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The Landau condition, &&v~ = 0, for He rr and the analogous Meissner effect in superconduc-
tors are shown to follow from the existence of persistent currents by the use of a new defini-
tion of the quasiequilibrium state. The novel aspect of this definition is the requirement that
the effective Hamiltonian defining the density matrix is invariant under infinitesimal quasi-
Galilei transformations. In applications to He rr and superconductors, the existence of a
condensate implies that the density matrix does not have the full symmetry of the effective
Hamiltonian. By slightly relaxing the quasiequilibrium conditions we obtain the usual Landau
equations for v~ (for the case that v„= 0).

I. INTRODUCTION

Landau's phenomenological two-fluid theory cer-
tainly provides the most successful and widely used
description of He rr, but there are aspects of super-
fluid flow which cannot be treated within this frame-
work. Two closely related phenomena of particular
interest are the quantization of circulation and the
Josephson effect, both of which must be imposed
ad hoc on the two-fluid theory. From the micro-
scopic point of view, the usual argument for the
quantization of circulation involves the assumption
that the superfluid velocity is given by the gradient
of the phase of some sort of condensate wave func-
tion. ' In a recent publication' we gave an alternative
formulation in which the superfluid velocity v, (x)
was introduced as the thermodynamic parameter
conjugate to the experimentally observed persistent
mass currents. We were then able to carry out a
statistical- mechanical derivation of the quantization
condition; however, we still had to impose the fol-
lowing conditions on the thermodynamic parameters:

V&v, =0, V(p+-, v,)=0, VT=O, (1)
where T(x) and p(x) are, respectively, the local
values of the temperature and chemical potential
(per unit mass). The first of these equations is the
well-known Landau condition, which is a basic pos-
tulate of the two-fluid theory, and the remaining
equations are consequences of the theory for the
steady-state case. In the present paper, we will
eliminate this last remaining reference to the two-
fluid theory by exhibiting a statistical-mechanical
derivation of Eq. (1). Thus, we now have a purely
statistical-mechanical description of steady super-
fluid flows, including the quantization of circulation,
which is based solely on the experimental observa-
tion of persistent currents.

The Landau condition, which is supposed to hold

for general time-dependent flows has been the sub-
ject of much discussion. 3 In this connection,
Putterman and Uhlenbeck4 recently considered a
version of the two-fluid theory in which the Landau
condition is not assumed. They were able to ob-
tain Eq. (1) by imposing thermodynamic stability
requirements on the steady-state solutions. Their
success in deriving the Landau condition on thermo-
dynamic grounds encouraged us to seek a statisti-
cal-mechanical derivation independent of the two-
fluid model.

Although this paper refers explicitly to the prob-
lem of superfluid He, the techniques are general
and can also be applied to superconductors. A
formal correspondence between the two problems
is provided by the substitution mv, -(e/c)A; con-
sequently, we find V&A=0. In other words, an
argument analogous to that yielding the Landau
condition can be used to derive the Meissner effect.

Section II contains our definition of a quasi-
equilibrium state and shows that Eq. (1) constitutes
the necessary consistency conditions imposed by the
invariance properties of the state. In Sec. III we
apply an analogous argument to superconductors
and derive the Meissner effect. Section IV dis-
cusses a possible generalization to slightly non-
quasiequilibrium states which leads to the postu-
lated Landau equations for v, in the time-dependent
case. In Sec. V we summarize the assumptions
and results.

