in the same way as the ordinary cumulants are re-
lated to the ordinary joint moments, E(l. (3).

As in Ref. 12, we need to consider only the cumu-
lants for which m, = m2= . .n „=1, since the cu-
mulants for which some m's are greater than unity
can be obtained from an N'-fold cumulant K11...1

(x„.. . (x~, , x((( ) with N =g~ (m, . Substituting (2)
into (3}, we find

K„...&(Ii, . . . ,I„)
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T T + T+ 2 Ul Kll. ..l (Il, . . . , Il 1, V 1,I1,1, . . . , I „)T

f=i

+ 5 Ul Uk Kll".1(l1, ~, Vl . . . V„, ~ . , I „)
f, k =1,f40

+ ~ ~ ~ (5)

The mixed N-fold cumulants of intensities and am-
plitudes which appear in (5) can be evaluated from
(3), using the Gaussian moment theorem for com-
plex Gaussian variables z, ( j = 1, 2, . . . , kI), '2"

N

(ZJ '''Zl Zkl'' Zk )=bMXE g(Zf ZPk ) ~ (6)

In(6), P:k - Pk is any permutation of the numbers
kif ~ ~ ~

y kNo

Equation (6) implies that only those terms with
an equal number of U's and U*'s will be nonzero
in (5). Consider the cumulant

tvf &1,

Kll ~ 1(Xli ' ~ ' i XX) Kll 1(X1+ c1» ' ' ~
« XV+ CX) ) (4)

where cl, . . . , c„are constants (i.e. , not subject to
the implied statistical average). Therefore, we
have

Kl1. ..,( Il, . ~, I„)= Kll. ..1(I 1 + V 1 Ul + V1 U f, ~ ) .
Equation (3) implies that the latter cumulant can
be expressed as a sum of terms involving the mu)-
tinomials U&, U&Ukk( j ok), U& UkUk ( j&k wm), etc. ,
up to Xth order in the coherent field

Kll. ..l(il~ . . ~IN) =Kit".1(I1, . . . , I „)

Vg i ~ VN The coefficient cR is the sum of in-
tegers (- 1)"'+' (n(lp ) —1)!over all partitions &p in

(3), which can give rise to a term of type R when
the Gaussian moment theorem is used to evaluate
the moments appearing in (3). If there are no 6"s
which can give rise to R, then we define cR = 0.

A cyclic replacement is one in which the paren-
theses can be ordered so that the replacement has
the form

(ab)(bc)(cd)(de) ~ (xy)(yz) =
bede ~ ~ y z

[the order of parentheses on the left-hand side of
(8} is immaterial]. As with permutations, a re-
placement can be expressed uniquely as a product
of cyclic replacements. In a cyclic replacement,
all but two of the symbols a, b, e, occur twice;
however, not all replacements of which this is true
are cyclic.

Expressing R as a product of cyclic replacements
separates the set of indices 1, 2, . . . , Ã in (9} into
subsets consisting of the indices which occur in one
cycle. These subsets have no indices in common.
Thus, each R which actually occurs corresponds
uniquely to a partition Q(R) of the set 1, 2, . . . , N

No partition 5 which is a refinement' of g(R) can
give rise to a term of type R, but every (p of which
Z (R) is a refinement gives rise to exactly one term
of type R when (3) and (6) are used to evaluate (7).
Hence, Eq. (7) equals

Kll ~ ~ 1( " 1 ~
' ' '

~ " t ~
V +1~ t' ' '

~ "21, ~
' 2t+1 ~

' ' '
« I Nl

(7)

(The order of variables is irrelevant in a cumulant
in which all m&'s are equal. ) By (3) and (6), (7) will
be equal to a sum of products of averages (Vlk V, )
= F», where j = 1, 2, . . . , L, 2L +1, .. . , N, and
k =L +1, . . . , N. We can identify any given product

fl ki' ' ' f y "fN

by the symbol

(8)

where M =iV I.. Expression (8) can-be taken to
represent an operation in which Vf*, is "replaced"
by Vkl; ~ . . ; V&„by V„„. [In the calculation of the
cumulants of the intensities alone, the indices j
and k run through the same set of integers, and
(8) represents a permutation of this set factored
into transpositions (j k }.] Thus, Eq. (7) equals

(9)

where the sum runs over all replacements of the
set Vi, . . ., V~, Vz~, i, .. . , V„* by the set

It was shown in Ref. 12, Appendix 8, that the sum
in brackets is the Kronecker delta 6i «&~»» where
n(g ) is the number of subsets in the partition g.
Thus, the sum over R in (9) reduces to a sum (with
all coefficients equal to 1) over those replacements
which consist of exactly one cycle.

