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The equations of motion for the reduced density matrices of an interacting Bose system are
treated using the concept of off-diagonal long-range order. The equations are decoupled on

the one-particle level. With this approximation, the hydrodynamic equations for the densities
and the velocities of the condensate and the depletion are derived. The interaction between

the two fluid components depends on density variations and on the relative velocity. The latter
interaction terms appear as kinetic pressure terms and a Magnus force term. Via the equa-
tion for the total momentum, a connection between the velocities of the condensate and the de-
pletion, and the velocities in Landau's two-fluid model is derived. The excitation spectrum
of the system is investigated in the phonon region. A comparison of the resulting velocities
for the first and second sound with the experimentally determined ones shows that the func-

tional dependence of the condensate density on temperature is similar to that of the superfluid

component.

I. INTRODUCTION

In 1956, Penrose and Onsager' showed that, for
superfluid systems, the reduced density matrix has
a long-range off-diagonal order. More precisely,
a part of the reduced single-particle density matrix
Rq(x, y) factors into the product of two macroscopic
wave functions. Generalizing the idea of off-diag-
onal long-range order (ODLRO), Yang showed that,
for superconductors, the reduced two-particle den-
sity matrix R2(x, y;x', y') factors. Owing to the
interaction between the helium atoms, there are,
even at T=O'K, only about 10%' ' of all the parti-
cles in the ground state of the reduced-density-ma-
trix operator. This fraction is called the conden-
sate. The rest of the particles form the depletion.
In 1967 Frohlich stressed that the formalism of the
reduced density matrix is useful for the microscop-
ic derivation of hydrodynamic equations. In par-
ticular, he showed that the symmetry properties
of R, alone are sufficient in order to assure that the
hydrodynamic equation of a normal fluid has the
form of the Navier-Stokes equation. Combining this
technique with the factorization property of R, for
helium rr, Frohlich succeeded in deriving an equa-
tion for the macroscopic wave function f of a su-
perfluid. From this equation follow the equations of
motion for the density of the condensate p, and its
velocity v, . An important result was an expression
for the transition rate between the condensate and
the depletion, which is proportional to divp, pd
x (v, —v„), where p~ and v~ are the density and ve-
locity of the depletion, respectively.

However, an equation for vd was still missing.
This gap will be filled in this paper, again using the
formalism of the reduced density matrix. The hier-
archy of equations of motion for the reduced density
matrices will be decoupled on the one-particle level.
In spite of this serious approximation, one gets the

Navier-Stokes equation in the absence of a conden-
sate, if one makes an expansion around equilibrium.
Thus, the approximation does not alter the struc-
ture of the equation but influences the values of the
coefficients only. Specifically, the form of the in-
teraction terms between the condensate and the de-
pletion should not be influenced by this approxima-
tion. For constant densities the resulting interac-
tion force is proportional to

[-,' V(v, —v, ) —(v, —v, ) x curlv, j,
where the second term describes a Magnus force.
An equation for the total momentum is derived,
where all the velocity-dependent interaction terms
of the four hydrodynamic equations combine to a
single term. By comparing the velocity-dependent
expressions of the total momentum equation with
those of Landau's theory, a connection between v,
v„and v„v„ is established. The four equations
for p, , v, , p„, v„do not yet, however, contain the
temperature. At present, the temperature depen-
dences of the densities p, and p„are still unknown.

Linearizing the four equations around equilibrium,
the spectrum of the system is obtained by Fourier
analysis. From the phonon part, the velocities of
first and second sound are obtained. They depend
on the density of the condensate. From a compari-
son with the experimental sound velocities it is
found that p, has approximately the same tempera-
ture dependence as the density of the superfluid
component p„ i. e. ,

p. =p.'[(T, —T')/T. j',
where p. &1.

