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certain impact parameters. The triplet curve
(resulting from the repulsive triplet interaction)
shows no such structure at smaller t; however it
shows a very smooth undulatory behavior at larger
e, which must be a reflection of the wiping out of
the attraction-repulsion of the singlet-triplet in-
teractions at these energies by the rapidly os-
cillating momentum factors.

A few remarks are in order about the accuracy
of the results. The exchange potentials (the Cou-
lomb potentials are exact since they are calculated
from the analytic expressions of Flannery and
Levy' ) are accurate to about three places (see
Ref. 1 for a discussion of the accuracy of the
ground-state-ground-state curve), except for the
v= 2. 0curves, which are accurate to about two
places. The potentials were so time consuming
that their range had to be spanned by only seven
or eight points from R = 0. 5 out, supplemented by
points, as needed, to predict the united atom be-
havior for R &0. 5. A four-point Lagrangian inter-

polation was used to compute the potential between
the calculated points as called for in the self-choos-
ing step-size technique used to integrate Eq. (2),
with a reproducibility of from 1 to 5' at intermedi-
ate impace parameters and as high as 10%%uo at small
8 (B & l). Qf course the error in the amplitude is
magnified when the probability is computed, so
that for small probabilities these results can be no
better than semiquantitative and quantitative for
larger probabilities, although since the largest
amount of error occurs for B & 1, the product of
&xP(B) tends to reduce the error in the total cross
section. In view of how little is known about these
excitation collisions the accuracy of the present
results are considered sufficient.
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The Bethe procedure to obtain an asymptotic expression for the total cross section for in-
elastic scattering is extended to include three constants instead of the usual two. Within the
first Born approximation, the third constant is essentially related to the total number of elec-
trons in the target. By subtracting the sum of the cross sections for discrete excitations from
the total cross section, the ionization cross section can also be given in an asymptotic form
with three constants. The Mott formula is used to estimate the correction for electron ex-
change in the ionization cross section. The resulting cross sections compare favorably with
experiments on the ionization of H, He', H, He, and Li' by fast charged particles.

I. INTRODUCTION

The Bethe procedure' ' provides a convenient

method of expressing the first Born cross sections
for individual excitation (or ionization) by charged
particles in terms of a few atomic parameters,
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which are uniquely determined from the generalized
oscillator strengths (GOS). With these parameters,
the dependence of the cross sections on the incident
velocity can be factored out and a very compact ex-
pression is obtained.

Furthermore, sum rules for these parameters
enable one to obtain the total inelastic scattering
cross section in the form

o„,=A(lnT)/ T+8/T+C/T +0(T ), (1)

where T is proportional to the square of the incident
velocity (see Sec. II for definition), and A, 8, and
C are constants characteristic of the target atom.
As was shown earlier, "A can be computed from
the ground-state wave function alone, and 8 re-
quires a knowledge of the oscillator-strength dis-
tribution as well. In this paper, we show that the
parameter C can be determined from the ground-
state wave function alone.

Equation (1) with the first two constants, A and

B, is accurate in the limit of fast incident particles.
We shall refer to the two-term expression for the
cross section as the Bethe asymptote. The useful-
ness of Eq. (1) is further extended to a lower-ve-
locity region by the inclusion of the third constant.
In fact, since other physical effects not included in
the first Born approximation, such as electron ex-
change, target polarization, and distortion of the
incident wave may contribute in p„, to the order of
T or even slightly larger, we expect that the
practical value of the asymptotic expression (1)
based on the first Born approximation is more or
less exhausted by including the C term. We shall
refer to the three-term expression for the cross
section as the Born asymptote.

The Born asymptote is expected to be useful down
to a region of relatively low velocity when the inci-
dent particle is not an electron, there being no ex-
change contribution to o„,. Moreover, knowledge
of the contribution of the first Born approximation
to the 7 order is desirable for further extension
of the theory.

Also, the Born asymptote for ionization can be
obtained by subtracting the Born asymptote for dis-
crete excitation from that for the total inelastic
scattering in the same manner as has been illus-
trated in Refs. 4 and 5 to obtain the Bethe asymp-
totes for the ionization of He and Li'.

