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Apparatus and experimental procedures suitable for a number of high-precision measure-
ments of properties of liquid helium near the superfluid transition temperature Tz are described.
Experimental determinations near T„of the heat capacity at saturated vapor pressure are pre-
sented. On the basis of these measurements, the asymptotic temperature dependence of the
heat capacity at constant pressure C& is examined and compared with current theories of criti-
cal phenomena. Although there is some latitude in the interpretation of the results in terms
of the asymptotic behavior of C&, no interpretation fully in agreement with the original forrnula-
tions of the scaling laws for critical phenomena, and with a divergent C&, is consistent with
the measurements. It is expected that an extensive discussion of the thermodynamics of the
X line at higher pressure, based on measurements of the heat capacity at constant volume C„,
will be presented in a later publication.

VOLUME 3, NUMBER 2

Heat Capacity near the Superfluid Transition in He4 at Saturated Vapor Pressure

I. INTROD UCTION

In recent years it has been possible to measure
rather accurately a number of equilibrium'-" and
transport" properties near the superfluid trans-
ition temperature T„ in He'. Some of these mea-
surements have been used"" ' ' ' to verify rather
accurately predictions based upon the so-called
scaling laws ~7 which relate the temperature de-
pendences of various parameters near critical points.
There exist already very detailed measurements of
the heat capacity at saturated vapor pressure' ' C,
for He' near T„. However, developments in low-
temperature techniques and instrumentation which
have occurred since the time of this work make it
possible to improve considerably upon these earlier
results, and to establish the detailed nature of the
divergence of the heat capacity at constant pressure
C~ more precisely. It seems particularly desirable
to study the divergence of C~ in great detail for the

superfluid transition. This system is extremely
suitable for high-precision experimental work, and
one can hope to put theoretical predictions ' to a
more severe test here than is possible near most
other critical points. Some of the well-known ad-
vantages from an experimental viewpoint of the
superfluid transition are the relative ease of attain-
ing thermal equilibrium, even for He I, the high
purity of the sample, and the ease with which cor-
rections for the gravitational pressure gradient~'
in the sample can be applied. Ne therefore have at-
tempted to measure C, as precisely as can reason-
ably be done at this time. These new results are in
very good agreement with the earlier work. ' '
Extremely near the transition, where the precision
of the measurements is limited by the temperature
resolution, the new data are only about a factor of
2 more precise than the older ones. Further away
from T„, where the precision is limited by other
calorimetric techniques, the new results constitute
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an improvement over the older ones by about an
order of magnitude, Because of this greater preci-
sion, an asymmetry in C~ near the transition was
revealed which had not been observed previously,
and which is contrary to the original scaling-law
formulation ~4 if C~ diverges. This observation
will require some modification in the theory if a
divergent C~ is to be retained, and if exact agree-
ment between scaling predictions and experimental
measurements are desired. An attempt at modify-
ing the original formulation of scaling and to achieve
consistency between theory and experiment already
has been made by Fisher. ~

The main features of the results of thework pre-
sented in this paper have been reported briefly else-
where ~8 30

The remainder of this paper is divided into sev-
eral sections. In Sec. II, the experimental aspects
of this work are described. This is done in four
subsections, with one each devoted to the apparatus,
to various calibrations, to the experimental proce-
dure, and to the performance of various parts of the
apparatus during measurements. Considerable de-
tail is given because the same apparatus has been
used to obtain a number of previously published
results, "'"' ' because it will be used for further
measurements on liquid helium under pressure, and
because it has not been described elsewhere. Sec-
tion III is devoted to data analysis. Here various
corrections to the primary measurements are dis-
cussed, and probable systematic and random errors

are estimated. In addition, the functional form in
terms of which C~ is to be interpreted is discussed
and the least-squares procedure used for the data
analysis is described. In Sec. IV, pertinent the-
oretical predictions based upon scaling-law theory
are reviewed briefly. In Sec. V, the measurements
at saturated vapor pressure are presented and
discussed. In Sec. VI, the conclusions to be de-
rived from this work are summarized.

We have omitted in this paper a discussion of
various interesting aspects of the thermodynamics
of A. lines, although the experimental results have
a strong bearing upon these problems. Much of the
basis for a thorough thermodynamic analysis of ~

lines already has been presented elsewhere. " How-

ever, a complete treatment of this problem requires
a knowledge of the pressure derivatives of C~, and
experimental measurements under pressure which
will yield these derivatives are still being pursued.
After the completion of that work we expect to pre-
sent a complete discussion of the thermodynamics
of the transition, and to extend the comparison with
scaling to higher pressures. A brief indication of
the consistency of some of the measurements under
pressure and the results obtained at saturated vapor
pressure has been given previously. '

II. EXPERIMENTAL

A. Apparatus

1. Gas Preparation and Measuring System
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FIG. 1. Schematic diagram of the sample preparation
system.

A schematic diagram of the system is shown in

Fig. 1. The helium sample originated in a com-
mercial cylinder, was purified at 4. 2'K, and could
be admitted through a needle valve to a sample
manifold. Attached to this manifold were the sam-
ple cell, a gas-volume measuring system, a Texas
Instruments quartz-bourdon-tube (TI) gauge, and a
vacuum system. The sample cell will be described
in Sec. IIA2, and details about the TI gauge will
be given in Sec. II B 2.

The gas-volume measuring system consisted of
nine separate volumes, connected to each other by
their own manifold, ranging in size from 1 to 20liter,
and having a total volume of nominally 75 liter. It was
contained in a large copper and Styrofoam lined box
which provided protection from room-temperature
variations. The stability of the temperature inside
the box was of the order of 0. I C/h.

The sample manifold contained Nuclear Products
Co. type B-2H bellows valves, and all volumes were
minimized wherever important. The TI bourdon
tube was connected to the sample manifold by means
of about 40 cm of 0.03-cm-i. d. tubing. A pressure
equilibration valve (not shown in Fig. I) was in-
stalled between the bourdon tube and the reference
vacuum directly at the TI gauge to permit the de-
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termination of the gauge reading at zero differential
pressure.

2, Calorimetex and Sample Cell

A schematic diagram of the calorimeter is shown

in Fig. 2. This assembly was immersed in a liquid-
helium bath which could be cooled to 1.3'K. The
liquid-helium sample was contained in a copper cell
which was connected to the external sample manifold
(see Fig. 1) by means of a stainless-steel capillary
(0. 02-cm-i. d. XO. 01-cm wall), and which was sus-
pended from cotton strings in the main vacuum.
The sample cell was 1.59 cm high and had a di-
ameter of 8. 3 cm. It was partially occupied by a
mesh of fine copper wires. Attached to the bottom
of the sample cell was a second, much smaller cell
(to be referred to as the probe) which was 0.95 cm
high and had a diameter of 0. 93 cm. " The probe
was internally connected to the sample cell by a
hole of 0. 04-cm diam and 1.59-cm length. It had

0. 015-cm-thick stainless-steel walls, was sealed
to the sample cell by an indium gasket, and had a
copper bottom to which it was sealed by a second
indium gasket. The purpose of the probe was to
determine the transition temperature by measuring
the onset of resistance to heat flow. The capillary
passed through the main vacuum for a length of 8
cm, and then entered a separate vacuum system.
This capillary vacuum consisted of a stainless-steel
tube of 0. 95-cm diam and 0. 025-cm-thick walls, and
protruded into the main vacuum chamber by about
6 cm. A copper wire provided a thermal connection
between the helium bath (1.3 'K) and the bottom of the
capillary vacuum with about 10 ' W/'K conduction.
The temperature could be regulated at the bottom
of the capillary vacuum by means of a heater, a
thermometer, and a simple electronic circuit with
a precision of +10 4 K." Inside the capillary vac-
uum, and attached to the capillary, were another
heater and thermometer which could be used to as-
sure that the temperature along the capillary was
higher everywhere than the sample temperature.
This is necessary to avoid condensation of liquid in
the capillary during measurements of C,.

In order to provide maximum thermal stability for
the sample, all electrical leads and the cotton
strings from which the sample was suspended were
thermally attached to an isothermal platform, and
then brought down to the sample. The platform was
connected to the bath by a heat leak of about 10 '
W/'K. By means of a heater, a thermometer, and

another regulator circuit its temperature could be
held constant to +10 ' K. The platform was usually
maintained at about 1.6 'K. This arrangement pro-
vided adequate thermal stability for the sample,
and its was found unnecessary to regulate the tem-
perature of the main helium bath.

Since it was necessary to dissipate power at the
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FIG. 2. Schematic diagram of the calorimeter.

sample cell during measurements (=10 ' W), the

sample, by virtue of its good thermal isolation,
normally would have warmed slowly. Therefore,
a small heat leak ( =2 &10 ' W/ K) was introduced
between the sample cell and the isothermal plat-
form. Attached to the bottom of this thermal con-
nection was an auxiliary heater which could be used
to counteract the heat leak when desired. With this
arrangement one can estimate that conduction-heat
transfer exclusive of the capillary was stable to
about 10 ' W, and did not limit the thermal stability
of the system. Room-temperature radiation-heat
inputs were rendered negligible by covering the
main vacuum-pump line with a cap which was ther-
mally attached to the bath.