II. REDUCED-DENSITY-MATRIX FORMALISM

In this section a brief review will be given Of the
one- and two-particle density matrices R, and R~
for a system of interacting Bose particles. The
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d R which will be used in this paperformsofR, an 2w i
d The Hamiltonian of the systwill be discusse .

is
R = (pa/2m) Jd'x Vgt ~ Vg

+-' J j d'&d'y V(l»- y l)I('(y)4'(x)t)(x)4(y),
(2. 1)

where the field operators g, ~ obey the Bose com-
mutation relations and m is thee mass of a He atom.
For He, the pair potential V (r) has the form

V(r) = e [(o/r)" —((r/r) ],6 (2. 2)

where the va ues oh 1 s of c g are known from experi-
0 22'K cr=2. 56 A. The reducedment, c = k ~ 10. , cr =

one-particle density matrix R, is defined as

R (x x ') = T rt) gt(x') P(x) = R, (x', x),1

or. Penrosewhere p is the density-matrix opera o .
u erfluid, R, canand Onsager' showed that, for a super ui,

be written as
~f g ~f ~ ~ mP (2. 4)R,(x, x') =f (x')f(x)+R, (x, x ),

whe f p, -re = e is eth condensate wave function.
erature, variousFor equilibrium and for zero tempera
een carriednumeric a1 calculations of R, have been c

ces to seeout ' Under these conditions R, reduces o (
Appendix A)

R (x, x ') = N f ~ d x, po(x, x2, . . . , x„)Ri X, X

1.4

1.2

1.0

4
r CAD

I

8

f (x ')f—(x)
l f(y) l

+R a(x, y; x, y)]

x s (l x- y l)s(l x '-
y l), (2. 9)

FIG. 1. Pair correlation function gn and the absolute
e R [ /p of the reduced one-particle density matrix

ef. 3. 2 is the nonfactorable
art of the two-particle reduced density matrix 82. e

S taken to be the pair-functionscreening function S was en
squared of Ref. 3.

mf
X 9 Otx ~x2~ ~ ~ ~ N) ~X (2. 6)

From the definition of

R,(x, y; x', y') = Trp('(y ')g'(x ')g(x)P(y)

follows

(2. 7)

p w pR (x y x™y) =R,(y, x, x', y') =R,(y, x;y, x2 9 a 0 2 t 7

= Ra (x ', y '; x, y), J d'y Ra(x, y; x y)

= (N 1)R,(x, x') . -
~ ~These conditions suggest the following splitting:

w fR2(x, y;x', y) = [R,(x, x')R, (y, y)+R, (x, y)R, (y, x )

the total number of He atoms anand thewhere Nis e o
stem. The cal-ground-state wave function of the system.

culations s owh that the condensate density p, is,
it . Theat T=o K, about 10% of the total density p. e

R hich describes the depletion,incoherent part R„w ic
decays within a coherence leng th 1 -4 A (see Fig.
1).

R, satisfies the following equation of motion:

NR (x, x') = (g /2m)(V"- V')R, (x, x')
y X, X

+J'd'y [v(lx-yl)- v(lx'-yl)]R2(x, y'x'. ».
(2. 6)

where the screening functions S havee been introduced
to eliminate e ivth d' ergent hard-core part of the po-
ential. The first term in (2. 9) fulfills up to order

O(1) the last condition of (2. 8), while e
t' n of the other three terms is only of the order
O(1). For equilibrium, the diagonal par
given by (see Appendix A)

Ra(x y'x y) = p g(l x y )
2 (2. 10)

which canHereg r is eth pair correlation function w
'

ents"be measure y nd b neutron diffraction experiments
and which has been calculated numerically. '

2. 9 one deter-one corn
'ombines these results with

Fi. 1. R2the s atial variation of R a (see Fig. ).
letion. If onedescribes only properties of the dep e ion.

neglects R2 one s it'll gets in the absence of a con-
densate, the avier-N

' -Stokes equation (see Sec. IV).
hand Frohlich~ has shown that the

Navier-Stokes equation follows quite genera y rom
Ne lecting R2,the symmetry properties of R2. eg e

thus, does no a ert lt the structure of the resulting
letion alone, buthydrodynamic equation for the depletion alone, u

influences on y e vI th alues of the coefficients (vis-
F thermore the explicit interaction7

between the condensate and the depletion is u y
contained in the first three terms of (2. 9). In the

is therefore neglected in spite of its
He see Fig.relatively large contribution for real He see ig.
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1). With this approximation, one avoids treating
the full hierarchy of higher-order reduced-density-
matrix equations. In the framework of this theory,
the coefficients which are influenced by the above
approximation are not determined anyhow. They
have to be taken from other calculations or from
experiment.

