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We investigate the properties of a system of He atoms at the absolute zero of temperature
interacting via a Lennard-Jones potential, and constrained to motion in two dimensions by an
otherwise inert substrate. Results of a semiclassical calculation indicate that the ground state
is that of a self-bound liquid. It further indicates that a close-packed-solid configuration is
not self-bound. A quantum-mechanical variational calculation is performed to obtain an

upper bound on the energy of the system. A result of —0.61'K per particle is obtained at
a density of 0.035 A. 2. The relationship between this calculation and recent experiments on
4He monolayers is briefly discussed.

I. INTRODUCTION

Recent experimental investigations of adsorbed
helium monolayers have been interpreted as indi-
cating that the system consists of a condensed phase
in equilibrium with both an adsorbed and a bulk va-
por. ' Several models of such a system have been
investigated in order to illuminate both the static
and dynamic effects of the substrate on the adsorbed
atoms. However, in order to extract from the ex-
perimental results the effects of the substrate, one
must know those properties of the monolayer which
are due to the interaction between he1.ium atoms
alone. In this paper, we study the ground state of
a monolayer system of helium atoms which are
constrained to motion in two dimensions by an oth-
erwise inert substrate.

It might be expected that the zero-point motion
of the helium atoms would be of great importance
in determining the properties of the two-dimension-
al system just as these motions prevent solidifica-
tion of the bulk system except under pressure. To
determine whether the ground-state configuration
of the system is representative of a liquid or a sol-
id, a semiclassical approach due to London is em-
ployed in Sec. II. It is found that the lowest energy
of the system is obtained for a rather open configu-
ration of particles which is taken to represent a li-
quid. In addition, it is found that the close-packed
solid is not self-bound owing to the effects of the
large zero-point motions.

In Sec. III, the ground-state energy of the liquid
is estimated by means of a quantum-mechanical
variational calculation. An upper bound on the
ground-state energy per particle of —0. 61 'K at a
density of 0. 035 A ~ is obtained, in substantial
agreement with a previous result of Hyman. ' Possi-
ble improvements to this calculation are discussed.

II. SEMICLASSICAL CALCULATION

We consider a system of N helium atoms con-
strained to motion in two dimensions and interacting

via the Lennard- Jones 6-12 potential

V(r) = 4k, e [(a/r)" —(a/r)'], (2. i)
where e and g are the de Boer-Michels param-
eters, a=10. 22'K, can=2. 556 A, and k~ is Boltz-
mann's constant. At the absolute zero of tempera-
ture, a classical system interacting via the above
potential would condense to a two-dimensional solid
with particle separation very near the minimum of
this potential. Because of the small mass of the
helium atom, however, the quantum-mechanical
zero-point motion will be important producing an
appreciable kinetic energy and changing the poten-
tial energy from its classical value. In order to
estimate the magnitude of the kinetic energy, we
follow Londona and observe that the zero-point mo-
tion arises from the restriction on the particle mo-
tion due to the strong repulsive core of the inter-
action. Therefore, as a first approximation, one
can replace the particles by impenetrable disks of
diameter a and assume that the zero-point energy
depends only on the density of particles. Under
this assumption, analytic expressions for the kinet-
ic energy per particle can be obtained in the region
of very low and very high densities. The energy
per particle of a hard-disk gas at low densities has
been shown by one of us' to be given by

K. E. /N (- 2wa'/ma') $/in), $ - 0 (2, 2)

where $ is the dimensionless density defined by $
=na . In the high-density limit, each disk can be
viewed as trapped in a cage formed by its nearest
neighbors. The kinetic energy is then approximate-
ly given by the energy of the lowest state of a point
mass confined to a circle of radius d —a, where d
is the nearest-neighbor separation. This energy
is K. E. /N= a k /2m, where k = n/d —a, and n
=2. 40 is the first zero of the cylindrical Bessel
function of order zero. The distance d may be ex-
pressed in terms of $ by noting that at high densi-
ties the system will attain a close-packed triangular
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where

so that

d =ac)

c'= 2/&2,

K E /N ()I'/2ma')a']/(c —]~')',
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FIG. 1. Kinetic energy per particle of hard Cksks of
radius 2. 3 A. and classical potential energy per particle
of the four lattices of Fig. 2, as functions of the imen-
sionless density $.