Attached to the sample cell were a heater and a
thermometer which will be referred to as the main
heater and the main thermometer. In addition,
there were two other thermometers, one on the
sample cell, and one at the bottom of the probe.
The latter two thermometers were operated as two
arms of an ac bridge, and measured the tempera-
ture difference between the top and bottom of the
probe. Jointly, they will be referred to as the dif-
ferential thermometer. The thermometer circuits
have been described in detail elsewhere.

The main heater consisted of 5682 0 of 0. 0038-
cm-diam double polyurethane-insulated Karma wire
(Driver-Harris Co. ). It was provided with two cur-
rent and two potential leads. The current leads be-
tween the isothermal platform and the sample cell
had a resistance of about 10 ~ each, and half of
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TABLE I. System volumes in cm3.

Samplecell exclusive of capillary, 2'K
Sample cell and capillary up to valve 1,
H. T.
Between valves 1, 2, and 3
Between valves 3 and 4
Capillary up to valve 1 (calculated)

81.53
82. 5 +0.4

0. 83
2. 56
0. 07

Valve numbers refer to Fig. 1.

their total resistance was included in the heater
resistance for calculating the heater power.

Each of the three thermometers on the sample
cell and probe consisted of 20 "ohmite" (Allen

Bradley), nominally 56 9, 8 W, carbon composition
resistors connected in series. The resistors were
ground flat on one side, and glued with GE 7031
varnish side by side onto a copper plate covered
with 6 X10~-cm-thick Mylar. The entire bank of
resistors was then ground flat on the exposed side,
and glued to a second copper plate, again with Mylar
for electrical insulation. The two copper plates
were thermally attached at the desired point of the

system. The purpose of this arrangement was to
provide good thermal contact between the thermom-
eters and the point at which the temperature was
to be measured, so as to allow reasonably large
power dissipation in the thermometers without ex-
cessive self -heating.

Finally, it should be mentioned that there was
yet another heater of about 5-kA resistance at the
bottom of the probe. However, this heater was
used only in conjunction with measurements other
than those to be discussed here. "'"

All electrical leads required inside the main vac-
uum were brought into the system through the main

vacuum-pump line. Down to the bottom of this
pump line they consisted of quadrupule Formvar-in-
sulated 7. 5 &10 -cm-diam copper wires. Upon

entering the main vacuum, they were thermally at-
tached to the bath, and converted to quadruple
Formvar-insulated 7. 5 ~10 '-cm-diam manganin
wires. The manganin wires were again thermally
attached to the bath, and then to the isothermal
platform. Those leads which were required at the
sample were thermally attached to the sample cell
before being brought to the desired heater or
thermometer. In addition, the leads needed at the
bottom of the probe were thermally attached there
before being connected to the thermometer. The
leads to be used for the main thermometer were
physically kept apart from those to be used for the
differential thermometer to minimize interference
between the two systems. Wherever good electrical
isolation from ground was necessary, thermal at-
tachment of leads was made only through 6&10 '-
cm-thick Mylar.

B. Calibra tions

1. Volumes

Volumes at room temperature were calibrated by
measuring the change in pressure associated with
the expansion of helium gas from reference vessels
into unknown volumes. The reference volumes were
calibrated with an accuracy of 0. 01% by weighing
the vessels empty and when filled with distilled
water. Volumes in the Stryofoam-insulated box
were determined with an accuracy of 0. 1%, and the
much smaller volumes in the vicinity of the sample
manifold were calibrated with an accuracy of about
leap. A few volumes which are particularly impor-
tant for corrections to the measurements are listed
in Table I.

In order to determine the cell volume at low tem-
perature, the cell was fiQed almost completely with

liquid helium at 2. 17 'K. The temperature of the
cell was then reduced. The consequent expansion
of the liquid (liquid helium has a negative thermal-
expansion coefficient in this temperature range)
caused the cell to be overfilled at 2'K. Then the
cell was heated slowly, and the sample pressure
was monitored. The pressure decreased until the
liquid level left the capillary, and then followed the

vapor-pressure curve. From this, it was deduced
that the cell was filled completely at 2. 14 K. The
sample was then expanded into the gas-volume mea-
suring system, and the entire apparatus was warmed
to room temperature. It was deduced that the cell
had contained 2. 974 moles. A molar volume of
27. 413 cm' for liquid helium at saturated vapor
pressure and 2. 14 'K" yielded a cell volume (in-
cluding the probe) of 81.53 cm'. It is estimated
that the sample mass is known with an accuracy
of 0. 2%.

2. Pressure Gauge

Pressures were measured with a Texas Instruments
model No. 145 precision pressure gauge (serial
No. 1344) with micron gearing containing a Texas
Instruments quartz-bourdon tube type 1 (serial No.
2564) with a range from 0 to 2580 Torr. The sen-
sitivity of the gage was nominally 0. 0082 Torr/
minor division. Using the instrument in the exter-
nal mode, a pressure resolution of 0. 002 Torr (-,

'

minor division) was possible.
The pressure gauge had been calibrated by the

manufacturer on 11-11-67at 20 points. The cali-
bration pressure P and the ratio Gbetweenthepres-
sure and the gauge reading at these 20 points were
fitted to the relation

Pc = A&G+ B&G

by a least-squares procedure. The calculated
pressures P, were then subtracted from the calibra-
tion pressures P. The differences &P= P —P, are
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shown in Fig. 3 as open circles.
The lowest pressure at which a calibration point

had been furnished by the manufacturer was 129
Torr. Since this is higher than the pressure range
of interest for vapor-pressure thermometry, the
gauge was also calibrated &on 11-22-68) against a
mercury manometer between 54 and 800 Torr -vith

an accuracy of 0. 05 Torr and, for pressures less
than 54 Torr, against an oil manometer with an ac-
curacy of 0. 1% of P and a precision of 6x10 Torr.
The original parameters in Eg. (1) were retained;
but additional points on the difference graph were
computed from these data, and are shown in Fig.
3 as solid circles. The largest difference between
the manufacturer's calibration and the one carried
out here is 0. 2 Torr at 800 Torr, or 0. 0259'.

For the low-pressure range of the oil manometer,
&P is shown as a function of P on an expanded scale
in Fig. 4. It is seen that &P can be represented by
an oscillatory function of P with an amplitude of
about 0. 04 Torr, or 5 minor gaugedivisions, and a
periodicity of about 25 Torr, or 3000 minor gauge
divisions. Pressures were computed from gauge
readings using Eq. (1) in conjunction with the differ-
ence graphs shown in Figs. 3 and 4. For pressures
below 60 Torr, the oscillatory behavior of the dif-
ference graph was considered. At higher pres-
sures, where this oscillatory behavior is not known

experimentally because of the lower resolution of
the mercury manometer, a smooth nonoscillatory
curve through the calibration points was used. If
the oscillatory component is independent of pres-
sure, then errors due to the procedure adopted
above 60 Torr do not exceed 0.04 Torr for the pres-
sure and 1% for pressure derivatives.

Gl

CI

IO 20 30

P TORR

40 50 60

FIG. 4. Deviations at small pressures of calibration
points from this work for the Texas Instruments bourdon-
tube pressure gauge from Eq. (1).

T, = (log„R)/[A + B log„R + C(log„R)'] (2)

by a least-squares procedure. The deviations
& = T —T, from this equation of data obtained for
three separate calibrations are shown in Fig. 5.

3 ~ Main Thermometer

The bridge ratio R for the main thermometer was
calibrated against the vapor pressure of He' on the
1S58 He' scale of temperatures (T»)." For this
purpose, the sample vapor pressure was measured
with the gauge described above. The measurements
had a resolution of 2 x 10 ' 'K near 2 'K, correspond-
ing to 2x10 Torr. Systematic errors due to the
pressure- gauge calibration do not exceed 0. 1%%u~ of the
vapor pressure, or 5x10 ' 'K near T„. Since the
vapor pressure of the sample was measured through
a capillary tube, a small mildly temperature-depen-
dent correction had to be applied for the thermo-
molecular pressure ratio.

The thermometer was recalibrated whenever it
had been cooled from room temperature. In order
to demonstrate the effect of thermal cycling upon
the thermometer calibration, the data obtained dur-
ing one thermal cycle (8-7-68) were fitted to the
equation4'
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FIG. 5. Deviations of the thermometer calibration
from Eq. (2).
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FIG. 6. Drift rate of the thermometer bridge ratio
as a function of the time elapsed since the apparatus was
cooled below 2.2 'K. 1 & 10 min for dR&/dt corre-
sponds to an apparent temperature change of 3 &10-8'K/
min.

It is apparent that the temperature resolution based
on the expected pressure resolution of about
2x10 'K is only slightly smaller than the scatter
in &. From the calibration of 8-7-68, it can be
seen that Eq. (2) represents the data well, and that
deviations from this equation are not systematic.
The standard error for these data is 4x10 'K.
Comparison of the three calibrations reveals that
both & and d&/dT changed slightly upon thermal
cycling.