III. HYDRODYNAMIC EQUATIONS

o(x, x') = o(x', x}, P(x, x'}= —P(x', x),
f(x) pl/2(x) eia(g)

the second order.
R, is now expressed as

R, (x, x') = a (x, x') e' '"' ',
where

(3. 5)

(3. 7)

The equation of motion (2. 6) of R, will now be
treated using the forms (2. 4) for R, and (2. 9) with
R, = 0 for R2. To obtain the equation of motion for
the condensate wave function f, the nonlocal limit

) x —x'
~ »p has to be considered. In this limit,

the depletion part R&(x, x') is already zero. One
gets the following equation:

ihf (x) + (h'/2m) v'f(x)

= f d~y V()x —y))[f(y)R, (x, y}+f(x)R,(y, y)],
(3. i)

where V(r) = V(r)S(y) is the screened potential.
This equation has already been treated by Frohlich.
The resulting equation and a physical interpretation
of it are given in Appendix B.

Subtracting (3. 1) from the original equation (2. 6)
yields an equation for the depletion:

ihR, (x, x')+(h /2m) (va —v'2)R, (x, x')

= f dy[ V(lx —yl) —V(tx' —yl)]

x [R,(x, x')R&(y, y)+R, (x, y)R, (v, x')]

+ f d y V(lx —yl )f(x)f*(y)R,(y, x')

—f d'y V(l x' —y'I )f~(x'}f(y)R, (y, x) . (3. 2)

If one wants to derive the hydrodynamic equations,
one does not need the full information contained
in (3. 2). It is sufficient to treat the equation in
the local limit I x —x'

~
& Xp

..

The velocity of the condensate is given by

v, (x) = (h/m)vg(x),

with

curlv, (x) =0 .

(3 6)

(3. 9)

The rest of the formulas are derived and listed in
Appendix C. From these formulas it can be seen
that the local limits of the second- and third-order
derivatives of o cannot be expressed only in deriva-
tives of p~ alone. A symmetric kinetic-energy
tensor

(- h' . 8'o(x, x')T, (x) = — lim2m, . z 8(x-x'),. 8(x —x'), (3. ii)

has to be introduced. In the case of the derivatives
of P the antisymmetric tensor —,'(8v; /8x& —8v& /8x;)
appears. This tensor can be expressed in terms
of components of curlv~. The appearance of these
two tensors is characteristic for the depletion.
The condensate is fully described in terms of p,
and the longitudinal v„alone.

The results of the lengthy but straightforward
calculation will now be listed together with the
hydrodynamic equations for the condensate which
follow from Eq. (3. 1}':
p, +8, p, v„= —(K/p) 8, [p, p, (v, —v, ),] = —I", (3. 12)

The local limits of 0, ][.', and their derivatives up
to third order have now to be expressed in terms
of p~ and v~. From (3. 4) one sees immediately
that

p~(x) = o(x, x), v~(x) = (h/m) limvP(x, x') . (3. 10)

R, (x, x') =R, (x, x)+ (x' —x) limV'R, (x, x') . (3. 3)
pg+ 8 pg vif (3. iS)

The connection with the macroscopic density p~
and the current density j~ is obtained via the follow-
ing formulas:

mp = —g)o p 8( (it. + 2p~) + K 8) T( +Mr [ p]

p, (x) =R, (x, x),

j~(x) = p~v~ = (h/2mi) lim(V —V')R, (x, x').
3Y ~37

(3. 4)
+ K, 8, [ -,' m p~ (v, —v, ) ],

m p, D
=

2rvp pals p+ Z 8[(K —1)T„]
(iil)

(3. i4)

Thus, the first term in the expansion gives the
continuity equation for p~, and the second term the
equation of motion for the velocity field v~ of the
depletion. To treat the integrals on the right-hand
side of (3. 1) and (3.2), R, is expanded in these
expressions around the origin of the potential up to

—(K —1)8&T;, +B, [p]+K~18, [ —,'mp, (v~ —v, ) ]

—mp, [(v~ —v, ) x curlv~], ) . (3.16)

The transition rate I' is proportional to the inter-
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action constant

v=w, m p/I', (3. 16)

of the temperature dependence of p, . Here again
the connection with Landau's model will be dis-
cussed.

where w~ is one-third of the second moment of the
screened potential

wd = ,' f—V(r) r ~ d r
and p is the total density, p = p, + p~. In z, and ~~,

p is replaced by p, and p~, respectively. Corre-
spondingly, wo is the zeroth momentum of the
screened potential, wo= JV(r)ddr. The values of
wo and wz are strongly dependent on the screening
function S and are not yet known. D,/Dt and Dd/Df
are convective derivatives 8/Bf + v, s„with veloci-
ties v, and v„, respectively, where 8, = 8/Bx, and
the summation convention is used. Furthermore,
the notation