II. PRELIMINARIES

Q~ = E„(4RT) {2/ [1+(1 —x) ]j (4a)

Qz--4TM (Rm ) ([I+(1—x) ~ ]/2}
where

x = mE„/MT

(4b)

(5a)

and M is the reduced mass of the colliding system.
The conservation of energy requires that

0&x&1 (5b)

The total cross section is defined as the sum of
O„over all states n which are accessible energeti-
cally:

Otot ff +n

=4vazzz(R/T) D(T)

where

D(T) =&.Jo' dQg. (Q)/Q ('fa)

g. (Q) =f. (Q)R IE. . (7b)

The procedure for the determination of the con-
stant C in Eq. (1) is parallel to that for the so-
called inner-shell correction to the stopping pow-
er. 6 We are concerned with X „o„here instead of
g „E„o„for the stopping power. We shall denote
the sum over energetically accessible states only
(including the continua) by P„, that over all states
by g,», and the difference by 5.„' = p „,—p„.

Then, as is shown in Paper I, the Bethe asymp-
tote is given by

osefbe= 4vaoz (R/T)DBethe (T)

where

all atomic electrons whose position vectors are
r~.

The integrated cross section for excitation to
the state n by a particle of charge ze and velocity
v is then given by'

o„=4vaoz R (TE„) ' J dQf„(Q)/Q, (3)

where T=-,'mv, m being the electron mass, and

Q& and Qz are the lower and upper limits of Q, re-
spectively, which depend on both T and E„.

Our treatment is nonrelativistic throughout. Ele-
mentary kinematics leads to

The GOS for the transition of an atom from state
0 (normally the ground state) to state n is defined
byl

f.(Q) =(8./R) i&el ~i ""'&I0&I'/Q, (2) '„Q~.(Q)-~. (0) "„g.(Q)

where E~is the excitation energy, 8 is the Rydberg
energy, iof is the momentum transfer, Q = (Kao)z,
ao is the Bohr radius, and the summation is over

(9)
The last two integrals in Eq. (9) correspond to -Iz
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1
D(T) =-r, -g„(0)lnq, + dq

n 0

"dq z. (Q) '~
dq z. (Q) —g. (0)

"d@g. 0
2

(10)

The difference between D(T) and Da„„,(T), there-
fore, is given by [see Eqs. (4a), (9), and (10)]

D (T) - D..„.(T)-=~ (T) = 0 ~, ,
g=1

where

(1la)

4RT~, = -P g„(0)in
n n

'
dq g. (Q) z.(o)-

n

(1jb)

deign
1

(1lc)

2Z~ (o)( [.=-(. .
o&dq g. (q) g.(o)—

4
n Q

(1ld)

(lie)

and I&, respectively, of Paper I. Our task is,
therefore, to find the leading term (in powers of
1/T) in the difference between D(T) defined by Eq.
(7a) and Da„„,(T) defined above.

For continuum states, the differential GOS,
df(E, Q)/dE, and the corresponding quantity
dg(E, Q)/dE = (R/E)df(E, Q)/dE must be used. We
shall also use shorthand notations for the dipole
oscillator strengths f„=f„(0) and df/dE =df (E, 0)/dE.

III. THEORY

In arriving at Eq. (9) from Eq. (7a), we have
used essentially two approximations. The first is
the replacement of 7„by );,», thus including en-
ergetically inaccessible states. This introduces
an error of the order of T in 0„, as is shown
later. The second is the replacement of Q, by its
approximate value E„/4R T [Eq. (4a)] and Qz by
infinity, thus making the limits on both integrals in
Eq. (9) independent of T and E„. As is discussed
later, the replacement of Q, results in an error of
order T in o„„but that of Q2 does not.

The exact D (T) defined by Eq. (7a) can be written
as

According to Eq. (lib)

df R 4T E
dE ——ln -- 2�l-ndE R R

(12)

where E is an effective maximum for transferred
energy and is of the order of T (see Sec. IIIB for
details). Because df/dE-E "for sufficiently
large E,' we find that

n,, -O(E ' 1nE )-O(T ' lnT)

which is much smaller than what we are interested
in.