For L &1, there are no cyclic replacements of the
set Vi*, . ~ . , V&~, V,~.i, . . . , V„* by the set V~,i, ..., V„,
since the indices 1, 2, . ~ . , 2L must occur singly in
any replacement of these sets. Consequently, only
the terms of zero order and second order in the
coherent field survive in (5). The cyclic replace-
ments of the above sets with L = 1 are in one-to-one
correspondence with the cyclic permutations of the
N —1 integers 1, 3, . . . , N, the difference between
a permutation C ' and a replacement being in this
case that in the latter, where 1 occurs in the per-
muted set C'1, C '3, . . . , C'1V, it must be replaced
by 2.

The result is
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N N

+ Q U, u+ Q g'"'r, , &„„,
$, 4=1, 14k C' (0 } m=i

where C is any cyclic permutation of 1, 2, ~ . ~, N,
and C '(k) is any cyclic permutation of 1, 2, ..., k —1,
k + 1, ~ . ~, N; where j occurs in the permuted set of
integers (C '(k)n }, it is to be replaced by k. The
notation

is intended to indicate that the product runs from
m = 1 to m = N, omitting m = k.

As an example of these formulas, the cyclic re-
arrangements of two and three objects are

32 342 ' 423

N ' (0) respectively, and the intensity cumulants for
N=2-4 are

z«(fi, fa) =
I ri2I +2Re(u, u fr„},

K (I, I, I ) = 2 Re(r„r„r„+U, u[r„r„+U,u~r„r, + U U fr„r„),
Z„„(f„I„I„ I,) = 2 Re[r„r„r„r„+r„r„r„r„+r„r„r„r„+U, ug(r„r„r + r „r„r„)

+ U, ug(r„r„r„+r„r„r„)+ U, u ~(r„r„r„+r„r„r„)
+U Uf(r I' I" +I' &F I' )+U Uf(r F F +I' &F&

I' )

+ U, u', (r„r„r„+r„r„r„)].

(12)

(»)

(14)

The terms containing only products of I"s are the intensity cumulants for chaotic light alone; the remaining
terms containing products of I"s and V's result from the interference of the chaotic light with the coherent
light.

III. FACTORIAL CUMULANTS OF PHOTOELECTRIC
COUNTING DISTRIBUTION

The factorial cumulants of n„~ ~ ~, nN are, from (1) and (11),

t 1+T1

k„..., ( i, . . . , „) =K„... ,(W„. ~ ~, W ) =+1''' f
tg

tN+ TN N

ct '
~ ~ ct ' Z II rg, ct(t ', t cy)

C /=1
tN

(i5)

The notation does not adequately indicate the struc-
ture of the second term of (15), but it can be de-
scribed as follows: The mutual coherence functions
I' ~ form the cyclic product I', ,I'„I„I'«" I'„;I';„,
and the product U, U~~ completes the cycle.

The factorial cumulant of the photocounting dis-
tribution is seen to be the sum of two sets of terms,
the first representing the effect of the chaotic light
alone, and the second representing the interference
of the chaotic and the coherent light. The coherent
light alone would give rise to a Poisson distribution
of photocounts, and hence to factorial moments

F . . „„(n„.. . ., n„) =(nQ ' (n„) " .

This expression has the same form as the joint
ordinary moment of a set of constants; for this
case, the cumulants beyond lowest order all vanish.
Consequently, the factorial cumulants for coherent

light are all 0 except for first order, and we can
say that the factorial cumulants for superposed
chaotic and coherent light are the sum of the fac-
torial cumulants for the two alone, plus an inter-
ference term which is linear in the intensity of the
coherent light.

The coherent field U(r, t) in (15) need not be
monochromatic, but it cannotbe subject to statistical
fluctuations. Thus, (15) applies in cases where the
coherent light is multimode, but perfectly mode
locked.