(2. &)

A simple interpolation formula between Eqs. & . ).2. 2,
and (2. 3) is

K. E./N = —2sc5 $/mam(c —$~ )[In)/ca- b(c —$ "2)],

(2. 4)

where b = —2c '+4mca . Figure 1 shows this ki-
netic energy as a function of )„The value of the
hard-core diameter was taken to be 2. 3 A, the val-
ue chosen by London. e The potential energy is cal-
culated classically by performing appropriate lat-
tice sums. A two-dimensional solid is represented
by a close-packed lattice. A two-dimensional liq-
uid cannot, of course, be represented by a perfect-
ly regular array. However, in the spirit of the
Keesom-Taconis model for bulk liquid helium, we
investigate a series of more open lattices which
can be taken to represent instantaneously the struc-
ture of the short-range order which essentially de-
termines the potential energy per particle. Pre-

abl these open lattices are unstable with re-
in thespect to rotational modes which, while breaking e
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FIG. 2. Four lattices investigated in the semi-class-
ical calculation.

long-range order, preserve the short-range order
and lower the energy only slightly.

Figure 2 shows four of the lattices investigated.
The two-dimensional solid is represented by the
triangular lattice of Fig. 2(a). The remaining three
lattices are obtained by removing particles from
the close-packed structure. Lattice (b) is a honey-
comb structure in which each particle has three
nearest neighbors, as compared to six in the close-
packed structure. Lattice (c) is one of the trigonal
planes of the Keesom-Taconis lattice. (In the other
trigonal plane, the particles are close-packed. )
Each occupied site has four nearest neighbors.
Lattice (d) is a more open lattice in which each
particle has three neighbor particles and holes, as
does each hole. This lattice has one-half the den-
sity of the close-packed structure of equal nearest-
neighbor spacing. Although there appear to be
two inequivalent occupied sites, they are in fact
energetically equivalent for two-body interactions.

The classical potential energy for each of these
lattices has the form

V($)/N = &,z$ —e6$

where e» and &6 are positive and are obtained for
each lattice from the appropriate lattice sum.
Figure 1 shows the classical potential energy for
the four lattices as a function of $.

The semiclassical estimate for the energy of each
configuration is obtained by adding the hard-disk
estimate of the zero-point energy, q. 2. 4 to
each classical potential energy. The results are
shown in Fig. 3. It is seen that the lowest energy
per particle is obtained for the most open lattice
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the conclusion that the solid is not self-bound, for
at the high densities characteristic of the solid, the
particles are highly localized, thus decreasing the
error in the classical estimate of the potential en-
ergy. In addition, at these densities the zero-point
energy should be well described by the analytic ex-
pression of Eq. (2. 3).

With the knowledge that the ground state of the
two-dimensional system represents a liquid, we
now turn to a quantum-mechanical calculation to ob-
tain the energy of this state.

III. VARIATIONAL CALCULATION

FIG. 3. Total energy per particle of the four lattices
calculated semiclassically, as a function of the dimen-
sionless density $.

(d). This indicates that for the two-dimensional
system, the ground-state configuration represents
a liquid rather than a solid just as in the bulk sys-
tem and for the same reason that applies to the
bulk; that is, the effect of the zero-point motion.
This effect is even more pronounced in the two-di-
mensional system, however, for it is seen in Fig.
3 that contrary to the bulk result, the close-packed
solid is not self-bound; i. e. , its energy is positive
for all densities. The same result is obtained for
a square lattice. The increased importance of the
zero-point motion in the two-dimensional system is
easily understood when one considers that the po-
tential energy of the two-dimensional close-packed
solid is approximately one-half that of the bulk (six
instead of twelve nearest neighbors), while the
zero-point energy of the solid is approximately
two-thirds that of the bulk.