In addition to the change of the thermometer cali-
bration upon thermal cycling, it was observed also
that the thermometer bridge ratio R„at T„was time
dependent. On one occasion, the derivative dRJdt
(t is the time) was measured repeatedly over a 50-
day period without warming the thermometer above
2. 2 'K. The results of these measurements are
shown in Fig. 6. It is apparent that the thermom-
eter initiaIIy after cooling frcm room temperature
undergoes measurable changes, and stabilizes only
after many days have elapsed. Nonetheless, after
a few days the resistance change with time corre-
sponds only to an apparent change of the tempera-
ture of 10 ' 'K/day. The magnitude of dRgdt ob-
served here is the same as that observed previously
for a similar carbon thermometer in a rather dif-
ferent experimental arrangement and probably can
be regarded as typical for a thermometer of this
type which has been aged at low temperature for
several days.

C. Procedure

The system was cooled to 20. 3 'K by using hy-
drogen exchange gas in the main vacuum system,
and by transferring first liquid nitrogen and then
liquid hydrogen into the Dewar. This required
about 7 h. During this procedure, a sample pres-
sure of about 1 bar was maintained, and helium ex-
change gas was kept in the capillary vacuum. The
hydrogen exchange gas was then removed, and

liquid helium substituted for the liquid hydrogen in
the Dewar. From about 20'K to the lowest temper-
ature, cooling of the cell was caused only by admis-
sion of the cold sample and by heat carried by
superfluid in the capillary. In order to achieve this
cooling, the bath was pumped to 1.3 'K. Helium

gas was then supplied to the capillary from the sam-
ple manifold at an external pressure of about 3
bars. After approximately 1 h, the cell had cooled
to about 3 'K by virtue of the cold gas entering
through the capillary. At this point, the cell was
still only partially occupied by liquid. Cooling to
the lowest temperature (= 1. 'I 'K) was then accom-
plished in an additional 4 h by the superfluid film
flow in the capillary. After the cell was well below

T„, it was slightly overfilled with liquid by admit-
ting more gas in the capillary. It was possible to
tell when the cell was full both from a record of
the cell temperature and from the pressure in the
sample manifold. The exchange gas in the capillary
vacuum was then removed. Next, with the cell at
about 2. 17 'K, a small amount of sample was
pumped out of the cell when it was desired to mea-
sure the heat capacity at saturated vapor pressure.
As the liquid level dropped in the capillary, the
helium pressure gradually dropped to the sample
vapor pressure. Thereafter, removal of more
sample became extremely slow because of the small
pressure drop across the capillary. After pumping
on the sample overnight, the cell at 2. 17 'K was
still almost filled, and was found to be completely
filled at 2. 14 'K (see Sec. II B 1). It is evident that
a sample prepared in this manner has an extremely
small vapor volume. During the measurements
of C„valve I (Fig. 1) was kept closed so as to
minimize the system volume not occupied by liquid.

Whenever there was liquid in the sample cell,
control of the temperature at the bottom of the cap-
illary vacuum (to be referred to as T') provided a
convenient "heat switch. " When T was less than
the sample temperature T and also less than T„,
the sample cooled at an appreciable rate either be-
cause of He II film flow or because of heat transfer
in bulk He II in the capillary. When T ~ T„, the
sample temperature was very stable when it was
greater than T„, and increased only slowly when it
was less than T„. During heat-capacity measure-
ments for He II, T generally was kept at T„
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+10 'K. For measurements on He I, T was kept
above T at all times.

During all heat-capacity measurements, the cap-
illary temperature 5 cm above the bottom of the
capillary vacuum was kept at about 50 'K. This was
done in order to establish a very large density
gradient near the bottom of the capillary, and to
reduce the amount of helium not contained in the
sample cell.

The heat-capacity measurements were made by
a conventional technique. The bath temperature was
reduced to the minimum attainable value (= l. 3 K).
Usually the platform temperature was adjusted so
that, in absence of superfluid in the capillary
(T & T„), the cell temperature was essentially con-
stant with a given power dissipation in the ther-
mometers. Alternately, the auxiliary heater could
beused to establish this condition. When measure-
ments were made for T & T„, the sample warmed
up slowly because of superfluid flow in the capillary.
The temperature-drift rate was established, and
then power was dissipated in the main heater for a
known length of time. After the heater power was
turned off, the temperature drift was measured
again. Under most circumstances the foredrift and
afterdrift differed little from each other. An ex-
trapolation to the middle of the heating-time inter-
val was used to determined the temperature change.

The transition temperature was determined at the
bottom of the probe. When the sample was heated
through the transition, He I began to form first at
this point because of the gravitational inhomoge-
neity~8 in the system. As soon as He I existed near
the probe bottom, a temperature gradient developed
across the probe and was detected with the differ-
ential thermometer (see Fig. 2 of Ref. 15}. This
transition temperature will be referred to as T~,
and could be determined with a precision of about
10 7 'K. From it, the transition temperature at the
bottom of the main sample chamber (T~) and at the
sample surface (T„z) can be calculated. L' All heat-
capacity measurements were evaluated with respect
to T».

D. Performance

1. Thermometry

The main thermometer bridge ratio changed by
about 3 &10 ' when the temperature near T„was
changed by 10 8'K. The bridge usually was oper-
ated with a power dissipation of 5 &10 ' W in the
thermometer, and under these circumstances the
peak-to-peak noise in the ratio was approximately
1.5 &10 ', permitting a temperature resolution of
about 10 ' K (20% of the peak-to-peak noise}. The
self-heating of the thermometer was of the order
to 500 'K/W. Thus, it the power level used for the
measurements, the thermometer was warmer than
the sample by 2. 5&10 4'K. In order to obtain a
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FIG. 7. Differential-thermometer bridge ratio
as a function of the main thermometer bridge ratio.

thermometer system which is as stable as the tem-
perature resolution, it therefore is desirable to have
a power supply which is stable at least over the
time interval required to measure one heat-capacity
point to one part in 2500. Using the HR-8 reference
voltage, no instabilities due to changes in the ther-
mometer self-heating have been observable over
time intervals of about 1 h.

The differential thermometer was about as sen-
sitive to changes in temperature differences across
the probe as the main thermometer was to changes
in the temperature. It had a slightly larger resolu-
tion, since both resistive components were at low

temperature, a and was less sensitive to changes
in the absolute temperature than the main thermom-
eter by over 3 orders of magnitude. This is dem-
onstrated in Fig. 7, where the differential bridge
ratio (or apparent temperature difference across
the probe) is shown as a function of the main bridge
ratio (or the absolute temperature} at three dif-
ferential thermometer power levels for T & T„. It
is also apparent from Fig. 7 that the self-heating
is partially canceled in the differential system,
and that the unbalance in the self-heating is smaller
than the self-heating for the main thermometer by
about 1 order of magnitude.

2. Thermal Stability

When the sample temperature was less than T„,
there was of course a measurable heat input to the
sample because of superfluid flow in the capillary.
Under these circumstances, the heating rate of the
sample was essentially independent of the tempera-
ture T at the bottom of the capillary vacuum, pro-
vided T'was greater than T„. This has been dis-
cussed elsewhere. 3~'33 Nonetheless, T was kept
constant to + 10 ' K, and usually was equal to T„
+10~ K. During the C, measurements, heat trans-
fer in the capillary was by He II film flow and was
found to be given by33
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TABLE H. The rate of change of the sample tempera-
ture due to superfluid flow in the capillary.

1 x 10-2

5 x10-3
2x10 3

1x10-3
5 x10-4
2 x10-4

10 dT/dt
Film

2. 0
0. 64
0. 13
0. 032
0. 002
0. 000

(' K/min)
Bulk

12.8
6. 7
2. 8
2. 6
l. 1
0.4

j -2 gxi0-'(T —T)" for T„T-1.6x10''K,
(3)

with Q& in watts and

—T„—4 x]0
Thus, under these circumstances the heat input
from superfluid flow vanished below T„. Although
we do not report in this paper the results of mea-
surements of the heat capacity at constant volume

C„, we mention here that during the C„measure-
ments heat transfer in the capillary was by bulk
He II, and is believed to be limited by the Gorter-
Mellink mutual friction32 between the normal fluid
and the superfluid. In this case, experimental de-
terminations of Q' at relatively low pressure cor-
responded to

Q~ = 0. 012(T„—T) ' for T„—T( 10 'K (4}

and

@~=0.0021(T„—T) ' for T„—T &10 'K, (5)

where Q~ is in watts. A few typical temperature-
drift rates calculated from Eqs. (3}-(5)and the
measured heat capacity are given in Table II. Over
the temperature range of primary interest here
(l T„-Tl &10 'K), Qi and the corresponding fore-
drifts and afterdrifts during heat-capacity measure-
ments were sufficiently small, and did not limit
the precision of the measurements. At the lowest
temperatures at which measurements of C, were
attempted (T= 1.97 'K), the precision was limited
by the film flow.