B. Evaluation of 6,

The integrals in Eq. (llc) can be eva. luated ex-
actly only if details of the GOS as a function of E
and Q are known. We can evaluate, however, the
leading terms only from physical considerations.
We first note that, for large E, the GOS is sharply
peaked near Q =E/R. In fact, in a three-dimen-
sional plot of the GOS as a function of E and Q —we
shall call it the Bethe surface' —the peaks along the
direction Q = E/R are known as the Bethe ridge.
The Bethe ridge, a feature common to all atoms
and molecules, occurs because, for a sufficiently
large energy transfer, the binding of the atomic
electrons is insignificant and the momentum and
the energy transferred become correlated as if the
electrons were free.

Another important fact to note is the relationship
of the Bethe ridge and the limits Q, and Q2 as func-
tions of E and T. As can be seen from Fig. 1, for
light incident particles (m /M:—1), Q, and Q2 are
on opposite sides of the Bethe ridge for all acces-
sible excitation energies. On the other hand, for
heavy particles (m /M «1), the lower limit Q,
crosses the Bethe ridge (Fig. 2). Thus, for those
states for which 4T & E & MT/m, the range of in-
tegration over Q [see Eq. (3)] excludes the Bethe
ridge.

The maximum energy transferred E is de-
termined from Eq. (5a) as the energy for which x
=1, i. e. ,

sums refer to energetically inaccessible states,
always in continua. Hence, the summation in 6,
and A2 should actually represent integration of func-
tions such as Q

' dg (E, Q)/dE over the excitation
energy E.

A. Evaluation of b, ,

E = MT/m (14a)

dq z. (Q)
n q

Note that b, and b,2 are well defined although the

For a positron E —:T and for heavy particles E is
extremely large. Furthermore, for an electron,
there is an added complication of what E should
be to "exclude" the exchange effect in the first
Born approximation. According to Budge, the
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FIG. 1. Minimum {Q&) and maximum (Q2) of the square
of momentum transfer [Eqs. (4)] as a function of excita-
tion energy E for an incident electron of T=100R. (See
Sec. II for notations. ) The curve AB represents Q& and
BC represents Q2. The Bethe ridge is along the line
Q = E/R. For larger T, the triangular area ABC extends
along the Bethe ridge with the point B {Q& =@2) always on
the Bethe ridge.

The free-electron GOS, however, is only an
idealization and in reality it should be replaced
with a GOS peaked and concentrated near the Bethe
ridge but with a finite width in Q of the order of
(IE)'~~/R, representing the uncertainty in the mo-
mentum transferred. By expanding Q

' in the
first integral of Eq. (15) around Q = E/R, one can
easily see that the correction due to the binding
will modify Eq. (15) by a multiplicative factor of
the form 1+0(I/E ), and Eq. (15) is correct to
the order given. For the hydrogen atom, Eq. (15)
can be shown to be the correct leading term for
the integral.

For the first integral in Eq. (11c), we first ex-
pand the integrand in the Taylor series convergent
for @&E/R'0

dg (E, Q) dg(E, O) R Qdf' Q df"
dE dE E dE 2) dE

(17)

choice of

E„=I+~ (T —I):~7— (14b)
l2 I I I I I I

p, T/R i l00

I being the ionization potential, is consistent with
"neglecting exchange" when the total spin of the col-
liding system is not specified. Following Rudge's
notation, we shall refer to Born (a) when E = T
is used and Born (b) when Eq. (14b) is used.

The transitions to be summed in Eq. (llc) in-
volve large energy transfers (E &E ) in which the
Bethe ridge plays a dominant role. Since the elec-
tron binding is of secondary importance in the
Bethe-ridge region, the free-electron scattering,
i.e. , the Rutherford scattering, should be the lead-
ing contribution there. The Rutherford cross sec-
tion for N free electrons is given by

CX
O

0

IO-

-2-
A

der 47)aoaz2 NR
dE 7/R E

g„(Q) " NR NR
(15)

Formally, the same result is obtained by substi-
tuting in the left-hand side of Eq. (15) the GOS for
free electrons defined as

which is merely the continuum notation for a„de-
fined by Eq. (3). If we use the Rutherford cross
section in the second integral of Eq. (11c) [see Eq.
(3) alsoj, we get

I I I I I I

I 2 3 4 5 6
log jo (E/R)