II. QUASIEQUI LIBRIUM STATES

Since the notion of quasiequilibrium to be used
in this paper is modeled on that of absolute equilib-
rium, we begin by reviewing some basic concepts
of equilibrium statistical mechanics. The stat:isti-
cal operator describing an ensemble can be obtained
by maximizing the conventional entropy expression
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(or minimizing the information) subject to the set of
constraints on observables appropriate to the en-
semble in question. The family of observables
usually consists of the total Hamiltonian H together
with a set of constants of the motion ( F, I. The
Lagrange- multiplier method yields a statistical
operator S of the form

Z) = exp[- 0 —P ( H —2 &
&

~ F;) ]

where P = 1/kT and P&, is the Lagrange multiplier
conjugate to F&. We wil1. call an operator con-
structed in this way the ensemble oPerator corre-
sponding to the given set of constraints. It follows
immediately from the definition that the ensemble
operator has the same symmetries as the effective
Hamiltonian

H, «=H —P, X, F,
This behavior should be contrasted with that of the
density matrix describing the actual state of the
system which often does not have the full symmetry
of the effective Hamiltonian. It is this possibility
which necessitates the special terminology intro-
duced above. The extra information responsible for
this symmetry-breaking behavior is not usually
imposed as a further constraint; instead, it is
incorporated into the definition of ensemble aver-
ages by restricting the sum over states to a suitable
subspace of many-body wave functions. This can
be done formally by writing the density matrix as
a restricted ensemble operator

+r=6'+ f

where 6' is the appropriate projection operator.
To ensure consistency between the density matrix
and the original ensemble, 6' must be a constant of
the motion and also commute with x). A simple
example of a density matrix having broken symmetry
is provided by a crystal lattice. The effective
Hamiltonian is invariant under continuous transla-
tions and rotations whereas the correct density
matrix is only invariant under a discrete subgroup
(the space group of the lattice).

The various persistent-current phenomena cannot
be conveniently described by means of the absolute
equilibrium theory outlined above. The usual ap-
proach has been to treat these phenomena within the
framework of local thermodynamic equilibrium
theory. The basic idea of that theory is to partition
the system into macroscopically small regions, each
described by an equilibrium ensemble operator.
The space-time variation of the local thermodynamic
parameters is fixed by imposing the usual continuity
equations. In this approach, no global ensemble
operator describing the entire system is defined.
This is in contrast to the work of Mori, ' who ex-
plicitly defines a global ensemble operator for the
purpose of deriving the hydrodynamic equations for

normal systems.
For our purposes, the definition of a global en-

semble operator is essential; the derivation of the
conditions in Eq. (1) depends crucially on this idea,
Moreover, the quantization of circulation is a con-
sequence of global boundary conditions imposed on
the many-body wave functions. We will proceed by
generalizing the absolute equilibrium theory just
outlined to yield a definition of the quasiequilibrium
state which is especially suitable for the descrip-
tion of persistent flows.

By analogy with the absolute equilibrium theory
we compute the entropy from the quasiequilibrium
ensemble operator X) in the canonical way,

S= —k TrSlnS with TrS = 1

The form of S is determined by maximizing S sub-
ject to the appropriate set of constraints. We
impose the constraints

&sc(x)& = &(x), &p(x)& = q(x), &j (x)& =&(x), (3)

where (F&=- TruF; the operators X, p, and j are,
respectively, the densities of energy, mass, and
momentum; and the right-hand sides in Eq. (3) are
given c-number functions of position. The fact that
J 40 is our definition of the superfluid state. It
should be remarked that these functions must vary
slowly on the microscopic scale. In the usual way,
we introduce a Lagrange multiplier for each con-
straint [let the multipliers be denoted by P(x),
p, (x), v, (x) ] and find by a standard calculation

a=exp[- 0 —J' d'x P(x)[&(x)- v, (x) T(x)

—V(x) p(x)]j, (4)

where 0 is the normalization constant, P (x) is the
reciprocal temperature, and p(x) is the local chem-
ical potential (per unit mass). Since we are inter-
ested in steady-state phenomena, the thermodynam-
ic parameters will be assumed to be time indepen-
dent. For persistent superfluid flows this approx-
imation is essentially exact. The parameter v,
may be interpreted as the superfluid velocity since,
in the steady state, the normal fluid is necessarily
at rest with respect to the container walls.

