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The total excluded volume for a gas of stable particles with repulsive interactions is calcu-
lated. From this, it is possible to define an effective negative-interaction number density
which is formally identical to the previously derived expression for the equilibrium number
density of unstable particles. Pointing out that this allows the unstable-particle formalism
to be extended to the negative-lifetime case, it is argued that unstable particles with negative
lifetimes behave effectively like a gas of unstable holes.

I. INTRODUCTION

In a previous communication, ' it was shown that
to a first approximation, any real gas could be
divided into two components, one being an ideal gas
of stable particles, and the other being an ideal
gas of unstable particles. The collision cross sec-
tion and the reciprocal of the scattering delay time
were used to determine rates of production and
destruction in a gas of interacting stable particles.
By equating the two rates, a general expression
for the equilibrium number density of unstable
particles was obtained.

The success of the approach was based on the
interpretation of the elastic scattering of two par-
ticles as the formation and decay of an unstable
particle. The unstable particle was said to be
formed the instant the scattering pair "started to
interact" and had decayed the instant the scattering
pair "stopped interacting. " The energy derivative
of the phase shift provided the needed expression
for the mean life of the state

Clearly, the interpretation breaks down whenever
this energy derivative becomes negative (negative
lifetimes). Moreover, the expression t'or the un-
stable-particle number density also becomes neg-
ative.

Negative values for the energy derivative of the
scattering phase shift are usually associated with
repulsive potentials. In Secs. II and III it will be
shown that the excluded or removed free-particle
volumes due to these repulsive potentials may be
used to def ine a negative- interaction number den-
sity which is formally identical to the expression
for the unstable-particle number density [Eq. (2)].
This allows the entire unstable-particle formalism'
to be extended to the negative-lifetime case. Ar-
guing in Sec. IV that negative number densities
may be interpreted in terms of remoi~ed particle
pairs, it is pointed out that introduction of the idea
of unstable pseudohofes provides the conceptual

counterpart for unstable-particle gases when the
lifetimes become negative. Before proceeding, we

shall first briefly review some of the pertinent
formulas for the positive-lifetime case.

In a unispecies gas of stable particles, the total
number density of unstable particles is

&.=n.'f
~

(2)

where n, is the number density of free stable par-
ticles, and f is a sum over orbital angular-mo-
mentum states,

2 z~ 2 3/2 23/a

f —= „Z(21+1)l,mkT

with the integral term I, given by

l 2 -Elk TI, =- 2 ~l sjn2g e-E/kTdF.
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(4)

=+n —2fn +8f n —40f n4+ ~ ~ ~

To third order in the thermal wavelength, this re-
duces to

n, =n- 2fn

II. EXCLUDED VOLUMES AND INTERACTION
NUMBER DENSITY

Consider a gas of N stable particles enclosed in
a container of volume V. I,et us characterize the

q, is the lth partial-wave phase shift, and it will
be recognized that f is proportional to the cube of
the thermal wavelength P, = (2'�'/mkT)'", a small
quantity in our low-density high-temperature limit.
Equally valid for identical bosons or fermions,
Eqs. (2)-(4) were derived for zero-spin particles.

The total number density of all stable particles,
free or interacting, in the gas is

n =n, + 2N„

Here, N„ is multiplied by 2 because it takes two
stable particles to make up one unstable particle.
Substituting Eq. (2} for N„, we solve for n, in terms
of n:

n, = [- 1+(1+Sfn}" ]/4f
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n = N/V—

while the effective free-particle number density
will be

n
V- nV (1 —hV/V)

J.earranging terms, we have

(s)

b,V
n =ny+ 2 2nf y

and defining an interaction number density

interactions of these particles with one another as
hard sphere. It is evident that because of these
hard-sphere collisions, the stable particles will
not be free to move in the entire volume V of the
container. A certain total excluded volume 4V will
not be accessible to them. The total number density
of stable particles, free or interacting, is

definition it will be 0 (the scattering particles pass
right through each other} and we must conclude that
the negative-time interval predicted in the presence
of the interaction is the time the scattering particles
u)ould have spent in the interaction region in the
absence of the interaction.

Care has been taken to explicitly state what might
be considered obvious, because knowing this "would-
have" time interval is tantamount to knowing the
"would-have" interaction region. That is, a knowl-
edge of the amount of time the scattering particles
would have spent in the interaction region will en-
able us to calculate the volume they were excluded
from.

If two colliding particles with relative velocity
v&& = lv& —v&l interact via repulsive forces, the rel-
ative distance that would have been traversed in
the absence of the interaction is

(16)
Nr = 2'

yields

n =ng+ 2'

(io)
The product of this length with the scattering cross
section a&& will yield the volume that each particle
has been excluded from:

nV/V = 2ng,

where g is some function, so that

Nr= —nag .