All that has been assumed about the chaotic field
in deriving (15) is that the amplitudes of the field at
different space-time points obey the multivariab?e
Gaussian distribution. It has not been assumed that
the random process represented by the chaotic field
is stationary, i. e. , that

Fq~(t;, t~} = F&~(tg -tq) .
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Thus, (15) is valid for nonstationary Gaussian
fields such as light derived from a thermal source
by chopping or amplitude modulation. Many differ-
ent mode structures are compatible with these as-
sumptions, as long as the mode amplitudes also
obey the multivariable Gaussian distribution. It is
not necessary that the mode amplitudes be statisti-
cally independent.

For detectors of finite size, the integrated in-
tensities are

Wj= cjj J dS(rj) J dtf(rj, f),
Aj tf

where the surface integral extends over the area
Aj of the jth detector. Thus, the factorial cumu-
lants can be obtained from the point-detector rela-
tion (15) by integrating with respect to
r, (j = 1, 2, . . . , N). If each Aj is small compared to
a coherence area of the chaotic light, then the in-
tegrations with respect to the space variables which
occur purely in the mutual coherence functions
I'(r, r . ; t, t . ) simply multiply (15) by the areas
of the respective detectors. However, the factors

UjI'j = U( rj, t j)I'( rj, r; f j, t „'),
U q+ I ~ j, = U( rq, t j',) I (r, r j„ t '

~, t j', )

will cause the integral of the second term of (15)

with respect to rf and r, to vanish unless the wave-
fronts of the chaotic and coherent light are parallel
to within less than half a wavelength over the areas
of the jth and 0th detectors. [This can be seen by
expanding U(r, f) and V(r, f) in plane waves. ] This
effect is familiar in optical heterodyning experi-
ments.

If the chaotic light is cross-spectrally pure (and
therefore time stationary}, ' we have

r„(t)=&jj(t)I'j,(0),
where

rjj(t) = gj} '(V(r„0)*V(r„ t)}
- fur t y(f)

T being the mean frequency of the thermal light.
For quasimonochromatic light, y(t) varies slowly
on a time scale of (~r) '. We shall also assume
that the coherent light is monochromatic,

U, (f) = Ujoe '"c' .
In this case, we can separate the terms of (15) into
factors whichdepend on the spatial coherence prop-
erties of the light, and factors which depend on the
temporal properties (the spectral density of the
chaotic light, and the frequency difference 4&= ~c
—&ur)

N tl+Tl N N

~11' 1(+1 ' ' ' nN) +g ' +jj E g &j, cj(0) Qt 1 dt '„
f=1

1 t N

N N

II r(f.'.-f.') +Z U„U;, Z g'"'r. , „, (0)
j&k C' (0) fft=l

When the counting times are short compared to a coherence time, then y(t) =1 in all the integrals, and

n" 1(jjs ~ ~ + )=& ~ ~ ~ o T ~ ~ ~ T„ZQI' (0) +8K U U cos(gv[&+ —'T -(f +—'T)]}
C j=l

~ sin(~g rj.(oTj) sin(~ 4(uTj) p ~, („& F, c ~ &j& 0 ~a~Tf &(OTa, c (a) ~=1 (17)

The effect of the beat frequency b on the photo-
electron statistics is that the term representing
the interference of the chaotic with the coherent
light are modulated by a harmonic factor varying
at frequency n&u, and are also multiplied by (sinx)/r
factors which show the effect of the finite counting
time.

For the onefold case, in the limit of short count-
ing times and when ~r = ~c, Eq. (17) becomes

(jj) = (N I}!(oT)jj(f ) N+N l(AT) [ (fr}jj ~

(where I = IVI, I = IUI'}, from which it follows
that the cumulant generating function for the inte-
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grated intensities is

X(W;s)= E K,(W)N,
Nni

(&2T IT )N N
= Z +(&2TI )s Z (&2T(I ))"s"

Nn0

(&2TI )s
= —in[1 —(&2T(I ))sj+ 1 (~(IT)) ~

Thus, the photocount generating function for this
case is

&&( . s) x«T; -s&

1 (n )s
1+(n )s 1+(n )s

where (nT) = c&T(IT), (nc) = &2TI . This agrees with

the calculations of Refs. 1, 3, and 4. The more
general results of Korenman' and Jaiswal and

Mehta' for the onefold case follow in a straight-
forward manner from (15).