When the sample temperature was greater than
the onset temperature for superfluidity, there was
no superfluid flow, and the temperature stability
was determined by the stability of other energy
sources and the heat capacity of the sample. As
mentioned previously, room-temperature radiation
was virtually eliminated, and conduction was care-
fully controlled. However, in addition, there pre-
sumably was some energy input from vibration and
radio-frequency heating which could not be con-
trolled during the measurements. In order to inves-
tigate the constancy of these undesirable sources

of power, the samplewas heated to (T~+ 5x10 ) 'K.
At this temperature, the lower half of the probe
contains He I, and the rest of the sample consists
of He II. The temperature difference across the
probe with a differential thermometer power of about
10 ' W was then about 3 &10 ' 'K. This temperature
difference depended strongly upon the height of the
He I fraction, ' and varied from 0 to about 6 &10 'K
for a 1-cm change in this height, or a 10 K change
in the absolute temperature. Because of these cir-
cumstances, the differential thermometer could
resolve changes in the absolute temperature of about
10 'K over a temperature range of about 10 6'K.
Therefore, itwas well suited for monitoring changes
in power dissipation in the sample. It was observed
that once the conduction heat leaks and the control-
lable power dissipation at the sample had been ad-
justed to result in immeasurably small temperature
drifts, the sample temperature changed typically
only by about 10 ' 'K over a 1-h time period. It
can be estimated that this corresponds to an aver-
age change in power dissipation of 0. 4 ergs/min
over a 1-h time interval.

3. Heat-Caparity Measurements

Heat capacities were measured by adding a known
amount of energy to the sample by means of the
main heater, and observing the change in sample
temperature with the main thermometer. The tem-
perature change &T was determined from an ex-
trapolation of the foredrift and the afterdrift of the
sample temperature to the middle of the heating-
time interval. For measurements on He II, the
determination of &T presented no problem near T„
where the drifts were small, because thermal
equilibrium was fast and the thermometer response
was limited only by the time constants in the mea-
suring circuit (usually 3 sec). Measurements for
He I were far more time-consuming because ther-
mal equilibrium was attained only slowly after en-
ergy inputs. However, the thermal stability of the
system was sufficient to permit waiting for equilib-
rium even for He I. A typical recorder-chart
tracing for a heat-capacity measurement in He I
about 4. 6&10 'K above T„ is reproduced in Fig.
8. One can see that the sample container over-
heated appreciably during the energy input ( =10 ' 'K
at 2x10 W), and that about 15 min were required
after the heating interval to establish thermal equi-
librium. Nonetheless, it is evident that &T could
be determined with a precision of about 0. 1k. Very
near T„, a much smaller heater power was used to
reduce the overheating of the sample cell. Here,
thermal equilibrium was faster than at higher tem-
peratures, probably because of the larger thermal
diffusivity of the sa,mple' ' and more readily in-
duced convection. A recorder trace of a series of
five heat-capacity measurements which starts in
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FIG. 8. A ty cal heat-capacity measurement for He I well above T„. Note that the bridge-ratio transformer setting,typic a
indicated in the figure, is different for the foredrift and afterdrift.

He II and ends in He I is shown in Fig. 9. The onset
of thermal resistance of the sample is evident from
a comparison of the afterdrifts for the 2nd and 3rd
points. For these high-resolution measurements
the precision of the results was limited by the tem-
perature resolution of about 10 ' 'K.

It should be mentioned that approximate thermal
equilibrium also had to be attained in the probe, be-
cause the probe constituted about 1% of the sample

14, 1Smass. It is clear from work previously reported
that this was attainable. For the measurements

reported here it was relatively easy to attain ther-
mal equilibrium in the probe even for He I since
heating was from the top, and heat transfer was
largely by convection for temperatures less than
that corresponding to the density maximum (T&+ 6
x 10 ') 'K. For higher temperatures, thermal equi-
librium in the entire system was attained only after
a considerably longer time period. For this rea-
son, measurements for T —T„&6~10 'K are not
very plentiful.

At all times the temperature gradient across the

IO5 K

HEATER POWER 5.I2 x IO~W

O
I

I.7 x IO eK/mm

2.02xlO ~'K

3.2y x IO-d 'K

TIL8

TXP
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FIG. 9. Typical high-resolution heat-capacity measurements near Tz. The transition temperatures at the bottom of
the probe, the bottom of the main sample chamber, and the topof the sample ary indicated by dashed lines. The non-
horizontal slopes of these lines correspond to the measured drift rate of the thermometer bridge ratio at constant tem-
perature. The rapid thermal equilibrium for He II (first point) and the longer thermal time constants for He I (last three
points) are apparent from the afterdrifts.
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probe was kept small compared to ) T„-T I by re-
ducing the differential-thermometer power, or by
turning off the differential thermometer completely
when not required.

III. DATA ANALYSIS

A. Corrections

The measured quantities are, at least in prin-
ciple, not the desired thermodynamic variables
C, or C~. Although the experiment was designed so
as to minimize any deviations of the measurements
from these thermodynamic functions, it is impor-
tant either to demonstrate that these deviations are
indeed negligible, or to apply appropriate correc-
tions for them.

Experimental measurements yield the ratio
C„=&@/&T, where hQ is the quantity of heat dis-
sipated at the sample, and &T is the resulting tem-
perature change. From this, it is necessary to
derive the derivative

C= lim C = —.dQ
(6)

wr -0

This so-called curvature correction was applied in
the usual manner, " and for most data points did
not exceed 0. 2% of C .

The heat capacity of the sample (C, ) is equs. l to
the curvature corrected measured heat capacity C
minus the heat capacity of the empty calorimeter
Cs. From the weight of the cell (1189 g) and the
known heat capacity of copper, '~ it was estimated
that Cs/C, &10~. Further, Cs is regular at T„.
Therefore, no correction was made for C~.

During the measurements of C, a small amount
of vapor necessarily will be present in the sample
cell. The measured heat capacity, therefore, will
include, in addition to the heat capacity of the con-
tainer and that of the liquid, also the heat capacity
of the vapor present in the cell and the heat of va-
porization required to maintain pressure equilibr ium
between liquid and vapor when the sample tempera-
ture is changed. The correction for this effect has
been discussed by Hill and Lounasmaa, and in
more detail by Kellers. It can be written in the
form

C, = (I-x)- C L ~P nrU
n P 8T qvp n~U~

&= ~j'(SV~/~T)8vp have been measured with suf-
ficient accuracy by others. ' The molar volume of
the vapor is given by V, =RT/P+B, where the sec-
ond virial coefficient B can be adequately repre-
sented by"

B= 24 —426/T cm'/mole, (8)

and where R is the gas constant. The molar heat
capacity at constant pressure of the vapor C~„al-
though approximately equal to -,'R, is better rep-
resented by 21.44 Jmole 'K-'. ' ' The number of

moles of gas and vapor are given by

n~= (V, —nV, )(B—V, +RT/P) '

and n& = n —n~, respectively. Here V, is the mea-
sured cell volume (81.53 cm'). The heat of vapor-
ization can be calculated from

(10)

The primary purpose of the work reported here
is to obtain information about the singular contribu-
tions to C~ near T„. Inspection of Eq. (7) reveals
that the difference between C, and C, diverges at
T„because of the contribution from n. In addition,
there are milder singularities in C, —C, arising
from (SP/8T)eve, L, and V, . For this reason, the
vaporization correction was applied to all data,
although it was believed to be quite small. Later,
it was observed that for the sample on which most
of the conclusions from this work are based, the
vaporization correction never exceeded 0.07% for

I t I &10 4 'K and could have been neglected
(f —= T„—T). For some other samples, however, it
was larger.

For a system which is connected to an external
volume by a capillary, an additional correction is
acquired in principle for the energy used to vaporize
sufficient sample to maintain the pressure in this
external volume at saturated vapor pressure as
the sample temperature is changed. It is difficult
to calculate this correction because the temperature
gradient along the capillary is not known in detail.
Reasonable estimates show, however, that this cor-
rection does not exceed 0. 01% of C, for the present
system.

The thermodynamic variable of primary interest
is C~. It can be shown that

2L——+CPc

where x= Pp~/(nRT) and C, is the desired molar
heat capacity at saturated vapor pressure of the
liquid. The total number of moles n of helium is
determined experimentally. The vapor pressure P
and its temperature derivative (SP/ST), v are
taken from T~8. The molar volume U, and expan-
sion coefficient at saturated vapor pressure

Cp —Cs= TV

Near T„, the right-hand side of Eq. (11) can be
evaluated from independent experimental data, '7'3'
and

C, —C, =-a, + b, Iogiol fl, (12)

where

a, =1.8&10, b, =1.2&102 for T& T„(18)
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and

a~=2. 7X10, bq=1. 2x10 for T&T„, (14)

when the units of C~ —C, are J mole ' K '. Evalua-
tion of Eq. (12) reveals that C~ —C, is always
smaller than experimental errors in C, (less than

0. 07% for 10 'K& lfl %10 'K). Therefore, it was
assumed for this work that C~= C, .

B. Errors

The errors in the final results are dominated by
those arising from the determination of the sample
mass m, the heat input &Q, and the temperature
measurements. The sample mass is known with an

accuracy of 0. 2%, and systematic temperature-
independent errors in C, or C„of this magnitude
must be expected from this source. Both system-
atic and random errors in 4Q are believed not to
exceed 0.05'g.

Errors arising from the thermometry introduce
about the same absolute error into t and &T. Since
t usually is greater than d T, it follows the relative
errors in t are usually smaller than those in ~T.
If the specific heat has approximately the loga-
rithmic functional form revealed by previous
work, ' ' then it can be shown that deviations of C,
from this function due to errors in t are smaller by
at least a factor of 5 than deviations due to errors
in b T. Therefore, errors in t may be neglected.