~i&i = ~iai + %ii + ~iia
{i%i)

is used. The force densities A[p] and 8 [p] con-
tain only third-order derivatives of the densities,

~p 1/2
~ [P]=2

C

+ eB~V~5i (4. 2)

where a ' = Bp/Bp = mdd, with u being the sound ve-
locity. po is the equilibrium value of the pressure
P. Inserting (4. 1}and (4. 2) into (3. 15) one gets
the Navier-Stokes equation

IV. DISCUSSION OF TWO-FLUID EQUATIONS

In order to derive the Navier-Stokes equation
for a normal fluid, i. e. , p, =0 and p~= p, the den-
sity p and the kinetic-energy tensor T,&

are ex-
panded around their equilibrium values pp and T05ig.
Because in an ordinary fluid all material constants
are scalars, no vectorial or tensorial coefficients
can appear in the expansions. The simplest linear
expansions are then

P=po+s(p po)+bsiv& (4. 1)
2

gf T 50$& + c(p —po) 5&& +d(8&v& + Blvd 3 d $ fj)

hp, 5 hpd 1 Vp, ~ Vp,
Pd 4 Pd 2 PdPe

B, [p] = —(I'/2m)(x/p) [p, 8, a p

+esi &p'+p, si(p, "'&p,"')

+ e(~pd}8!Pe+ 2(BI Pd} Bl 8&Pe] (3. 16)

where

with

q = 2(x —1)d, $ = CB+ De,

C= 5(x/p)TO —2wopo, D= 5x —2,
and the subsidiary condition

Ca+ Dc= —1.

mp = —Vp+ ((+ —,'rl}V ~ (V'v)+ q4v, (4. 3}

(4. 4)

Equations (3. 12)-(3.15}would form a complete set
of differential equations for the densities and veloci-
ties of the condensate and the depletion if an addi-
tional equation for the kinetic-energy tensor (3. 11)
could be given which couples this quantity back to
the densities and velocities. One cou1d try to find
this missing information by going further in the
Taylor expansion (3. 3). It will, however, be shown
in the following discussion that, for p, = 0, one ob-
tains from (3. 15) the Navier-Stokes equation by
writing down for T,~ and p„ the simplest expansions
around equilibrium which are allowed by the sym-
metry properties of these quantities. In Sec. IV
also the velocity-dependent interaction terms in
(3. 12)-(3.15) will be considered in detail and the
equation for the total momentum will be given. Us-
ing the equation for the total momentum, comments
will be made on the connection of this theory with
Landau' s two-fluid description. An investigation
of the excitation spectrum contained in these equa-
tions will follow. From the phonon part the veloci-
ties of first and second sound are calculated. A
comparison with experiments indicates a rough form

p(x)= f d pf(p, x), j(x)= f d ppf(p, x),

T,&(x) = (1/2m) fd p pp&f (p, x) —2 pmv, v~ .
(4.6)

From the equation of motion for R, (2. 6) one gets
an equation for the Wigner distribution. Approxi-
rnating this equation by a Boltzmann equation, one
could then apply the Chapman-Enskog procedure"
to calculate the coefficients.

The velocity-dependent interaction terms in Eqs.
(3.12)-(3.15}will now be discussed. One sees

Here $ and g are the viscosity coefficients. The
expansion coefficients of (4. 1) and (4. 2) can in
principle be determined via the Wigner distribution
function

f(p, x)= (2w)~ f R, (»' x")e '"~' 8 'd'(x'-x")
(4. 5)

where x= d (x + x ). The density, the current
density, and the kinetic-energy tensor are then
given by
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mff, p, [(v, —v,) v](vd-v, ). (4 'I)

Combining the full set of the two-fluid Eqs. (3.12)-
(3.15), one obtains the equation for the total mo-
mentum density:

P= m(p, v, + p,v,),
Pk= —wos, (p ——,'p, )+ skT„+ Q sf[(ff —1)Tfk]

(«n]

+& [p]+ ~ [P] —sfTf;

that all these terms are proportional to ~, i. e. ,
they are only present for an extended potential.
A 6-potential approximation which is often used in
the He theories would fail to produce these terms.
It is interesting to note that the transition rate I'
vanishes not only for a homogeneous flow or a
flow where v~= v„but also for a vortex-type solu-
tion, where only an angular-velocity component
exists which is, as are the densities, a function
of r alone. If, however, in the presence of such
a vortex, v, has a laminar part flowing perpendic-
ular to the vortex axis, a finite transition rate re-
sults.