FIG. 2. Minimum and maximum of the square of mo-
mentum transfer as a function of excitation energy for
an incident proton of T=100R. Notations are the same
as those in Fig. 1. The Bethe ridge falls below Q& for
E~4T. For larger T, the area ABC expands in the
direction of the Bethe ridge, but always in such a way
that the curve for Ql crosses the Bethe ridge at E=-4T.
Figures 1 and 2 are drawn to the same scale. Areas
ABC in both figures represent parts of the Bethe surface
contributing to 0«t. The difference in 0«t for incident
electrons and protons appears only in the T"~ order
I,Eqs. (39)], mainly because the GOS is concentrated along
the Bethe ridge for high E, and for low E in the area
bounded by ABC of Fig. 1.
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where Since f„ is the dipole oscillator strength, we get
from the well-known sum rules that'"

df' «f (E, 0)
dE dQ dE

and so on. For the hydrogen atom we find'

df' df 9R 8R
dE dE E Ea

Z„f„=gf„-Z'f„
=N+ 0 (r-")

and similarly

p„f„E„/R =S(1)+o(r-")
where

(27)

(29)

—E -E ' ' ' for large E.-a - &a+s.s)
dE dE

(19a)

For an arbitrary atom, from Eqs. (1) and (10)-
(12) of Ref. I, it can be shown that, when E»Q and

E»I,
df (0, E) E-g.s F Q (i9b)

dE E

where F (Q/E) is an unspecified but well-behaved
function of Q/E. We assume that the asymptotic
formula (19b) is attained uniformly in Q. Then,
Eq. (19a) holds in general.

From Eqs. (17) and (19a) we get

S(1)=Z f„E /R

As is well known, the value of S(1) is finite and of

the order of the total energy of the atom. ' From
Eqs. (25)-(28) we conclude that

(29)

n~ = —NmR /2M T + 0 (T )

D. Evaluation of ~4

(30)

In evaluating h4 we must distinguish the type of
incident particles. For light particles (m /M:—1),
Q, & E„/R (Fig. 1) and the integrand of Eq. (lie)
can be expanded in the Taylor series' as is done

for the first integral of Az (Sec. IIIB). Then the

contribution d4, from the region Q, & E„/R is given

by
(()) z (0) I' ~@ ~qR df

)
~m

-o(r 4') (20)

and from Eqs. (llc), (14), (15), and (20) we have

~4&=-+.(R/E. )(f.'Q)+ f."&Q)+ )

where

(qq f. (()))'.=.
(3i)

—NR/T

dg = —2NR /T
—NmR/MT

+0(T ~)

for m/M= 1, Born (a)
)

for m/M= 1, Born (b)

for m/M«1

(21)

and so on. By substituting Eq. (4a) in the above,
we have

a~, = —R (4 T) ' Q„f„'E„[y (x)] /R

—R (8T) P„f„"E„[y(x)] /R +0 (T )

(32)
C. Evaluation of 53

From Eq. (11d) we obtain

a, = —2 p„g„(0)iny(x)

where

(22)

Again we use an inequality (see Appendix A)

I+-,kx& [y (x)] &1+(2 —1)x

which holds for 0&x&1. We can write

[y (x)]"= 4' (1/4'+ p )

(33)

y (x) = 2/[1 +(1-x)"'] (23)

For 0 &x & 1, an inequality holds (see Appendix A):

—,'x+$x'&lny (x) &-,'x+(ln2 ——,')x' . (24)

With (24), Eq. (22) can be written as

n, = ——,
' P„g„(o)x —xg„g„(O)x'

n~, = —R (4 T) ' Z f'„E„/R + 0 ( T 2)
al 1

= —S (1)R/4T+0(T )

where

(34)

where p is a function of x and is less than unity.
Then Eq. (32) becomes

= —mR (2MT) ' P„f„—X (mR/MT)

x Z„f„E„/R

where

$& & & 2 (ln2 ——,')

(25)

(26)

S' (1) =-P f„'E„/R .
al 1

In Eq. (34), the summation over states has been
extended to infinity. But those states with E„&T
do not contribute to the order of T ' [Eq. (19)].
Also note that Eq. (34) applies both to Born (a) and
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TABLE I. Values of S'(1) fEqs. (35) and (B3)).