The particular value of the ground-state energy
per particle of the liquid as obtained from Fig. 3,
—8. 26 'K, cannot be taken too seriously for several
reasons. First, at liquid densities, it cannot be
expected that r.he particles are very well localized
so that the classical calculation of the potential en-
ergy is not very reliable at such densities. Second,
the value of the total energy at liquid densities is
quite sensitive to the estimate of the kinetic energy,
that is, both to the hard-core radius chosen and to
the particular expression taken to interpo1. ate be-
tween the analytic forms of the kinetic energy ap-
propriate at low and high densities. For example,
using the form for the kinetic energy given in Eq.
(2. 4), but changing the hard-care radius to 2. 5 A,
one finds that only lattice (d) is self-bound and its
ground-state energy is decreased several degrees.

The above remarks do not, however, affect the
primary result of this section, that the energy of
t;he liquid state is lower than that of the solid. Fur-
ther, it is to be expected that they will not change

N

Qp(r( r„)= expp P —u(r((), (3. l)

where u(r) is any real function. This wave function
has the correct symmetry to serve as a trial func-
tion for the ground state of the N-body boson sys-
tem. It is also of the simplest form to give a finite
expectation value of a Hamiltonian which contains
a singular two-body potential such as that of Eq.
(2. l). For the expectation value to be finite, u(r)
must increase without limit as r approaches zero.

The calculation proceeds by choosing a suitable
u(r) which depends on several parameters, and then
extremizing the expectation value of the Hamiltonian
with respect to these parameters. The usual choice
in three dimensions has been

u(r) =A(d/r)~, (3. 2)

where the variational parameters are p and A. The
minimum is found at p = 5 and is not very much af-
fected by taking p =4 or p = 6. That p falls in this
range is probably related to the fact that, for a r "
repulsive potential, the two-particle wave function

g/&5behaves like e " for smallr, where B is a constant.
For the two-dimensional calculation, we also take

the form given in Eq. (3. 2) for u(r) The effort in.
the variational calculation is considerably reduced
by taking p =- 5 at the outset, leaving only one param-

An alternative procedure for calculating the bind-
ing energy of the liquid is one employed in calcula-
tions of the properties of bulk liquid He. This is
the quantum-mechanical variational calculation of
the ground-state energy in the Jastrow function
space. The technique, described below, when ap-
plied to the bulk system has produced lower bounds
on the binding energy of 85%%uq of the experimental
result, with a calculated equilibrium density within

10%%uo of experiment. ' ' Although a priori claims
of this accuracy in the two-dimensional system can-
not be made, a rigorous lower bound on the binding
energy can be obtained and ultimately corrected for
contributions from outside the Jastrow function
space.

A Jastrow function (often called a Bijl-Dingle-
Jastrow function") is a trial function of the form
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eter to be varied. This choice seems reasonable
since the two-body wave function in two dimensions
has the same form for small r as that given above.

With the wave function of Eq. (3. 1), the expecta-
tion value of the kinetic energy per particle can be
put in the form

K. E. E u'(r)
(((r(r (r() dr,

N 4m r
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and the potential energy per particle is given by

0 I I I I I I & I I

.025 .030 .035 .040 .045
n(A ')

.050

2. E. = wn g(r)r V(r) dr,
0

(3.4)

g(r) =
N(N- 1) a dhz ~ ~ dry/

J ~ ~ e dry
(3. 5)

There are two common integration techniques
which enable g(r) to be calculated from Eq. (3. 5)
with great accuracy for very small values of N,
say in the range of 30-1000 particles. The system
can be extended without limit by means of periodic-
boundary conditions. The first of these techniques
is the well-known Monte Carlo procedure. ' The
second method, recently employed by the Orsay
group, "takes advantage of the mathematical equiv-
alence of the probability density 5~~to the Boltzman
factor of classical statistical mechanics. Thus,
the radial distribution function of a fictitious classi-
cal system interacting via the two-body potential
(t((r) at temperature T is identical to the desired
g(r) of Eq. (3. 5) provided that

u(r) = y(r)/u, T.