We now have an expression for X) which satisfies
the necessary condition of time independence. This
expression by itself, however, does not constitute
a complete definition of quasiequilibrium. To see
what is lacking, recall that the absolute equilibrium
ensemble operator, in addition to being independent
of time, also has simple Galilean transformation
properties. In particular, it is invariant under
rotations and spatial translations. It is the analog
of the Galilean transformation properties which is
missing in o. r definition. As a guide to the correct
replacement of the usual Galilei group, we will ex-
press the theory in terms of quantities which are
invariant under Galilean transformations. Note
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that this is done implicitly in the usual absolute
equilibrium theory by evaluating the various observ-
ables (e. g. , the total Hamiltonian, the total mo-
mentum, etc. ) in the center-of-mass frame for the
whole system. More generally, the correct pro-
cedure is to express the theory in terms of observ-
ables from which the coherent motion has been
eliminated. In our case, the relevant coherent
motion is not that of the local center of mass but
instead is described by v„since that is the param-
eter conjugate to the measured persistent current.
Thus, we should formulate the theory in terms of
local observables referred to the local frame in
which the coherent motion vanishes; i. e. , the
frame for which v, (x) =0. First, we introduce the
Hamiltonian density Xp referred to the local frame;
it is expressed in terms of observables referred to
the laboratory frame by

23C0=3C —vs ] + ~Pvs

Note that Xp is obtained from X by the replacement

(I/i) V (h/i-) V —m v,

where m is the mass of the He atom. The same
replacement leads to the appropriate local momen-
tum density

] 0=] —Pv~

Thus, we can express S in terms of explicitly in-
variant quantities by

&=exp{—fI —J' d'x p[XO —(p+ —,'v', }p]} .
If we consider the subgroup of spatial transla-

tions, with generators given by

P= f d'x I (8)

then the form of the local momentum density given
in Eq. (6) suggests that the natural replacement for
P is'

II= f d~x I 0= P- f d'x pv,

~( )
$ F(x)q (~)

where

{1O)

In order to gain some insight into the significance
of the operator 0, we continue the program of ex-
pressing all quantities in Galilean invariant form
by replacing the usual field operator g(x) with the
field operator {IF)(x) referred to the local frame.
Clearly, the two operators are related by a Galilean
transformation, but the fact that v, varies from
point to point prevents us from using the usual for-
mula. However, the required generalization is
easily seen to be

that employed by Dirac and Mandelstam in their
path-dependent formulations of quantum electrody-
namics. The significance of II is made clear by
the following calculation:

[$(x), 11]=e'e'*'[1)(x}, rl]

=e' '" [g(x), P —f d y p(y)v, (y)]

= e'e" [(If/i) V{{(x) —mv, (x)g{x)]

=(g/i)V(e"q)=()f/i}Vy .
In other words, II is the generator of spatial trans-
lations for the field P(x). In a similar way, we can
construct appropriate modifications of each of the
remaining generators of infinitesimal Galilei trans-
formations; but we omit the explicit expressions,
since they are not needed in what follows. The in-
finitesimal transformations induced by the modified
generators will be called quasi-Galilei transforma-
tions.

We are thos led to complete the definition of
quasiequilibrium by requiring the ensemble operator
to have the same invariance under quasi-Galilei
transformations as the equilibrium ensemble opera-
tor has under ordinary Galilei transformations. In
particular, the ensemble operator must be invariant
under quasitranslations. The necessary and suffi-
cient condition for this invariance is that the
commutes with the generators II; this is equivalent
to the condition

C=- f d'x P{[x„il] (&+-,'v', )fp, il]}=0 . (12)

Using Eq. {9), we easily find

[p, II]= (ff/i)Vp

[Z,(x},II]=[~(x),P]- f d'y [~(x),p(y)]v, (y)