(i2)

This resembles the form of Eq. (2), N„=n~af, and
substitution into Eq. (11}will allow us to express n~
in terms of n:

n(, =n/(1 —2ng} =n+2gn +4gn +Sg n + ~ ~ ~ . (14)

For small g the first-order approximation is

nf n+ 2' 2 (i 5)

Consequently, the first-order expression for the
free-particle number density is the same as in the
positive-lifetime case Eq. (7), if g = f. -

III. NEGATIVE LIFETIMES AND EXCLUDED VOLUMES

The expression for the mean life, Eq. (1), is ac-
tually a relation for the scattering delay time, and
when it becomes negative the proper question to
ask is "What is the significance of a negative-scat-
tering delay time~" This is best answered by
switching off the repulsive potential causing the
"negative delay" and recalculating the delay. By

which is identical in form to Eq. (5}, if N~ assumes
the role of an unstable-particle number density.
It will be noted from Eq. (10) that positive excluded
volumes 4V imply negative-interaction number
densities N, .

Anticipating our end results, let us assume that
the relative excluded volume aV/V may be ex-
pressed as

f((v() =n, (m(/2((kf)"'e (Is)

the average excluded volume between any pair of
particles is

(r„)= f ff, (v, )f,(v, }r„d'v,d'v,

Transforming to c.m. and relative coordinates, the
c.m. motion may be integrated out, leaving an
integral which depends only on the relative kinetic
energy between the colliding particles:

/2 " dÃ
(r„&= aI (kf) "2 E o(&) e "—dEdE

(2o)
Here ((,„=m, m, /(m, + m, ) is the reduced mass.

In the case of uncharged spinless particles, the
well-known relation

0( (41(/k')(21+ 1) sin~(I(

or for identical bosons or fermions

(»a)

o ( = [I+ (- 1}'] ( 4((k/' (2}l+ 1) sin~v), (2ib)

where k is the wave number, may be substituted
for the scattering cross section:

d7j
(( = —0(( (( = —

I v( —VJ I p(((E(j) . (17)dE])

A minus sign has been introduced here because
volume is to be treated as a positive definite quan-
tity whereas Eq. (17}was derived under the as-
sumption that drt/dE„& 0.

For Maxwellian velocity distribution functions
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2~g2 ) 3/2

(r„),= —(1+ V„.) „, —(2l+ 1}
p„kT(

"'- sin'g, e " dE .
Jo dE (22)

This is the average volume for the lth angular-
momentum partial wave and the factor (1+5„}
arises from the quantum-mechanical fact that the
scattering cross section is twice as large for iden-
tical particles. For all angular-momentum waves
the average total volume is just the sum over these
states:

(r„)=E,(r„), (23)

In a gas containing two types of particles i and j,
Eq. (23) gives the average volume that each in-
dividual is excluded from due to their mutual inter-
action. If the gas contains N, type-i particles,
then the total excluded volume of these particles
due to their interaction with type-j particles is

2~g 2 3/2

aV((j) =N;(r()) = —N( (1+ 5(, )
PlgkT

x —g (2l+1), '

sinful,

e " dE . (24)
2 d~ l ~ 2 "E/kT

l „'0

In a monatomic gas of N identical particles, setting
p~q = —,'m and n = 1V, /V in (24} will result in

aV 2&5 P 2
(2l 1)

V mkT

wQ

d7
2 l sjn27 e dE ~

dE
(25)

Comparison with Eq. (12) reveals that

2~@2 3/2 23/2
g —= — Q(21+1)I, (26)

2 ' sing e ' dE
dT/ l

l dE
0

(27)

Expect for sign (g = f) these are iden-tical to Eqs.
(3) and (4) of the positive-lifetime case. (3)

From (11) in (13},

NI -- —n~ g/(1 + 2nf g),

which to lowest order in f(f =-g) is

Ns n~f. -2 (23)

Therefore, to third order in the thermal wavelength,
the interaction number density Wl is equivalent to
the unstable-particle number density N„of Eq. (2}.

Using the concept of excluded volumes, we have
demonstrated that it is possible to define an inter-

action number density Ai which is formally iden-

tical to the unstable-particle number density A„.
In a monatomic gas where the total number density
of particles, free or interacting, is n, we note
that for de/dE & 0, n = n, + 21V„with n, - n and N„~ 0
while for dg/dE & 0, n = nz+ 21VI with n& & n and N z & 0.

The previously derived corrections to the equa-
tions of chemical and nuclear statistical equilibrium
were just the differences between the total number

density of a constituent in a gas and its effective
free number density. This, of course, was equal
to the number density of unstable particles
[(wn; = g, 1V, &(1+ 5, ~), to be exact] in the gas that
the constituent forms with itself and the other con-
stituent . For dq/dE & 0 the corrections are still
the differences between the total and the effective
free number densities, where, in this case, the
interaction number density N, replaces the unstable-
particle number density N„. The equivalence of

Ni and N„, however, indicates that as far as these
corrections are concerned the unstable- particle
formalism may be extended to the negative-lifetime
case. The question of what the interpretation be-
comes under these circumstances will now be dealt
with.