Atom a H (11$)b He (1 fS) c Li' (1 $) c

S ' (1) 1 2. 1816 2.0468 2.0243

~For any state of any one-electron atom.
Reference 18.

'From the 53-term correlated wave functions by
A. W. Weiss, J. Res. Natl. Bur. Std. U. S. 71A, 163
(1967).

(b) cross sections. As is shown in Appendix B,
S'(1) can be evaluated from the ground-state wave
function alone, and

S' (1)= N+ small correction terms. (35)

Accurate values of S'(1}for the ground states of
H, He, and Li' are given in Table I.

Because Q, -Ez/4TR [see Eq. (4a)], any attempt
to extend the sum rule to terms with higher deriva-
tives in the expansion for h, ~, will eventually en-
counter divergent expressions. For the hydrogen
atom, the term with the fourth derivative in Eq.
(31) will diverge when summed over all states [see
Eq. (19a)]. By definition h„ is a finite quantity.
This divergence, however, puts a limitation on the
use of the sum-rule method in extending Eq. (1) to
include higher powers of T '.

For heavy particles (m /M «1}, Q, crosses the

= NR (
——

) (36a)

Note that the NR/E term exactly cancels the con-
tribution from 4z [Eq. (21)], and that E,=4T [1+0
(m /M}]. For all practical purposes, however, we
may set I /M= 0. With this approximation

n4z= NR/4T+-O(T ') for m/M=O . (36b)

From Eqs. (34) and (36b), we now have

Bethe ridge at E,:4T-(Fig. 2). The summation
over states in 6, [Eq. (lie)] now must be divided
into two parts; the region in which E„&E„, and
that in which E„&E„&E, E being defined by Eq.
(14a). For the former region, the integrand is ex-
panded in the Taylor series as is done for the case
of light particles and the result is given by h4„
Eq. (34}. For the latter region (E, &E&E ), the
range of integration over Q includes the Bethe
ridge (Fig. 2}, and the integrand of Eq. (lie) is
replaced by the free-electron result [Eq. (16)].
The contribution from the second region is then
given by

NR6 (QR —E)
EQ

—S' (l)R/4T for m/M=1
+0(T z)

(37a)

—[N+S'(1)] R/4T for m/M=0 (37b)

E. Evaluation of 6,
The upper limit Q, in Eq. (7a) for energetically

accessible states occurs far out from the Bethe
ridge for heavy particles (Fig. 2), and for light
particles the significant part of the GOB still oc-
curs for Q& Q2 (Fig. 1). Thus, we may safely use
the known asymptotic dependence' of the GOB for
large Q:

f„(Q)-Q~, )t & 5

to conclude from Eqs. (4b) and (1lf} that

a, -O(T ')

IV. BORN ASYMPTOTES

(38)

We now have, from Eqs. (lla), (13), (21), (30),
(37), and (38'),

—N [—,'~S'(1)/4N, for m/M= 1, Born (a),
Tn(T)/R=-N[ —+S'(1)/ 4Nj form /M=1, Born(b)

—N [-' + S' (1)/ 4' for m /M = 0

+O(T-'j,
(39a)

(39b)

(39c)

and the Born asymptote for total. inelastic scattering
is given by

(7$ $ 4voz' (R / T)[M,'„in(4c„, T/R) +y„,R /T] ' (40)

where constants M'„, and c„,are defined in Paper
I. %hen high accuracy is not required, we can
simplify Eqs. (39) by setting S' (1)= N [see Eq. (35)
and Table I].
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—7N/4

y&ot
=— —11N/4

—N/2

for m/M= 1, Born (a), (41a)

for m/M= 1, Born (b), (41b)

for m/M=O. (41c)

S„(0)m S,', (1)
yex

discrete

where
(42a)

From our limited experience on the two-electron
atoms (Table I), the correction terms in Eq. (35)
amount to less than 10%0 of N. For most atoms
Eqs. (41) may be used unless both M2t„and c„,are
known accurately.