The velocity-dependent force densities in (3. 14)
and (3. 15) are derivatives of quadratic forms in
the relative velocity v~ —v, and represent momen-
tum transfers due to the transitions between the two
fluids. The last term in the depletion equation is a
Magnus force which couples the rotational motion in
the depletion to the relative velocity. The remaining
terms represent kinetic pressures. The flow will
adjust itself to make these forces vanish. For con-
stant densities the last two terms of (3.15) combine
to yield

and v„v„are not merely linked by an algebraic
equation but by three quadratic first-order partial
differential equations. This is to be expected be-
cause both v, and v, are longitudinal fields with van-
ishing curl. From (4. 10) and the expressions for
p and P it follows that, whenever vc=v~, all four
velocities are equal: v, = v„=v, =v~.

Finally, the excitation spectrum of the four hy-
drodynamic equations (3.12)-(3.15) will be investi-
gated in the long-wavelength limit, i.e. , only the
phonon part will be considered at present. For this
purpose, the four equations are linearized around
the constant-equilibrium values p, , p„, vc=vd=t).
The kinetic-energy tensor is expanded in the same
way as for the derivation of the Navier-Stokes equa-
tion [see (4. 2)]. The terms in (4. 2) proportional
to derivatives of the velocities are neglected, i. e. ,
no dissipative processes are considered:

Tff --[To+c(p —po)]5ff .

The pressure P is also expanded:

Bp Q P Q
P PQ (Pg Pg) + (Pc Pc)

Bp~ Bp C C

(4. 11)

(4. 12)

and used to eliminate the pressure in (4. 11). The
deviations of the densities and velocities from equi-
librium are taken to be longitudinal plane waves,

Q i $(nt+ ax)p, g
= p, g+ p, ae V ~ g = V„, ,ff8

(4. iS)
For the phonon part of the spectrum, only terms
linear in k have to be considered. The terms X[p]
and B[p] a.re of third order in k and will be impor-
tant for the roton part of the spectrum, which is
however not investigated here. The secular equa-
tion of the four resulting linear equations determines
the dispersion law

where Q=ku, (4. 14)
rprQfkicd™PCCf Ck+Pd df dk) (4. 9)

Q 1
fTfklcc fTfklcd

f[PCPd(Vdf cf)( dk ck)]'
(«a)

(4. 10)

Because of the form of the interaction term, v„v~

is the usual stress tensor. One sees that all the
velocity-dependent interaction terms in (3. 12)-
(3. 15) combine to a single term in (4. 8). From this
equation, a connection with Landau's two-fluid mod-
el can be established. There, one has P = m {p,v,
+ p„v„), where the subscripts s and n refer to the
super and normal component, respectively. Under
the assumption that both theories are equivalent in
the regime where the densities do not yet depend on
the velocities, one gets from a comparison of the
total momentum equations

where the sound velocity u is given by

fff ll= kF [Id:(I 4G/F ) ]
where

{4.15)

1 ~P 1 p,F=——+——'An. ), G=
mBP m p

]. —K p
,„k p y P. ). (4. 16)

+ 3c———[1—c(2 —5ff)],
~ BP BP

PBp~x

The functions &pand z are given by

ffo(pc) = p wo(flax- 1) +——(ff —1)
2c BP

(4. 17)
y(p, ) = 2(wop) (1 - x) — w[op1+ 3—c(1ff- )]x

2 Bp

Bp

C ~P
+——wop[2(1+ x) —ff(8-x+3x )]p Bx
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where the variables x = pgp and p are used instead
of p, and p~. The equilibrium value T05&& of the
kinetic-energy tensor has been approximated by its
value at T„with the aid of the subsidiary condition
(4. 4):

2u op-5 —To=—[1—c(2- 5x}],K ~P (4. 18)

where SP/Sp =muf (T = TJ. This approximation is
expected to be rather good because the depletion
density p& varies between T„and 0 only by 10%.