IV. UNSTABLE PSEUDOHOLES

The elastic scattering of two particles has been
interpreted as the formation and decay of an un-
stable particle whenever dr1/dE~ 0. In order to
construct a similar interpretation when dq/dE & 0
we shall again use the technique of switching off the
interaction and asking what would have been. With-
out the repulsive forces between them, the scat-
tering particles wou)'. d have entered the interaction
region and would have spent a mean time there
given by r(E) =}ildn/dEI. While there, the centers
of mass of all "colliding" pairs wouI}'d have moved
along with a Maxwellian velocity distribution. The
rate at which the colliding particles would have
entered their mutual-interaction regions is deter-
mined by their scattering cross sections as dis-
cussed in Ref. 1.

Without the repulsive interactions then, we would

have had a gas of noninteracting particle pairs,
each pair being localized for a positive finite time
interval in some small interaction volume. The
velocity distribution function for these particle
pairs wou~d have been Maxwellian, and en masse
they would have exerted some net pressure on the
gas containing walls. With the repulsive interac-
tions, we have a removed gas of noninteracting
localized particle pairs. Consequently, the Par-
ticle number density of this removed gas will be
negative and the replacement of "unstable pseudo-
hole gas" for the cumbersome phrase "removed
noninteracting localized finite-lifetime particle
pair gas" would therefore seem appropriate.
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' (4 sin'q, —1}e ~"r dr .x dg
~0 dE

(28)

But these are effective properties. We may say
that a gas of unstable particles with negative life-

We have argued in the subjunctive sense for the
adoption of the term "unstable pseudohole gas"
when the lifetimes of unstable particles become
negative. Regarded as a gas of particles, pseudo-
holes have negative number densities given by Eq.
(28) and from Ref. 1 tend to exert negative pres-
sures:

times behaves as if it were a gas of holes. But
as individuals, pseudoholes lack the identity of
unstable particles because it is impossible even
to consider writing down localized wave functions
describing them. Unlike holes or bubbles in a
degenerate Fermi sea, pseudoholes only exist in
the contrary sense of removed-particle pairs. As
such, they are only intended as a conceptual con-
venience with which to extend the unstable-particle
formalism to the negative-lifetime case. The
formal equivalence of Eqs. (2}, (3}, and (4) with
Eqs. (28), (26), and (27), respectively, was dem-
onstrated without recourse to this interpretation,
and should therefore indicate the permissibility of
extending the formulas of Ref. 1 when dry/dE & 0.
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General formulas for the factorial cumulants of the photocounting distribution and the cumu-
lants of the integrated intensity are obtained for chaotic light superposed with coherent light,
for experiments involving N different counting intervals. The chaotic light may be partially
polarized, need. not be time stationary or single mode, may differ in frequency from the co-
herent light, and may have any spectral distribution.

I. INTRODUCTION

Chaotic light superposed with coherent light is
one of a small number of cases for which an exact
solution can be found for the probability distribution
of photoelectric counts, or for arbitrarily high mo-
ments of this distribution. As in other areas of
physics, exactly solvable problems in photoelectric
counting facilitate physical understanding of prob-
lems which are less tractable theoretically, such
as the counting statistics of scattered light.

The probability distribution of the number of
photoelectrons produced in a counting interval T by
chaotic-plus-coherent light incident on a single de-
tector has been studied theoretically by several
authors. ' ' Closed general formulas for the gen-
erating function, or the factorial moments, or the
probability distribution itself, were derived by
Lachs, Glauber, and Magill and Soni, assuming
that: (i) The incident light is fully polarized; (ii)
the counting time is short compared to the coherence
time of the chaotic light; and (iii) the incident light

is confined to a single mode of the electromagnetic
field (which implies that the mean frequency of the
chaotic light & equals the frequency of the coherent
light (uc). Without using (ii) or (iii), Korenman
calculated both the generating function and the fac-
torial cumulants of the photocount distribution;
the latter have proved to be a particularly simple
and useful form for summarizing the complete
photocounting statistics. Assumptions (ii) and (iii)
were removed in the formalism set up by Lachs,
although closed formulas for the generating function
and the higher-factorial moments were obtained
only in the limit of short counting times. Jakeman
and Pike calculated the photocount generating func-
tion without (ii) or (iii} for the case of chaotic light
with a Lorentzian spectrum'; results for an arbi-
trary spectral distribution were obtained by Perina
and Horak. Recently, Jaiswal and Mehta derived
the factorial cumulants without any of these
assumptions. '

Photoelectric counting experiments involving
more than one counting interval and more than one