Systematic errors in &T are proportional to er-
rors in dT/dR, where R is the thermometer bridge
ratio. Uncertainties in dT/dR arise both from de-
viations of the working temperature scale from
T,s,

' and from differences between T„and the
thermodynamic temperature. The effect of a 0. 2%
change in dT/dR upon the deviations T —T, of the
thermometer calibration points from Eq. (2) is
shown in Fig. 5 for the data of 8-7-68. It does not
seem likely that systematic errors in eT (assum-
ing T„ to be correct) are larger than this. Devia-
tions of T~s from the thermodynamic temperature
are difficult to estimate; but errors in ~T from
this source probably do not exceed 0. 5%. 48

From the above considerations it follows that the
sum of all systematic errors in the heat capacity
may be almost 1%. This is not particularly trouble-
some, since the temperature dependence of the heat
capacity is of primary interest, and the absolute
magnitude is relatively unimportant. One, there-
fore, should examine the temperature dependence
of systematic errors in dT/dR with particular care.
Over the temperature range of interest dT/dR is,
within much less than P. 1%, a linear function of T.
Further, it changes by only 0. 3% of its value at T„
when the temperature is changed by 10 'K. Com-
parison of several different analyses of the three
thermometer calibrations in Fig. 5 indicate that the
second derivative d(dT/dR)/dT is known with an ac-

curacy of at least 30%%uo. Thus, it seems unlikely

that systematic errors in &T change by more than

0. 1% per 10 'K.
Near T„, random errors in &T are determined by

the thermometer resolution of 10 ' 'K. Sufficiently
far from T„(lt1 & 10 ''K), nT was measured with

a precision of 0. 05-0. I'P~ for the C, measurements.
In this region, the combined random errors in C,
arising from nT and n Q are about 0. 1%. At tem-
peratures very much less than T„(t&10 ' 'K) errors
in &T for C, increase again because of the large
drift of the sample temperature.

C. Functional Form of C

For the analysis of the data in terms of theoretical
models, it is convenient to use the dimensionless
parameter

« = t/T„= 1 -—T/T„. (15)

Although the asymptotic behavior of divergent
properties near critical points may be described ap-
propriately by a power law such as la't, it is well
known that one must always expect correction terms
of higher order. Fisher points out that, in the sim-
plest case, these may take the form I« I '(1+
a«+ ~ ~ ).' However, there is no compeling
reason why the higher-order terms should be ex-
pressible in this simple fashion. There are, in
fact, some variables for which specific theoretical
guidance about corrections to the asymptotic be-
havior is available, and where the correction terms
are more complicated. ""There is no rigorous
theoretical information about higher-order contri-
butions to the specific heat near T„, but we shall
assume that these higher-order terms will take the
form

~«»
I
«

I
+ E«, (16}

and present some arguments that indicate the rea-
sonable nature of this form.

The corrected experimental measurements now

consist of many pairs of numbers for C~ and E. It
is desired to derive from these data a few param-
eters which describe the entire set of measure-
ments, and which can be compared with theoretical
predictions. For this purpose, it is useful to adopt
a trial function which relates C~ to &. As is cus-
tomary, we shall assume that C& of a homogeneous
system is asymptotically proportional to I& I, and

write the specific heat in the form 7' '

(16)

Equation (16) is assumed to be valid both for He I
(T & T„) and He II (T& T~}, but the parameters are
allowed to assume different values in the two phases.
In the limit as n vanishes, Eq. (16) becomes
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First, we consider the two-dimensional Ising
model. In this case, rigorous information about the
functional form of the heat capacity is available,
and although the superfluid transition may differ
greatly from this model, a comparison seems
worthwhile. The Ising-model specific heat in two
dimensions can be written as an expansion about the
transition temperature T„and has the form

The first two terms on the right-hand side of Eq.
(19) correspond to Eq. (17), and those with I = 1 have
the form proposed in Eq. (18) for the corrections
to the asymptotic behavior.

For further, and perhaps more convincing, evi-
dence supporting Eq. (18), one can turn to thermo-
dynamic arguments. We shall assume here that
e= e'= 0 and consider the furctional form of C~
along different experimental paths. Let us assume
that C~ along an isobar diverges logarithmically
near a X line without higher-order contributions.
Then it can be shown from thermodynamic argu-
ments that the asymptotic divergence of C~ along
any other path which meets the X line at the same
point as the isobar is also logarithmic and has the
same amplitude (same A}. But, in addition, C~
along the other path wil. l contain higher-order terms,
whose functional form depends upon the path. Along
certain paths, for instance a path for which the
pressure is proportional to E, the higher-order
terms will have the form of Eq. (18). Thus, if there
are no higher-order terms in C~, then this can at
most be true along a specific path.

For further arguments, we compare C~ with other
thermodynamic properties. It is known3 that a
pure logarithmic divergence of C~ (i. e. , no higher-
order terms) near a X line requires that the isobaric
thermal-expansion coefficient, whose asymptotic
divergence will also be logarithmic, contain terms
whose temperature dependence is E and c lnjc I.
The same applies, for instance, to the isothermal
compressibility. " Conversely, the absence of
higher-order terms in the isobaric expansion coef-
ficient or the isothermal compressibility requires
that such terms be Present in C~. Unless there is
some fundamental reason why the specific heat Bt
constant pressure along a specific path occupies a
special position among the divergent thermody-
namic properties, it must therefore be expected that
there are contributions to C~ which have the form
of Eq. (18).

The above arguments are based upon the assump-
tion that 0. = a =0. If this is not the case, but o
and a are small, then the correction terms in Eq.
(18) should perhaps have a slightly, but probably
not significantly, different form. We shall thus
write the specific heat at constant pressure as

C~=(A/~)(lel -I)+B+D Inlel+Ee u a~o (20)

and as

C.=-»nl&l+B+De»l&l+E& H a=0. (21)

x(le, -ml'- —le, l'- ) —I}
+ B+D& ln

l
s

l
+ Ee, (22)

where the positive sign is valid for He I, and the
negative sign applies to He II. Here ( ) indicates
the gravitational average, H is the total sample
height, e, -=1 —T/T~, and T» is the transition tem-
perature at the surface of the sample. The param-
eter a is a property of the X line, and at saturated
vapor pressure has the value~ 0. 586l. &10 cm '.
For the case a=O, integration of Eq. (21) yields

(C~) = —A{lnl e, —aHl —1- [ e/(aH)]

& lnl (e.—~)/e. l)

+B+D»l.
l
+E. . (23)

In deriving these equations, the gravity effect on
De lnl e

l
and Ee was neglected because these terms

contribute negligibly near T,. Equations (22) and
(23) are suitable trial functions for the inhomoge-
neous sample encountered here, provided only the
high-temperature (He I) or the low-temperature
(He II) phase exists. However, over the tempera. -
ture range from T~ to T„,(1 —aH) the iwo phases
coexist. Over this range, the upper portion will
consist of He II, and the lower portion will be He I.
The two phases will have the heights

br' = e,/a; hz = H - e,/a . (24)

Their heat capacities (per mole of the phase in
question) are

We note further that the temperature dependence
of ~ lnlf! +E& over a limited experimental tem-
perature range for I& I «1 is very similar to that
of E.

Equations (20) and (21) are reasonable trial func-
tions for C~ of a homogeneous liquid-helium sample
near T„. However, the present measurements were
made on a liquid with finite height in the earth' s
gravitational field. Such a system is not homoge-
neous, and there is a nonzero pressure gradient
in the direction of its vertical axis. ~' Consequently,
there is no unique transition temperature for the
entire sample. There is, however, a local trans-
ition temperature T„(h}for any depth h below the
liquid surface. If Eq. (20) or (21) is valid locally
in the sample, with E dependent upon h, then the
average (measured) C~ can be calculated by inte-
grating Eq. (20) or (21) over h, and for a 0

(C,) = (A/o}{+[aH(1 —a)]-'
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(c,), = iim(c, )

and

(C,)„=lim (C,), (26)
8~ OH

with (C2) given by Eq. (22) or (23). The average
heat capacity of the entire sample, considering the
temperature-dependent contributions from the two

single-phase fractions, then is given by

A I(C) = ' —, ', —1+Bae n'

}}}a.}'
-)

aH e 1 —e (27)

if e and e differ from zero, and

(Cs)r.n = (& /}2H){-A [ln(e, ) —1]+B']+(1 — e/~ H)

—A[ln(aH —e, ) —1]+B] if e= e'=Q.

(23)
In the temperature range where the two phases co-
exist, the higher-order terms may safely be as-
sumed negligible. In the last two equations, the
standard procedure" of identifying the parameters
of the low-temperature phase by primed coeffi-
cients and those of the high-temperature phase by
unprimed coefficients has been adopted.

D. Least-Squares Analysis

W, = (10-'aT-'C, )~ and W, = (10 C, ) (2S)

for the ith data point was employed. Here 10 is
the temperature resolution, and 1Q corresponds
to a probable error of Q. 1%. A method of analysis
employing polynominals which are orthogonal over
the data points was used.