In a two-fluid model there are two possible eigen-
modes for longitudinal excitations. In the first
mode, the velocities of the two components are in
phase. The two density modulations are also in
phase with each other and therefore this mode cor-
responds to the normal sound (first sound). In the
second-sound mode, the two velocities and also the
two density modulations have a relative phase of
180'. This is the second-sound branch. The first-
sound branch corresponds to the positive sign in
(4. 15), while the second-sound branch corresponds
to the negative sign, because less energy is stored
in this mode.

For P, -O, i. e. , T/T„—1-—0, Eq. (4. 16) shows
that uf- (I/m){SP/Sp) and u»-0, in agreement with

experiment. To get an estimate of the behavior of
the two branches in the whole region 0 —p, —0. 1p
(i. e. , T„—T —0) the following set of parameters is
used: p=2. 2x10 cm, u, {T=T)=2. 2x104 cm
sec ', &p/&x = 0 for T = T„and sp/Sx = —3x 10 erg
cm for T =0, ~0= —n 2. 65~10 erg cm, x
= —32a, o. =0. 35, c=0. 08. The values of sp/sx
are estimated from experimental data" for sp/BT.
too and t& are calculated from (2. 2) with a cutoff rad-
ius r =v. To allow for a slightly different screen-
ing, the factor o is introduced. The values of n
and c are chosen so that ug(T= 0) = 2. 4x10 cm sec '
and +»{T= 0}= (I/K3) u, (T = 0). The variation of the
two branches is schematically given in Fig. 2. For
this set of parameters, also, the eigenvectors have
been calculated and are found to have the correct
phase relations for both modes. If one assumes
in the vicinity of T„,a temperature dependence of
the condensate density

(4. 19)

both branches have near T„ the same form as the
experimentally determined curves (see Fig. 3).

300

~ 200-

E

100

U(

0.1 fs

FIG. 2. Schematical diagram of the dependence of the
velocities of first and second sound on the condensate
density.

Equation (4. 19) shows that the condensate density
varies with the temperature in a manner similar
to that of the supercomponent p, in Landau's theory.

To establish a complete connection between Lan-
dau's two-fluid description and the present one, it
will be necessary to introduce thermodynamical
quantities in the equations for the condensate and
the depletion. Though this full thermodynamical
theory does not yet exist, in this paper a relation
between the velocities in both theories was esta-
blished and good evidence for a relation between
the densities was obtained.
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APPENDIX A

R, (x, x') = g cPx,(x„.. . x„~ pg (x')g(x)~x„. . . , x„)
i~1

N

II d x, (x». . . , x„~p p (x')
~
x». .. , xj» x&.». . . , x„) 5 (x —x& }.

f*1 g 1=1

Integration over x~ and application of the creation operator p yields
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I
Rg(x, x ) = Q 11 d»( ix(, . . . , Xg g, x, xg~g, . . . , xg

~
p[ x(, . . . , xg g~

x ) xg~g, . . . , Xg)
gnl J f nlpf Cj

N

d xf x, x2, . . . , xN
~ p~ x, x2, . .. , x„.

f=2
(Al)

The density-matrix operator is now written as

p=Q e" ~ ""'~n)(n~,

where In) are the eigenvectors of the Hamiltonian.
At T = 0 'K only the ground state survives. There-
fore, one gets

R,(x,x') =N Q d'», yo(x, x„.. . , «„)yo(x,'x„.. . , x„),
(A3}

where the ground-state wave function is

Ipo(x), . . . , X~) =(x(, . . . , xy~ 0)

A reduced-density-matrix operator R, may be de-
fined as'

Rl —- N Tr2„„,N p

The condensate is therefore the ground state of R,.
For T=O K, the pair correlation function g is de-
fined as

N N

g(~ x- P ) = p & II d'», ~(x - x )~(y - x )
f gf = 1gftj ln 1

9~0(xgp ~ ~ ~ xz) ~

4)

Using the same techniques as above one can show
that

R2(x, y; x, y) = Trpgt(x)rp(y)g(y)ggx = p g(~ x —
y~ ) .

(A5}

A comparison with (Al) shows that

(A3}

R,
~
m) = r

~
m), R, (x, x ) = Q r p„(x ) p (x),

with

y (x)=(x~ m) .

(xiR,
i
x ) =R (x, x ) .