The function g(r) for the quantum-mechanical sys-
tem of interest is generated by numerically solving

X
4

LLI

-.5

-.7 I

.025 .030 .035 .040 .045 .050

n(A )

FIG. 4. Total energy per particle obtained from the
variational calculation, as a function of density.

where g(r) is the radial distribution function defined

by

FIG. 5. The magnitude of the potential and kinetic
energy per particle as obtained from the variational cal-
culation, as a function of density.

the classical equations of motion for the fictitious
system of particles interacting via the potential
(f((r) and characterized by the velocity distribution
corresponding to temperature T. This technique
is commonly referred to as the method of molec-
ular dynamics. ' In calculations of the properties
of bulk liquid He, it gives results in close agree-
ment with those of McMillan' obtained by Monte
Carlp methpds, and pf Massey and Wop whp obtain
g(r) by methods other than those described above.

We have chosen the molecular-dynamics tech-
nique to perform the integrals in Eq. (3. 5). A

computer code developed by Rahman" for calculat-
ing the properties of a classical bulk system was
modified to apply to a two-dimensional system.
This is composed of 108 particles (a number cho-
sen somewhat arbitrarily), at some density no
The energy-expectation value is calculated for a
set of values of the variational parameter A at a
fixed value of d =do in Eq. (3. 2). The scaling law
of McMillan' can be used to obtain the energy at
density n for the same set of values of A with d
given by do(no/n) . The minimum value of the en-
ergy at each density is plotted in Fig. 4. It is seen
that the ground-state energy per particle is

E/N = (- 0. 81s 0. 1) 'K,

which is attained at a density of n =0.035 A . The
kinetic and potential energies which add to give the
result shown in Fig. 4 are displayed in Fig. 5. It
is to be noted that the total energy is the result of
a large cancellation between the potential and ki-
netic energies. A small error in either of these
terms becomes a large relative error in their sum.
It was necessary in the 108-particle system to go
approximately 2500 steps in time after equilibrium
was established to produce energies within the er-
ror given above. Furthermore, the effect of the
periodic-boundary conditions in such a small box
is magnified by the large cancellation. Earlier
calculations with 27 particles showed large fluctua-
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tions due to the small number of particles and an
apparent tendency to settle down to ground-state
energies several tenths of a degree smaller in mag-
nitude than those displayed in Fig. 4.

A Monte Carlo calculation for a system of 32 par-
ticles with the same ground-state wave function has
been carried out by Hyman. The ground-state en-
ergy per particle obtained, —0. 62 'K, occurs at a
somewhat higher density, 0. 042 A, than obtained
above. The discrepancy must be attributed to the
difference in the number of particles.

The radial distribution function g(r) which char-
acterizes the two-dimensional system at the density
at which it attains its minimum energy is shown in
Fig. 6. Also shown for comparison is the radial
distribution function obtained by Schiff and deerlet"
for bulk liquid He at equilibrium density 0. 0218 A
using the same technique and trial function we have
used. From the observations that the peak in g(r)
occurs at a greater distance and is of greater width
in the two-dimensional system than in the bulk, it
can be concluded that the mean separation of the
particles is larger and they are less well localized
in the former system than in the latter.

The upper bound on the ground-state energy pro-
vided by the variational calculation described in
this section can be decreased somewhat by the ap-
plication of several other techniques. One of these
is the paired phonon analysis, ' ' which determines
the wave function and expectation value which satis-
fies the extremum condition

(3.6)

in the complete space of Jastrow functions $0. This
removes the restriction to the subspace of Jastrow
function defined by the parametrization of Eq.
(3. 2). This technique has been applied to the bulk
'He system by Campbell and Feenberg. ' An addi-
tional correction can be obtained by introducing
wave functions which are not in the Jastrow space.
Davison and Feenberg, ' for example, have calcu-
lated the contribution of the states

pg pf p f-7 4o

in second order of perturbation theory to the ground-
state energy where $0 is the wave function satisfy-
ing Eq. (3.6) and where pf is the usual density
fluctuation operator. The total of these two con-
tributions is about a 1 'K lowering of the ground-
state energy of the bulk system bringing the theo-
retical results into very close agreement with ex-
periment. The magnitudes of these corrections in
the two-dimensional system must, of course, be
calculated independently.
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FIG. 6. The radial distribution function obtained from
the variational calculation at a density of 0. 036 A. ~ (solid
line) and a similarly obtained radial distribution function
for bulk liquid He at a density of 0. 0218 A 3.