Once we have the total cross section to the T '
order, we can proceed to evaluate the ionization
cross section to the same order by subtracting the
sum of the discrete excitation cross sections as
we have done for the Bethe asymptote (see Papers
III and IV). To this end, the excitation cross sec-
tion must be evaluated also to the T order. It
is done simply by summing the terms labeled as y
in Ref. 13, i. e. ,

y„= f„m /2M— f„' E„/4R—

both for the optically allowed and forbidden transi-
tions. Note that those transitions for which the
orbital angular momentum changes by more than
two units (such as an S- F transition) do not con-
tribute to y„because both f„and f„' vanish by selec-
tion rules [see Eqs. (5) and (6) of Ref. 13]. Hence,

V. APPLICATIONS

A. Application to H(ls)

For the hydrogen atom in the ground state, Bethe'
has shown that M,'«=1, lnctot 0. 4495, and, from
Table I, S'(1)=1. By substituting these values in

Eqs. (39) and (40), we get

n„, =4vaoz (R/T) [ln(T/R)+1. 836+y„,R/T]

(45a)

with

for m /M = 1, Born (a),

y„,= -Q for m/M= 1, Born (b),

for m/M=O.

(45b)

(45c)

(45d)

By substituting these values in Eq. (42a), we get"

a =4zazoz (R/T) [0. 7166 ln(T/R)+0. 5792

All but one constant for the Born asymptote for
excitation are known: M„=O. 7166, inc„= —0. 5780,
and S„(0)=0. 5650. The value of S,', (1) can be
readily calculated from Eq. (18) and the data in
Ref. 14:

S,', (1) = 9$„(0)—8$„(-1)

= —0. 6477,

where

$ (-1)= Z '""
discrete En

S., (0) = Z f„
discret e

l
(1)— P fn n

discrete

(42b)

(42c)

—0. 1206R/T] for m/M=1

= 4 mao z ~ (R / T) [0.7166 ln ( T /R ) + 0. 5792

+0. 1619R/T] for m/M=0 (46)

Equation (42a) is valid for an arbitrary mass unlike
Eqs. (39) and (41).

In the notations used previously, "the Born as-
ymptotes for excitation and ionization are given,
respectively, by

a„=4zaoz (R/T)[M„ln(4c„T /R)+y „R/T]'

By subtracting Eq. (46) from Eqs. (45), we find

a, =4zaoz' (R/T) [0.28341n(T/R)+1. 2566+y, R/T]
(47a)

with

a, =4vaoz'(R/T) [M', ln(4c, T/R)+y, R/T]

(43a) —1.6294 for m/M= 1, Born (a), (47b)

y, = ~ —2. 6294 for m/M= 1, Born (b), (47c)

{43b)
—0. 6619 for m/M=0. (47d)

where

M) =Mt t —M2

M, inc, =Mtot lnCtot Mex lnCex
2

yf ytot Y

(44a)

(44b)

(44c)

To verify the usefulness of the Born asymptote, we
compare in Fig. 3 the ionization cross section by
electron impact. We find that Eq. (47b) reproduces
the exact Born (a) cross section" (calculated di-
rectly from the ground-state and continuum wave
functions) within 1% when T &15R, whereas the
Bethe asymptote alone reproduces the exact cross
section to a similar precision only when T &60R.

For a hydrogenic ion of nuclear charge Ze, the
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IOO

T(eV)
500 IOOO 2000 3000

Table I, the Born asymptote for H becomes

o„,=4saoz (R/T) [7.484 ln&T/R)

2.5
with

+ 25. 11+y„,R/T], (48a)

R
cuO0

b

2.0

l.5

I.o
0

constants for the Bethe cross section [see Eqs. (40)
and (43)] Mz and Inc become M /Z and In(e/Z )
respectively. " The y terms, however, are invari-
ant, as is evident from the discussions in Sec. III.

Comparison of the Born ionization cross section
with experiment has been thoroughly discussed in
the literature already. We defer our comments
until Sec. VE.