For simplicity, we shall neglect in this section
the higher-order contributions to C~, and discuss
only the determination of A, B, and e. Then Eqs.
(22) and (23} can be written in the form

(C,) = n+ bf(e„o), (30}

The best estimates for the parameters in Eqs.
(22) and (23}and their standard errors can be com-
puted from the data by a least-squares analysis in
terms of these equations. In order to avoid unde-
sirable effects from possible systematic differences
between measurements performed on different sam-
ples, only results for the same sample were included
in a given analysis. The data for He I were ana-
lyzed separately from those for He II, so that A,
B, and e could be obtained independently of A, B,
and e . A11 data used in the analysis corresponded
to measurements in the single-phase regions.
Weights S' inversely proportional to the square of
the estimated random probable error' for each
point were used. Specifically, the smaller of

with a=B; b=A/a for o. wO, and a=B; b= —A for
e= 0. It was noted earlier that errors in a, are
negligible compared to those in (C2). Thus, a linear
least-squares procedure which minimizes the esti-
mate of the variance

, Z w, (/2C, P/Z w, (31)

of C~ with respect to a and b may be employed if o
is known. '2 Here (& C2), is the deviation of (C2),
from Eq. (30) at the measured e, N is the number
of data points, and m is the number of parameters
(3). Since n is not known, the minimum with re-
spect to a and b of o ~ was computed for several
values of e in the vicinity of an initial guess for e.
Whenever a = 0 was used, Eq. (23}was employed
to obtain f(e„e). For a eO, f(e„a)was based on
Eq. (22). A typical example of &r as a function of
o. is given in Fig. 10. The best value of e, say eo,
is the one corresponding to the smallest value oo
of o. The standard error of e is the absolute value
of the difference between eo and the value of e cor-
responding to

o= o,[1+ (N- m —.1)-']'/' . (32)

If n were known, then the standard errors of a and
b, and thus of A and B, could be obtained in the
usual way' from the linear least-square fit. How-
ever, in order to obtain the true standard error of
A and B, the correlation with e of A and B must be
considered, and

[ (&a, b}2 (&e)2]1/2 (33)

where v„"would be the error in A if e were known,
and o„ is the change in A as e is changed from eo
to Qo+ 0 ~ An analogous equation pertains to 0~.

IV. THEORETICAL PREDICTIONS

H(IE M}=sgn{M]~ M~ b(f/~ M~ /2) (34)

Recently developed theoretical ideas have led to
a number of relations, called scaling laws, between
the critical exponents which describe the asymptotic
singularities of properties near critical points. In
some cases even relations between the amplitudes
of the leading singular terms are predicted. In this
section we shall summarize those theoretical re-
sults which pertain to the present measurements.
For a complete discussion, the reader is referred
to the original literature, ~3~7' and to a review
article by Fisher.

A fundamental assumption of the theory is that
the Helmholtz free energy A of the system can be
expressed as a function of an order parameter M
and the temperature, and that the generalized
"field" H= (SA/SM)r can be written in the form
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with h a homogeneous function of degree y. Here
5 and y are critical exponents for various properties
of the system, and are defined, for instance, in
Ref. 24 or 48. There are some further restrictions
upon h which follow from thermodynamic and other
general considerations (see, e. g. , Ref. 24 or 46).
On the basis of these very general assumptions it
can be shown that

O'=0. (35)

If additional assumptions similar to those made
about the free energy are also made about the cor-
relation function for order-parameter fluctuations,
then it follows that

v = —,'(2 —n),
v '= —,'(2 —n ')

(36)

(37)

Here e and & are defined by the asymptotic be-
havior of C~ given by Eqs. (16) and (17), and the
coherence length $ for fluctuations in the order pa-
rameter has the asymptotic form

$-~e " for T&T„,
(36

-I.I-" for T&T„.
An experimental value for v is available "from
measurements of the superfluid density p,

6~ and
the asymptotic proportionality between p, and $

'
for T& T„.

In addition to the relations given by Eqs. (35)-
(37) between exponents, scaling under some cir-
cumstances also results in explicit relations be-
tween the amplitudes of the asymptotic contributions
to C~ above and below the transition. For a loga-
rjthmjc djvergence of C& jt is predicted that

1 2 1g= 3
—3Q'+20 (42)

If Eq. (35) is also valid, then x= —,'(1 ——,
' n). Thus,

there is an additional opportunity to check the va-
lidity of a combination of scaling laws by compar-
ing the singularity in C~ with that in K. ' '"

V. HEAT CAPACITY AT SATURATED VAPOR PRESSURE

A. Results

At saturated vapor pressure, the heat capacity
was measured for two samples in the apparatus
described in this paper. Only for one of these, to
be called the main sample, were the measurements
sufficiently extensive and precise to define adequate-
ly the limiting behavior of C, near T„. Results for
the other sample, to be called the auxiliary sample,
will be used only in temperature regions where
measurements for the main sample are lacking.

In addition, data had been obtained previously
for T & T~ in a different apparatus on a sample which
had a vertical height of 24. 3 cm. The main fea-
tures of these results have been mentioned briefly
elsewhere. ~ However, further measurements have
been made, and the data will be presented here in
somewhat more detail. This sample willbe referred
to as the "tall" sample. Results for it are subject
to a possible systematic error of 0. 01 g or 0. 61 in
the sample mass. This error does not affect the
temperature dependence of the measured heat ca-
pacity. Comparison with the results for the main
sample did indeed indicate a small systematic dif-
ference, and the values of C, reported here for the
tall sample have been reduced from the original

A=A if a= n'=0,

and for a finite C& at T„one has"

B—A/n=B A'/n' if n= -n'&0.

(39)

(40)

Equation (40) implies that C~, if it does not diverge,
is continuous at T„.

The above discussion pertains to the singularities
exhibited by static or equilibrium properties. It
is known, however, that certain transport properties
also diverge near critical points. Ferrell e& al.
and Halperin and Hohenberg have extended scaling
arguments to transport properties by imposing cer-
tain homogeneity conditions upon the "critical fre-
quencies" which describe the time-dependent fluctu-
ations of certain properties. On the basis of this
theory, Ferrellet al. 6 were able to predict that the
thermal conductivity x of He I near T„should diverge
according to the power law

hC
0

I
4P

0
E

b
Ol
O

3.90

3.85

3.8 I

K f
q g=2v —gv (41)

which in conjunction with Eq. (36) and (37) becomes
FIG. 10. The standard error 0 as a function of o. for

a typical least-squares analysis.
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TABLE III. Results of individual measurements of
the heat capacity at saturated vapor pressure near T„.
Data for which &T includes some of the two-phase region
were omitted.

10'(T~- T)
(K)

14, 5
9.8
5. 6

—3.4
14.3
8. 1

10.0
3 ~ 2

18.4
5. 0

19.0
7. 0

—9.6
—6.5

6. 5
2. 4
6.3

—11.4
—16.8
—17.9
—52.3
—88.3
—10.0

37 ~ 1
—72.6
180.1
34.21

Cs
(Jmole 'K ')

76. 0
78. 0
83. 5
63. 8
77. 1
80. 5
77. 7
65. 3
75. 9
82. 8
74. 0
81.9
56. S
58. 0
82. 2

86. 8
59. 0
57. 1
53. 7
54. 6
49. 3
46. 4
57. 6
51.0
47. 3
63.7
71.8

10'AT
(K)

5. 0
4. 9
3.9
5. 1
6. 1
5. 0

11.5
4. 0

20, 3
4. 5

27. 4
4. 1
8.5
4. 8
3.8
3. 9
4. 8
5. 1
5. 0

30.4
32. 9
33.8
16.4
32. 2
34
64. 7
41.3

estimate ' by 0. 6P~ in order to make them consis-
tent with those for the majn sample. In addition,
it has been possible to apply more accurate vapor-
ization corrections to the data, and to obtain a better
estimate of the sample height than was previously
available, because the sample container now has
been taken apart, and direct measurements of its
internal diameter have been made. For these rea-
sons, the results to be quoted here differ slightly
from those given previously.

The results for C, near the transition for the
main sample are presented in Table III. In this
temperature range, the temperature increments
4T used for the measurements are small, and for
&T ~ 10~ 'K the temperature resolution limits the
precision of C,. For this reason, Table III includes
all data for which &T~ 10 ''K, and ~T is given with
the data. The results further away from the trans-
ition are given in Table IV. For these data, ~T is
so large that it does not limit the precision, and
random errors are believed to be about 0. i%%.

Tables III and IV include all data for the main sam-
ple which were used in the least-squares analyses
to be discussed below.

Some of the results for the three samples are

TABLE IV. Results of individual measurements of
the heat capacity at saturated vapor pressure.