IV. DI SCU SSION

A semiclassical calculation of the properties of
a two-dimensional system of bosons at the absolute
zero of temperature indicates that the ground-state
of the system represents a liquid. It further indi-
cates that the two-dimensional close-packed solid
is not self-bound. A variational estimate of the
ground-state energy per particle was found to be
—0. 6 'K.

Stewart and Dash have interpreted their experi-
mental results on the heat capacities of submono-
layer helium films adsorbed on argon-plated cop-
per as indicating that the helium is condensed into
a two-dimensional solid with a lateral binding of at
least 15 'K per particle. If this interpretation is
indeed correct then it must be concluded from the
results of the calculations of this paper that the
presence of a solid state with a large lateral bind-
ing cannot be due primarily to the two-particle in-
teraction. It must rather be attributed substan-
tially to the presence of the substrate potential
which makes the problem inherently three dimen-
sional and introduces both band-structure and dy-
namical- interaction effects.
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Apparatus and experimental procedures suitable for a number of high-precision measure-
ments of properties of liquid helium near the superfluid transition temperature Tz are described.
Experimental determinations near T„of the heat capacity at saturated vapor pressure are pre-
sented. On the basis of these measurements, the asymptotic temperature dependence of the
heat capacity at constant pressure C& is examined and compared with current theories of criti-
cal phenomena. Although there is some latitude in the interpretation of the results in terms
of the asymptotic behavior of C&, no interpretation fully in agreement with the original forrnula-
tions of the scaling laws for critical phenomena, and with a divergent C&, is consistent with
the measurements. It is expected that an extensive discussion of the thermodynamics of the
X line at higher pressure, based on measurements of the heat capacity at constant volume C„,
will be presented in a later publication.

VOLUME 3, NUMBER 2

Heat Capacity near the Superfluid Transition in He4 at Saturated Vapor Pressure

I. INTROD UCTION

In recent years it has been possible to measure
rather accurately a number of equilibrium'-" and
transport" properties near the superfluid trans-
ition temperature T„ in He'. Some of these mea-
surements have been used"" ' ' ' to verify rather
accurately predictions based upon the so-called
scaling laws ~7 which relate the temperature de-
pendences of various parameters near critical points.
There exist already very detailed measurements of
the heat capacity at saturated vapor pressure' ' C,
for He' near T„. However, developments in low-
temperature techniques and instrumentation which
have occurred since the time of this work make it
possible to improve considerably upon these earlier
results, and to establish the detailed nature of the
divergence of the heat capacity at constant pressure
C~ more precisely. It seems particularly desirable
to study the divergence of C~ in great detail for the

superfluid transition. This system is extremely
suitable for high-precision experimental work, and
one can hope to put theoretical predictions ' to a
more severe test here than is possible near most
other critical points. Some of the well-known ad-
vantages from an experimental viewpoint of the
superfluid transition are the relative ease of attain-
ing thermal equilibrium, even for He I, the high
purity of the sample, and the ease with which cor-
rections for the gravitational pressure gradient~'
in the sample can be applied. Ne therefore have at-
tempted to measure C, as precisely as can reason-
ably be done at this time. These new results are in
very good agreement with the earlier work. ' '
Extremely near the transition, where the precision
of the measurements is limited by the temperature
resolution, the new data are only about a factor of
2 more precise than the older ones. Further away
from T„, where the precision is limited by other
calorimetric techniques, the new results constitute