According to Eq. (5), we have

[~(x),p(y}]= [K(x),p(y)]- v, ~ [I (x), p(y)]

where the operators are gven by

p =mt'0,

I = (g/2i)(P'Vg —Vg'ti),

SC(x) = (h'/2 m )Vg'(x) ~ Vg (x) + —,
' f d'y

x gt(x)g (y)u(y —x)g(y)g(x)

and u(y —x) is the interaction potential. A straight-
forward calculation yields

[T(x), p(y) ] = —ihp(x) V,5(x —y)

[3CO(x), p(y)]= —ih)o(x) ~ V„5(x —y), (13)

E(x, t) = —{m/5) f„(dy ~ v, ——,
' dr v, ) (») [3Co(x), P, ]= —ik[V, IC —(v,),V,j,+ —,'v', V, p]

and y is an integration path in space-time ending at
the point (x, t). This definition of Q is analogous to

We next substitute these results into Eq. (12) for
C. In those terms involving gradients of operators,



688 GARRISON, WON G, AND MORRISON

we integrate by parts. After collecting terms and

using some vector identities we finally obtain

(ig) 'C = f d'x {Vp[K,—(«+ -,'v', )p]- ppV(«+ 2c',)

—Pjox(Vxv )) (14)

It is shown in Appendix A that the operators Ko, p,
and ]~ may be regarded as mutually independent;
consequently, the invariance condition C=O can
only be satisfied if their coefficients vanish.
Therefore, we have derived the Landau condition
V&v, =O, as well as the other conditions in Eq. (1).
Thus, from our point of view, Eq. (1) represents
the necessary consistency conditions imposed by
the invariance of the ensemble operator under
quasitranslations. Since all of the desired condi-
tions have been obtained from quasitranslation in-
variance, we should show that the required invari-
ance properties for the remainder of the quasi-
Galilei transformations do not impose any new con-
ditions. The necessary calculations are similar to
the one given above; consequently, we omit them
arid simply give the result. In each case, the cor-
rect transformation property is guaranteed by the
conditions in Eq. (1).

In the discussion of the absolute equilibrium
theory at the beginning of this section, we stressed
the possibility that the density matrix describing
the actual state of a system could have less sym-
metry than the ensemble operator because of the
inclusion of additional information. This possibil-
ity also exists for the quasiequilibrium theory de-
veloped here; that is, the quasiequilibrium density
matrix may fail to have the full quasi- Galilean in-
variance of the ensemble operator. In applying
this theory to superfluid flows in He rr, the quasi-
Galilean invariance of the ensemble operator is
indeed broken by the existence of a condensate. In
fact, it is shown in Appendix B that the quasitrans-
lation invariance of the ensemble operator Z yields

& I (x)) = &p) v, (x)

that is, it describes a system which is entirely
composed of superfluid at all temperatures. Conse-
quently, the density matrix describing persistent
currents in He ri corresponds to broken quasitrans-
lation invariance.

So far, we have not considered the problems
arising from possible singularities in the thermody-
namic parameters; however, we must allow for
singularities in v, in order to describe vortices.
Allowing v, to become singular on a vortex line is
a mathematical idealization of the structure of the
vortex core and, for singular v„ the many-body
wave functions are required to vanish if any argu-
ment lies on a vortex line. More explicitly, we
expect a 4-function behavior in V'&v, concentrated
on the vortex line, and it is necessary to show that

these singularities do not influence the calculation
of C. In Appendix A, the singular term Vxv, (x}
appears multiplied by the mass density operator
p(x), but the boundary conditions on the wave func-
tions ensure that all matrix elements of p(x) vanish
if x lies on a vortex line; therefore, the 6-function
singularities make no contribution and the argument
remains valid.