10 (T) —T)
(K)

Cs 10 (T) T) Cs
(Jmole .K ') ('K) (Jmole 'K ')

65. 32
61.99
58. 62
55. 20
51.69
48. 27
41.55
38. 17
34. 78
31.36
27. 92
24. 60
21.27
17.56
14, 17
10.83
7. 495
4. 973
2. 885
1.282

17.21
15.56
13.89
12.22
10.55
8. 881
7. 197

10.08
8.392
6.708
5. 030
3.348
l. 685
4. 865
3. 178
l. 215

—2.379
5. 175
3. 533
1.850

—0.895
—2.660
168. 1
100.0
66. 60
14.82
11.53
7. 972
4. 482

44. 67
44. 92
45. 25
45. 54
45. 93
46. 27
47. 07
47. 60
48. 06
48. 61
49. 23
49. 88
50. 65
51.71
52. 85
54. 28
56. 20
58. 32
61.05
65. 28
51.84
52. 28
52. 93
53. 58
54. 44
55. 22
56. 36
54. 60
55. 56
56. 72
58. 30
60. 31
63. 88
58. 34
60. 50
65. 37
41. 08
57. 97
60.04
63.29
46. 14
40. 43
39. 17
42. 30
44. 60
52. 60
54. 02
55. 92
58. 98

4. 383
6. 855

10.25
13.VS

17.24
20. 69
24. 14
27. 53
30. 80
34. 04
1.728
5. 097

11,84
18.78
30. 14
39.49
46. 31
53.39
60. 48
43, 72
36. 89
30.33
17.25
10.71
4. 739
1.220

158.9
141.9
108.4
91.59
74. 95
58. 26
46. 49
26. 27
19.57
12.86
6.244
2. 168

357. 2

320. 2

277. 3
240. 3

37.78
35.41
33.22
31.63
30, 43
29. 46
28. 64
27. 93
27. 33
26. 80
42. 75
36.98
32.50
29. 99
27. 48
26. 04
25. 20
24. 44
23.77
46. 86
47. 79
48. 86
51.79
54. 28
58. 46
65. 51
39.48
39.76
41.76
42. 76
43. 89
45. 30
46. 52
49. 61
51.12
53.32
57. 03
62. 40
34. 04
34. 94
35.89
36. 97

shown in Fig. 11 as a function of loggo)E I and
log, o ( T» —T) . Results for the tall sample were
used only for large c„where gravity effects are un-
important. Also shown are the measurements re-
ported by Buckingham and Fairbank (BFK), those
by Hill and Lounasmaa (HL), and the ones by
Kramers, Wasscher, and Gorter (KWG). '~ The
data by BFK are the averages of ten sets of mea-
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FIG. 11. The heat capacity at
saturated vapor pressure as a func-
tion of log&p I e, I and loggp I T~ —T I .
The transition temperature at the
bottom of the sample is indicated
in the upper left corner: open cir-
cles, Ref. 3; squares, Ref. 43;
triangles, Ref. 52; solid circles,
this work.
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surements, and thus do not reflect fully the scatter
of individual measurements. The transition tem-
perature T~ at the bottom of the main and auxiliary
sample is indicated near the upper left corner of the
graph. The sample of BFK was of about the same
height, and thus has the same T~. The values of
T„-T quoted by BFK are based on the assumption
that C, reaches a maximum at T„. It is now evident
that C, is a maximum at T~. Therefore, the BFK
values of T„-T were adjusted by 2&1Q 6'K to ob-
tain T» —T. It is clear from Fig. 11 that the
agreement between the four sets of measurements

is good, and that any systematic differences between
them are smaller than the resolution of this graph.

The available data very near the transition are
shown in Fig. 12 as a function of T» —T. The solid
squares correspond to the measurements given in
detail in Fig. 9. Also shown are results near T,
reported by Fairbank and Kellers. ' These data cor-
respond to individual measurements taken during
a single successful "run. " T» was adjusted so that
the largest reported value of C, occurs at T~.
addition, the appropriate curvature correction was
applied to the values of C, given in Ref. 5. There-

100-

90-

S

I
I

al

~N ~AS
I

0

e«~, -&) ['K]

---- AinI1-T~g/TI+B
I I

10 5

A = 5.56 A =5.10

-10

FIG. 12. The heat capacity
at saturated vapor pressure
near the transition as a func-
tion of Tzz —T: open symbols,
Ref. 5; solid symbols, this
work. The solid squares cor-
respond to the measurements
shown explicitly in Fig. 9.
The solid line corresponds to
the gravity average of the
logarithmic divergence for the
homogeneous system. The
dashed hne is the logarithmic
divergence expected for the
homogeneous system. This
latter curve was positioned
along the temperature axis so
that its maximum coincides
with the measured specific-
heat maximum (Tz= T~).
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fore, the results as shown here should no longer
reflect the rounding which results from averaging
over a finite temperature interval, which is in-
dicated in Fig. 6 of Ref. 5. The solid line in Fig.
12 corresponds to Eqs. (23) and (28}, with the

parameters determined by a least-squares analysis
which included data much further from T». For
comparison, Eq. (21) with the same parameters
(no gravity) is shown as a dashed line. For this
curve, however, T„was chosen as T~ so that the
temperature for the maximum of this curve coin-
cides with that for the true specific-heat maximum.
The present measurements agree well with the
gravity corrected expressions Eqs. (23) and (28),
and differ considerably from Eq. (21) which neglects
gravity. The scatter in the earlier measurements'
is larger, and they appear reasonably consistent
with either functional form.

a= 0.000~0. 003;

A= 5. 355+0 15'

o'= —0.020+0. 003,
A. = 6. 081 + 0. 15, (43)

B= —V. VV3 + 0. 5; B = 11.345 + Q. 5,
with 0. and & independent of c,within their stan-
dard errors. ~9 It is apparent that a and cy'do not
satisfy the scaling prediction, Eq. (35). Since
n e0, Eq. (39) does not apply. From Eqs. (36}and
(37) one obtains v'=0. 673 +0. 001 and v= 0. 666
+0.001. Direct measurements of p,~ ' yield
v = 0. 666 + 0. 006, diff ering only by one standard
error from the present estimates. The thermal
conductivity of He I diverges asymptotically with an
exponent x = Q. 334+ Q. 005."'" The above analysis
of C~ and Eq. (42) give 0. 323+0.003. In this case,
the difference is 1.4 times the sum of the standard
errors, and cannot be regarded as significant.
Thus, the only violation of scaling laws which re-
sults from this analysis is the result et e . This,
however, would appear to be a rather serious break-
down of the theory.
[ Note added in proof Recent more .precise mea-

surements of the thermal conductivity z [G. Ahlers,
in Proceedings of the Twelfth International Con-
ference on Low Temperature Physics, Kyoto,
Japan. (unpublished)] have revealed that 0. 334 is

B. Analysis and Discussion

All parameters to be quoted in the remainder of
this paper are with reference to the heat capacity
in the units J mole '('K} '. The determination of
the parameters A, B, n, A', B, and e would be
relatively simple if it could be assumed that the
higher-order terms DE ln ( E l + E& make a negligible
contribution to Cp for (e I less than same value, say

„which lies well inside the experimentally ac-
cessible temperature range. Initially, this assump-
tion was made, and it was found that for e~,~ 3
&10~ the data for the main sample yield

A =5. 504 7

B'= 13.85,
Eq=E, = —120 .

A= 5. 8207

B= - 9.90, (44)

These parameters satisfy the scaling prediction
a= a'[Eq. (35}]. Since tr e0, Eq. (39) does not
apply. Further, we note that E, =E, indicates that
higher-order contributions, although appreciable
in the temperature range of interest, are regular
at T„. The derived exponents v =0.670 and
2v —

& v = 0. 335 are in very good agreement with the
more direct determinations (0. 666 + 0. 006) '~ and
(0. 334+ 0. 005'~' } (see Note added in proof above).
This interpretation appears to be in agreement with
scaling predictions. However, o. = o' & 0 implies
that Cp, although singular at T„, does not diverge
at Tg

For the case e e & Q there is the additional

scaling prediction given by Eq. (40). It is difficult
to test this prediction on the basis of the parameters

not the asymptotic exponent for ~, and that higher-
order terms make sizable contributions to ~ for
E& 10 . It is now clear that x& 3, in violation of
Eqs. (41) and (42}.]

One might be tempted to believe that the tempera-
ture independence of & and o' for &~,& 3 x10 ' sup-
ports the assumption that higher-order contributions
to Cp are negligible in this range. However, this is
not justified, expecially since o' and & are tem-
perature independent only within their probable er-
rors, and since these errors diverge as a „van-
ishes. Therefore, it is necessary to investigate
possible effects of higher-order contributions upon
o and e . As pointed out above, there is no reli-
able theoretical guidance about the form of higher-
order contributions to Cp. We were able only to
present arguments which lead to Eq. (18) as a rea
sonable form for these terms, but more compli-
cated terms have not been rigorously excluded.
Therefore, it does not seem very fruitful to carry
out a detailed analysis of the data in terms of the
complete Eqs. (22) and (23). If such an analysis
were carried out, it would involve the determination
of five parameters for each phase, and the correla-
tion between the parameters would result in large
probable errors such that e= e would be included
in the results. Even if it were not, one would still
be at liberty to postulate more complicated contri-
butions. We shall take a somewhat simpler ap-
proach to the problem, and approximate the con-
tributions postulated in Eq. (18}by E,e and E,e for
small c. On the basis of this functional form, the
values a= -0.005~0. 005 and e'=- 0. 015+0.007
were obtained. These results reasonably permit
the specific values

e = a= —0.009,
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in Eq. (44} because B-A/a is a rapidly varying
function of a. Therefore, the difference (B—A/n}
—(B'-A /o, ') with n= a was computed for several
values of e, and was found to vary between 21 and

6 J mole-s 'K-i when 0. was changed from —0. 00'7

to -0.011, and its probable error was found to be
equal to 3 when a= a'= —0.009. Thus, it follows
that only o = a ( —0. 009 would be consistent with

Eq. (40). Although it appears that the measure-
ments, within their possible errors, are not totally
inconsistent with Eq. (40), it does appear that the
agreement is not particularly good.