B. Application to H (l S)

Since the publication of Ref. 16, more accurate
theoretical data have become available on the Bethe
cross section of H . Rotenberg and Stein' gave the
value I, - Ez = - 10. 665 [see Eq. (9)] evaluated from
a correlated wave function with proper asymptotic
behavior. We also obtained I, —I~= —10. 598 from
a 39-term correlated wave function by Weiss. '
The former value is likely to be more accurate,
and the uncertainty in the value of 8 in Eq. (1) is
reduced by a factor of —,

' from that given in Paper
II. With the new data and the value of S'(I) from

) I I I I I

2 3 4 5
In(T1R)

FIG. 3. Cross sections for the ionization of H (1s) by
electron. For electrons, T is the incident energy. The
solid line labeled BETHE represents the Bethe asymptote,
and the solid curves labeled (a), (b), and (c) corresponds
to the Born (a), Born (b), and Born plus free-electron
exchange cross sections, respectively. The dotted curve
represents the exact Born (a) cross section calculated
directly from the ground state and the continuum wave
functions by Omidvar (Ref. 15). The circles are the
experimental data by Fite and Brackmann (Ref. 33), and
the triangles are those by Rothe et al. (Ref. 34), both of
which were normalized to the absolute measurement of
the ionization cross section of H2 by Tate and Smith
[Phys. Rev. 39, 270 (1932)j. The error limits quoted
are random errors.

60—

20
I

T(eV)
IOO 500 l000

o

40

C400

30
~b

20

IO—

I

2
In(T/R)

FIG. 4. Cross sections for the electron detachmeat
of H (1'S) by electron. The labels on the solid curves
are the same as those in Fig. 3. The circles represent
the experimental data by Dance, Harrison, and Rundel
(Ref. 1S), the squares those by Tisone and Branscomb
(Ref. 20), and the triangles those by Peart, %'alton, and
Dold~r (Ref. 21). All experiments measured the single-
detachment cross section, and the theory corresponds
to the simple sum of the single- and double-detachment
cross sections. Experimental errors quoted are the sum
of random and systematic errors.

—3. 545 for m/M= 1, Born (a), (48b)

yt, &
= —5. 545 for m /M = 1, Born (b), (48c)

—l. 045 for m /M = 0. (48d)

In Fig. 4, we compare the Born (b) cross section
with the electron-impact data by Dance, Harrison,
and Bundel, "by Tisone and Branscamb, and also
those by Peart, Walton, and Dolder. ~' As is stated
in Paper II, our cross section includes the double
detachment e+ H -H'+ 3e and is an upper limit to
the experimental single-detachment cross section.
As we also have noted in Paper II, the experimental
data by Tisone and Branscomb do not exhibit prop-
er asymptotic behavior, but they agree well with
those by Dance, Harrison, and Rundel' in the low-
energy region (T &60 eV). If we extrapolate the ex-
perience on the hydrogen atom (Sec. VA), we ex-
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pect Eqs. (48) to represent the exact Born cross
sections for T &20 eV. It is evident from Fig. 4,
therefore, that the first Born approximation alone
is not sufficient to explain the experimental cross
section for T&100 eV.

+0.6628+y„,R/T], (49a)

with

—3. 512 for m/M=1, Born (a), (49b)

y~, t = —5. 512 for m/M =1, Born (b), (49c)

—1.012 for m/M=O. (49d)

The values of y„ for most important discrete ex-
citations are given in Refs. 13 and 22. For higher
excitations we have adopted extrapolation formulas
for y„as functions of effective quantum numbers
(Table II). The sum of the limiting values of y„
as n- ~ in Table II matches very well with the sum
deduced from the measured GOS at the ionization
threshold, ' providing a strong support for our ex-
trapolation procedure. The Born asymptote for the
sum of discrete excitations thus obtained is

a„=4zaoz (R/T) [0. 26331n(T/R),

—0. 0514 +y„R / T], (soa)

with

yex

0. 007 for m /M = 1,

0. 197 for m /M = 0.

(sob)

(soc}

Excited
states

TABLE II. Adopted values of 'Yn for He. ~

lp
~(~) &'n

n —2 0.0376

0.0255

0.0002

0. 1755

0.0392

0.0152

—0.029(ne) 0.886(n )

+0.63(n') ' +1.64(n') '

—0.0317

—0.0072

—0.0027

—0.152(n )

—0.0575 (n~)

—0.625(n') '

—0.0041

For n~4,
—0. 1683(n )

0.499(n )-'

0.25242n —0.0456 —0.0101

Notations: pn(~ =pn for m/M=1, p„" =pn for m/~=0,
n*=n+6, where &=0.0121, —0.140, and —0.00209 for
the 'P, '9, and 'D states, respectively.