III. MEISSNER EFFECT

In this section, we will show that an argument
analogous to that just given for superfluid He can
be applied to the problem of superconductivity to
yield the Meissner effect. In the presence of a
static external magnetic field with vector potential
A„ the Hamiltonian density is

K, =K- (1/c) I ~ A, + (e/2mc~} pA~

where K is the Hamiltonian density in the absence
of any field; ~ and p are given by

l = (eff/2mi)((&Vg - V&jI ~ &jt), p =eP g, (16)

and g is the electron field operator. The correct
gauge-invariant expression for the electron current
in the presence of A, is

I, = I —(e/mc) pA, (17)

For normal metals, one has & l,(x)) = 0 almost ex-
actly; but for a superconductor, which can support
persistent currents, this equation need not hold.
In the latter case, we can describe the system by
a quasiequilibrium density matrix as in Sec. II.
Thus, we maximize the canonical. entropy expres-
sion, Eq. (2), subject to the constraints

&&.(x)& = &(x), & p(x)& =&)(x), &l, (x)& = J(x) (18)

and obtain the ensemble operator

Z)= exp {-fi —f d'x P(x) [K,(x)

—(I/c) A&(x) ~ l, (x) —4 (x)p(x)]], (Ig)

where P(x), C(x), and (1/c)A, (x) are the Lagrange
multipliers for the constraints in Eq. (18). If we
introduce the explicit expressions for K, and j, into
Eq. (19}, we can rewrite it in the form

a=exp{- 0 —f d x P[XO —(4+eA2&/2mc2)p] j, (20)

where

Ko-=K-(I/c)j ~ A+(eA'/2mc')p and A=A, +A,

(21)

The Lagrange multiplier A& has the obvious physical
interpretation of the induced vector potential, while
4' is an average electrostatic potential.

To apply the second part of our definition for
quasiequilibrium, we must identify the quasitrans-
lations. In the present case, the key lies in gauge
rather than Galilean invariance, but the formal
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procedure is identical. That is, we make the sub-
stitution

(t/i) V- (ff/i) V (e/c)A

Ve=p, Vxv, =P,
'+ V(p + rv, ) = 0at

(28a)

(28b)

H'= f d'x e(K-v, j —pp) (24)

where e(x) —= To/T(x), and To is the spatial average
of T(x); i.e. ,

To- V ' f d'x T(x)|
where V' is the volume of the system. This choice
for H' is analogous to the replacement of the usual
translation generator P by the quasitranslation gen-
erator II. The time dependence of the parameter
v, is determined by imposing the Heisenberg equa-
tion of motion

a II
fa—„=[fl,H'] . (25)

On the other hand, the time dependence of 0 is
explicitly given by Eq. (9) as

aH s av,dsx pat at (26)

since we are using the Schrodinger picture. Thus,
we have

l s av, 1dx p '= —. [a'. ll]at iR

and, by using Eq. (14), we find

(27)

to obtain the modified translation generator

ll=(m/e) f d~x ja(x), jo=j —(e/mc)PA . (22)

The arguments in favor of this definition are iden-
tical to those given in Sec. 0 with appropriate
changes in terminology. Just as in Sec. II, the
requirement that & commutes with 0 leads to the
consistency conditions

V&&A=O, VP=O, V[@+eA2/2mc~)]=0 . (23)

Note that the first of these equations, which repre-
sents the Meissner effect, involves the total A,
whereas the last equation only involves the induced
field A&. The latter condition represents a kind of
electrostatic Bernoulli's equation. '

IV. SMALL DEVIATIONS FROM QUASIEQUILIBRIUM

The conclusions reached in Secs. I-III are all
rigorous consequences of the definition of quasi-
equilibrium. In this section, we propose a general-
ization to slightly nonquasiequilibrium states. The
ensemble operator is assumed to have the form
given in Eq. (4), but the thermodynamic parameters
are allowed to depend on time as well as position.
We choose to work in the Schrodinger picture so
that the operators have no time dependence, and we
use the effective Hamiltonian, defining S as the
generator of time translations

or (2())

E =(e/2mc2) VA,

where E is the electric field. Similar relations are
given by London. '

V. SUMMARY

The principal results of this pager are the de-
rivations of the Landau condition ~&v, =p, and the
Meissner effect ~&&A=0. These conditions, in
turn, imply the quantization of circulation and
flux, " respectively; consequently, these effects
can be understood on a purely statistical-mechanical
basis with no reference to phenomenological the-
ories.