%'e shall attempt now to determine whether the
measurements are also consistent with e = 0, = 0
and the form postulated in Eq. (18) for higher-order
contributions. In this case, according to the orig-
inal formulation of scaling, the divergent contribu-
tion to C& is symmetric about T„. Therefore, we
shall examine the difference

&c= c, —(-Ao inl e
I

+ Bo}

-IOO

I
hl~-1500
X

W

In
+
w 20
C

CJ

l49|p ITg T(

/,
/ S' ~IS.97I I

He I
A~556

between the measured heat capacity C~ and the grav-
ity averaged expression for C~ based upon the pa-
rameters Ap and Bp for He I. The subscripts on A
and B indicate that a =-0 is assumed. If there is a
value of e, below which Eq. (23) adequately de-
scribes the He II measurements (n = 0), then &C
for T( T„hsoudibe linear iniog, o(&,) for sufficiently
small &,. Values of &C, obtained with Ap and Bp in
Eq. (43}, already were presented in Ref. 30. It
was seen that e = 0 is consistent with the data for
e, ~3x10 . However, e =0 implies that higher-
order terms begin to contribute appreciably for
He II when c', =3&10~. For He I these terms are
negligible for e, -3x10~ if e=0. Thus, e=0 and
the scaling prediction a= e are consistent with the
data, but appear to imply a severe asymmetry in
higher-order contributions.

TABLE V. Parameters for the logarithmic divergence
of C& obtained for several values of the maximum I e I at
which data were used. The quoted standard errors do
not include contributions from higher order terms.

-SO

-2

log Ip I

FIG. 13. Deviations of C, for large & from the asymp-
totic logarithmic divergence, multiplied by & . A straight
line on this graph implies higher-order contributions to
C& of the form Dain I e I + Ee. The error bars indicate
the effect of a 0. 1% change in C&.

Ao/Ao & 1.041 if e = a '= 0 . (45}

The scaling assertion AD=AD [Eq. (39)j requires
that &C for He II be independent of E when higher-
order contributions are negligible. Even for &

& 3 x10~, where o = 0 is consistent with the data,
the measured &C is temperature dependent. Thus,
Ao AA0 in contradiction to Eq. (39). The data yield
Ap ( 5. 13 for E ~( 5 &10~. Thus,

log&0«~&

—3.5
—3.4

3 ~ 3
3 ~ 2

—3. 0
—2. 8
—2. 6

3y 3
—3. 0
—207
—2. 5

Ao

5. 109+0.038
5. 102 +0.028
5. 117+ 0. 021
5. 122+ 0.019
5. 155 + 0.014
5. 176 + 0. 012
5.211+0.011

Ao

5.347+ 0. 017
5.357+ 0.010
5.355 i0.006
5.347 +0. 006

Bl

15.43+0.33
15.49+0.24
15.36 +0. 18
15.31+0.16
15.03+0. 12
14.85+0. 10
14.56+ 0. 08

Bo

7.71 +0. 15
—7.79+0.08

7.77+0. 05
7.71+0.04

It does not seem likely that Ao/Ao exceeds 1.06.
The most reasonable values for the parameters are
Ap= 5 10 and Bp= 15 52

In order to demonstrate more explicitly on the
basis of numerical. analyses of the data that Ap )Ap,
we have obtained values of Ap Bp Ap and Bp by
fitting the data for which l & I is less than &, to
Eq. (23); but in this analysis we have neglected the
higher-order terms of the form c ln IE' I and e. The
results for the coefficients for several e, are
given in Table V. These results lead to the same
conclusions, Eq. (45), as the graphical analysis.

We shall now examine the temperature dependence
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of higher-order contributions implied by the last
analysis (o = a'=0). Particularly, it will be inter-
esting to see if the temperature dependence of

these terms is indeed consistent with Eq. (18). For
this purpose, we shall investigate the validity of

Eq. (23), and rewrite it in the form

(C, —( —A, lni e
i

+ Bg)ie = Ds lni e
i

+ Es (46)

IO-

-2
I

logIOIT i-TI

0-He I
~ -He Zf

o -HeZ, HL
~ -HeE
+ -He 3 KWG

a, -He g THIS WORK

h ~

for He I. The equivalent expression with primed
coefficients pertains to He II. The experimental re-
sults corresponding to the left-hand side of this
equation are shown as a function of log&olc I in Fig.
13. Also shown are the results of BFK, ' ' HL, '
and KWG. '~ It is apparent that the results for He II
are of the form given by Eq. (23) for e ( 5 &&10~.

For larger E, one can reasonably expect additional
terms not included in Eq. (23). The experimental
information for He I is not as plentiful, but all avail-
able data are consistent with Do = —Do = 14.5,
Eo= —69, and Ep= —103, as shown by the solid lines
in Fig. 13. The average effect upon the data for
He II in this figure of a 1&~ change in Ao is shown
as a dashed line. It is apparent that a larger change
in Ao would no longer be consistent with the assumed
functional form for higher-order contribution. We
see that the contributionwithtemperaturedependence
aint el is approximately symmetric about T„, and
that the e contribution is asymmetric. For He I,
the two contributions are of opposite sign, and within
experimental error cancel each other for e& 3&10
For this reason, there appeared to be no higher-
order contributions to C~ for He I.

Through the above analysis of the data, it was
possible to show that the results of this work are
quite consistent with z =n =0. In addition, it is

K
CJ

0
el 0
I

Q 0 ~
0
O 0

0
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~
e+

4
0 0Oi e

~gh
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I

-2

logIOi C(

FIG. 15. Deviations in percent at large E of C~ from
the adopted functional form of C,. Data are from Ref. 3,
circles; Ref. 43, squares; Ref. 52, solid triangles; and
this work, open triangles.

apparent that the higher-order terms implied by the
data and o. =a =0 are of the expected functional
form, and are to some extent symmetric about
T„(Ds—= —Ds). However, there appears to be no com-
pelling theoretical reason at this time why a sym-
metry in higher-order contributions should exist,
and we do not at present attach any particular sig-
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measured C, from the adopted functional
form for C, Eq. (48).
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nificance to the observation that Do = —Dp at saturated
vapor pressure.

For the purpose of thermodynamic calculations,
it is desirable to have an analytic representation of
the measurements. From the three interpretations
of the data given in this section, we choose the case
a = a =0 for this purpose, and summarize the re-
sults:

c,=- A,(lnl "I) +Bo+Doe»l el+&oe

with

Ap = 5 355 + 0. 01, Ao ——5. 100'o p5

Bo= 7. 773y0. 1, Bo =15 52 p', 28~

(47)

Do = —14.5,
Eo ———103,

Dp=14 5

Eo = —69,

(48}

where the units of C& are J mole ' 'K '. The errors
quoted for Ap Bp Ao and Bp do not include possible
systematic errors in C&, and are based upon the as-
sumption that the functional form of Eq. (47) is
valid. The errors result primarily from the cor-
relation between A and B. Over the range indicated
by the errors, Ap and 4o are approximately linear
functions of Bo and Bo. Therefore, any change in
Ap or Ap should be accompanied by a corresponding
change in B, and Bo. Specifically, Ao and Bo or
Ap and Bp should be varied over the indicated ranges
only with the constraint

dAo/dBo =dAo/dBo = —0. 11 . (49}

In this paper, a detailed description of an appar-
atus and of procedures for the precision measure-

In order to show the precision with which the
measurements can be represented by Eqs. (47) and

(48), the deviations from it of the data in percent
are shown in Fig. 14. For larger I ~I, the devia-
tions from this equation of measurements from all
available sources are shown in Fig. 15. It is ap-
parent that these deviations approach about 1/& only
when t el is as large as 5x10

VI, SUMMARY

ment of several properties of liquid helium near
T„are presented and the performance of the equip-
ment is evaluated. Measurements of the heat ca-
pacity at saturated vapor pressure are reported.
From these results, the heat capacity at constant
pressure is derived, and discussed in terms of cur-
rent critical-point theories. The interpretation in
terms of the asymptotic temperature dependence
C~- I El is difficult because of possible contribu-
tions to C~ for |el & 0 from terms of higher order
than the dominating asymptotic contribution. For
this reason, three possible interpretations are
given. If higher-order contributions to C~ are ne-
glected for l ~l 3X10 ', then the data imply n & 0
and n =0. This is contrary to theoretical predic-
tions. If higher-order terms are considered, then
a = n & 0 is consistent with the data. Although
agreement with theoretical predictions can be ob-
tained with this analysis, the results imply that C~
is finite at T„. As a third alternative, a = a = 0
can also be obtained if enough flexibility is allowed
in the postulated higher-order terms; however, this
last interpretation results in unequal amplitudes of
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