Jh

Introducing the number representation for R„one
gets

APPENDIX B

The equation of motion (3. 1) for the order pa-
rameter fwill not be discussed further. An inter-
pretation of the resulting differential equation is
obtained' from a comparison with the phenomeno-
logical theory of Pitaevskii. '4

After a Taylor expansion of f and R, around the
origin of the potential, (3. 1) takes the form'

1~K N 2
fag+- ~y-Vy=- —W '—p V+p v„mf.2m 2 p'j Nl

300

Here potential U is

2mU= zUpp+ zUppg+ 6p+ ~ 4p~ — 2-
2m p

(B3)

200 —.

C

100

u,
The symbols 'Np K, and Tf& are defined in Sec. III.
The complex differential equation (Bl) is nonlinear
in f owing to the p, dependence of theipotential U.
In the linear regime near T„where p, jp«1 and for
a slowly varying depletion density p„, Eq. (Bl) can
be put in the form'

h
iaaf + nf (p, + p,)mf-

2m

0
0 0.5

T f'Kl

2 25 V+v~ + p., mf
J

(B3)

FIG. 3. Experimental temperature dependence of the
velocities of first and second sound according to Ref. 12.

if one splits, formally, U into

U= m[p, + p, (1 —x,)] . (B4)
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The chemical potentials are defined as

&E &E,
m p, = -' and p,,=

p p
(85)

In the considered regime one shows that (84} holds
indeed. For this purpose the potential energy

E„,= —,'J'd'y V(lx yl)Ra(x y;x, y) (86)

is evaluated by a Taylor expansion around the origin
of the potential V using the form (2.9) for R2. The
result is

i', =0, m&=2wpp- (x/p)~~( (BV}

3

p(, y)= + b;- II 'y, ',
{n~){m~) f.d= 1

(C2)

A comparison with (82) shows that for p, /p&'1 and

p, =p= const, (84) is fulfilled.
Equation (83) can now be interpreted as follows:

Putting the left-hand side equal to zero one obtains
the Gross-Pitaevskii" equation in its linearized
form. This equation contains no dynamic interac-
tion with the depletion. On the other hand, one ob-
tains the Ginzburg-Pitaevskii' equation by putting
the curly bracket on the right-hand side equal to 0.
This equation determines the order parameter in
equilibrium. In a nonequilibrium situation, the
curly bracket is not equal to zero and acts as a
driving force" in (83). The factor x, is the kinetic
coefficient which is real in contrast to the imaginary
coefficient introduced by Pitaevskii'3'4

APPENDIX C

In (3.5} and (3.6) the amplitude and the phase of
R, are introduced. In order to derive the connec-
tions between the local limits of the derivatives of
o and p and the quantities p„V„T„[ese (3. 10)
and (3. 11)], and their derivatives, &r and p are
written in their most general form:

o(x, y)= Q a,- g x",'y, ', . (Cl)
{n]}{m~) f)j= 1

with

aI =a-~, bi-= —b-~ (C3)

Equation (83) follows from the symmetries (3.6).
The notation S, = S/'x&, S, = S/Sx&, and lim=lim as
x'-x is used. With the aid of (Bl)-(83) the follow-
ing formulas are derived:

a. First derivatives:

lima, o(x, x )=lim~, o(x, x )= —,'~, p~,

lime, p(x, x )=—lima, p(x, x )=(m/")v~», '

b. Second derivatives:

lima, ',o(x, x )=lima, S,'a(x, x )

,'s, s,p, —(2m/I' )T„,
lima, s&o(x, x ) =lim~, s&o(x, x )

='S~agpg+(2m/g )~~(,

lime, s&p(x, x') = —Iims, s&p(x, x')

= (m/25)(S( v~~+ '~ vq~),

lima, a&'P(x, x') = —lim&,'S&P(x, x')

= (m/2k)(S& v~ —~& v~};

c. Third derivatives:

lima, S&s,o(x, x ) =lime, '8&a,o(x, x ),
lima, S &,o(x, x )=lima, S S„o(x,x ),
lim( , s& s,

'
as+, s&'s,')o(x, x')= —,'s, s&s,p, +(2mlg )s&~~~,

lim(s, s,s, + s, s, s,'}o(x,x') = —,'s, s&a&p~ —(2m/" )sP $f t

lims&s&S~P(x, x ) = —lima&a&S'P(x, x ),
lim~, a~a,'P(x, x') = —lima &a~'S,P(x, x'),
lim(~, ~, ~,'- S,'S,'S,)P(x, x') = (m/n) S,S, v

Iim(s, s,s, + s, s,'s, + s,'s, s,'+ s, s, s„')P(x, x')

=(m/h) s~s,v~, .
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