We start from the experimental observation of
persistent currents and proceed to construct a
suitable statistical-mechanical description of such
states. This description is provided by our defini-
tion of the quasiequilibrium state. A density matrix
+„describes a quasiequilibrium state if it is a re-
striction of a quasiequilibrium ensemble operator
S: i. e. , (a) &„=O' R for some proj ection operator
a', (b) &is time independent and maximizes the en-
tropy, subject to the constraints appropriate to the
system in question; and (c) B is invariant under
quasi-Galilei transformations. The generators of
the infinitesimal quasi- Galilei transformations are
constructed from a modified momentum density
operator whose form depends on the physical nature
of the persistent current. For He rr, the modified
momentum density is simply the momentum density
referred to the local superfluid rest frame. For
superconductors, the usual momentum density is
replaced by the standard gauge-invariant form in
Eq. (22).

In a less rigorous way, we have given a possible
generalization to slightly nonquasiequilibrium states
which yields the usual Landau equations for v,.
However, there is no provision for normal fluid

The definition of 8(x), together with the first of Eqs.
(28), yields 8 =-1; this fact was used in writing the
third equation. Note that this equation is useful in
deriving the Josephson effect' in He rr. We have

thus obtained a specialization of the Landau two-
fluid equations for the case of no temperature gra-
dients and no normal fluid motion. The restricted
form of the equations is due to the restricted form
of the nonquasiequilibrium ensemble operator.

The corresponding calculation for a supercon-
ductor leads to

1aA . e———=v 4+ ~A]c at 2mc
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motion so that these equations are only valid for
situations in which the normal fluid motion has
already been dissipated.

APPENDIX A

We wish to prove that the operator condition
C = 0, where C is given by Eq. (14), leads to Eq.
(1). Since C is to be the zero operator, it must
commute with any operator; therefore, a necessary
condition for C=0 is given by

Q-=[p(g}, [p(g), c]]=o,
where

p(g} =—f d x p(x}g(x}

and g is a real-valued test function. First, note
that [p(g), [p(g), j (x)]]=-0, since the commutator
[p, I ] is proportional to p. Then, according to Eq.
(14), we have

Q= f d x VP(x)[p(g), [p(g), Ko(x)]]

Substituting for the inner commutator from Eq. (13)
leads to

Q=N f d'x VP V,g[p(g), j,(x)]

=-I'f d'x ivgi'pvP .

Since I Vg I p is a positive operator, the condition
Q = 0 requires VP = 0.

The first term in C has now been eliminated so
we next impose

[p(g), c]=o,
which yields

f d x pVgx(Vxv, ) =0

Since g is arbitrary, we must have V' && v, = 0.
The third term in C has now been eliminated so

that we are left with

f d'x p V( p + -,' v', ) = 0

but again p is a positive operator so we must have
V(p+ —,'v,') =0.

APPENDIX B

The ensemble operator &satisfies [B,II]=0;
consequently, we have

(V~ p(x)) = Tr S(i/I)[p, P,]
= (i/}I)Tru[p, 11,]
= (i/K)Tr[B, II~]p

=0

i.e. , (p(x)) = (p), a constant. Similarly we find

(V~j, (x)) = (i/K)Tr5)[j, (x), P~]

= (i/g)TrS{[j((x), II~]+ f d y

x v (y)[j (x), p(y)])
= (p(x)) V,v~(x)

= V, ((p)v, (x)),
so that

(j (x)) = T+(p)v(x)

where I is constant. Since the current must vanish
at large distances from all vortex lines we must
have I =0.
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