IV. PARTIALLY POLARIZED LIGHT

Let the light incident on the N detectors be par-
tially polarized, so that the values of the optical
field are

Vf = Vf +Uf

(where V1 is chaotic and U1 is coherent), and let
the field be resolved into components with respect
to an orthonormal polarization basis e,"', e,' ' at
each detector, so that

V V (1)"(1) + V (2) "{2)ef + f e

U = U(1 ( + U(2) (2)
f f ef + f

The total intensity is
(1) (2)If = Vf ~ Vf =If +If

where

I &r& I y&x&I2+ y&x&'&II&x& y&x& U&x&4 I U&r&~ 2

where x = 1, 2. Then (3) implies that the intensity
cumulants are

Ku" 1(I1, . . . , IN)

2 2

Z 2 K». .. (&I I" ',&. . . I&N N') .
x1=1 gys1

Evaluating the cumulants on the right-hand side by
the techniques of Sec. II and then integrating with
respect to time, we find that the factorial cumulants
of the photocounting distribution are

T& t 1+T1

N~14 t 1

t
t N+TN

dh'''' '

(18)

For onefold counting, (18}agrees with the results of Jaiswal and Mehta. ' '
If the light is cross-spectrally pure, then the single-detector factorial cumulant kN(n) can be substantially

simplified by choosing a polarization basis such that V '" and V ' ' are statistically independent. ' This im-
plies that only two terms in the sum over x„.~ ~, xN can survive, since all the x's must have the same value
for a term to be nonzero. Then, for monochromatic U(t),

T, T
) (l&t 1) &oN((I &1&T)N (I &2&1')N) J dt . . .f

&&y(t
~ I r)y(t ~ I r), , y(t r t~) I&&+&fN(I&1&C(I&1&T)N 1 +I&2&C(I&2&T)N 1)

&& f dt1 f dt„'e""C "T'"1-'2' y(t2 —t2) y(t N
—t&),

where
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James A. Jahnke, ~ Lothar Meyer, and Stuart A. Rice

Department of Chemistry and James Franc@ Institute,
The University of Chicago, Chicago, Illinois 60637

(Received 19 August 1970)

Drift velocities of electrons in fluid argon have been measured at temperatures from 90 to
160'K and at pressures from 10 to 100 atm for applied electric fields in the range —25 to
—200 V/cm. The electron drift velocity is found to be linear with respect to electric field
strength only to —100 V/cm at temperatures from 90 to 125'K and to become increasingly
nonlinear at temperatures greater than 125'K. Mobilities can be obtained from these data
by extrapolation to zero field; maxima are found in the zero-field mobilities as a function
of.density, in the region of 0. 81 g/cm3. Using the model proposed by Lekner for electron
scattering by a system of fluctuating potentialS and assuming that the scattering length for
electrons in Quid argon approaches zero at some density, it is possible to obtain a semi-
empirical relation for the zero-field mobility as a function of density. Excellent agreement
between calculated and observed mobilities is found in the high-density range studied 1.0-
1.4 g/cm . At densities less than 1.0 g/cm~, several qualitative aspects of the experimen-
tal data are accounted for by the theory, but quantitative agreement is lacking. It is pos-
sible that at these lower densities, gas-like scattering is of dominant importance.

I. INTRODUCTION

The injection of excess electrons into liquids
provides a means of studying the electronic states
of disordered systems. By adding an electron to
a liquid, a conducting state becomes populated; to
interpret the resultant electronic behavior it is
necessary to develop physically realistic models
correlating the electron-atom interactions with
properties of the fluid. As might be expected, one
of the most useful guides in such a development is
provided by measurement of the electron drift
velocity vv (due to the application of an electric
field E to the liquid). Now, the liquid systems
which in principle are the simplest to understand
are He, Ne, Ar, Kr, and Xe, primarily because
of the spherical symmetry of the single-atom scat-

tering potential, the absence of inelastic collisions,
and the weak and short-range nature of the elec-
tron-atom interaction. This paper reports new
measurements of the electron drift velocity in Ar
and their interpretation.

In a dielectric liquid, such as liquid argon, where
the resistivity is high (approximately 10'9 Gem),
the number of electrons that can be introduced into
the liquid without producing space-charge effects
is very small, on the order of 10'-10 cm . ' The
Coulomb energy between a pair of electrons is,
then, less than the thermal energy keT (where ks
is the Boltzmann constant), and it becomes pos-
sible to measure directly the resistance to the
electron motion arising from scattering of the elec-
tron by the fluid. The parameter of interest is the
zero-field mobility, defined as go= lim(vv/E), as the