Sources Refs. 13and22; W. J. B. Oldham, Jr. , Phys.
Rev. 174, 145 (1968); 181, 463 (1969); Ref. 7 of PaperIII.

C. Application to He (I S)

With the values of the Bethe cross sections in

Papers I and III snd that of S' (1) from Table I, the
Born asymptote for the total inelastic scattering by
He becomes

o„,=4za~~zz(R/T) [0.7525 InT(/R)

By subtracting Eqs. (50) from Eqs. (49), we get
the Born asymptote for the ionization of He:

o, =47(aoz'(R/T) [0. 4891n(T/R)

+ 0. 714+y, R / T], (51a)

with

' —3 519 for m M=1, Born a, 51b

y& = —5. 519 for m M = 1, Born b, 51c

—1.209 for m /M = 0. (51d)

Otog 4zaoz (R /T) [0. 2860 ln(T/R)

—0. 031+y„,R/T], (S2a)

with

~-3. 506 for m/M=1, Born (a), (52b)

y„, = —5. 506 for m /M = 1, Born (b), (52c)

—l. 006 for m /M = 0. (52d)

For the discrete excitation, we have from Paper IV
and Table III

g,„=4zaoz (R/T) [0.14151n(T/R)

The ionization cross section given by Eqs. (51)
is in very close agreement down to T &150 eV with
the Born cross sections calculated directly from
continuum wave functions by Bell and Kingston, 24

and also by Economides and McDowell. Equations
(51), however, are more accurate in the high-en-

ergy region T&ZOO eV. In our method, the y,
term and higher orders not included in the Born
asymptote become less significant as T is increased,
whereas in the partial-wave method used in Refs.
24 and 25, the difficulty increases as higher partial
waves contribute substantially. Some typical ex-
perimental data are compared with our results
in Fig. 5. By virtue of sum rules, our cr, is a
simple sum of the single- and double-ionization
cross sections and should represent an upper limit
to the experimental data on single-ionization events.
Some experiments measure the current of ejected
electrons and hence count the double ionization with
twice the weight given to the single ionization. For
He, however, the single ionization is by far the
dominant process and the double ionization can
safely be neglected in the comparison with experi-
ment. Among many electron-impact experiments,
the Born (b) cross section supports the high-energy
dependence apparent in the data by Smith, ' con-
firming the conclusion drawn in Paper III.

D. Application to Li'(1 S)

From the value of S'(1) in Table I and the Bethe
asymptote in Paper IV, we get for the total inelastic
scattering
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T(eV)
200 500 IOOO 3000

TABLE III. Adopted values of 'Y„for Li'. +

I
1 I

He(S'S)

Excited
states

lp
~ (e& ~( aO)

's
&n

n=2

o 4

0.0392

—0.0066

0.2674

0.0486

—0.0447

—0.0099

—0.412(n ) 0.880(ne) —0.2035(n*)

—0.0095

—0.3634(n*)-'

+2.05(n') '

+1.48(ne)-'

+3.90(n~) —0.360(ne) 5 + 0.852(ne)

04O

2I-

0.0195 0.3570 —0.0637 —0.0227

aNotations: See Ref. a of Table II for &„s and 'Y„"'; and
n~=n+6, where 6=0.0136, —0.074, and -0.0012 for the
'P, '$, and 'D states, respectively.

Source: Paper IV.

0 I I

4
In(T/R)

with

—0. 166 + y„R / T], (53a)

FIG. 5. Cross sections for the ionization of He (1'S).
The curve labeled (d) shows the cross section for ioniza-
tion by heavy particle (M=~) and other labels are the
same as those in Fig. 3. The circles represent the pro-
ton-impact experiment by Hooper et al. (Ref. 28), the
squares represent the electron-impact experiment by
Smith (Ref. 26), and the triangles that by Schram et al.
(Ref. 27).

E. Exchange Correction

In Figs. 3-6, for T&40I, we see a systematic
departure of the electron-impact experimental data
from the Born (b) cross sections. It is very likely
that the exchange effect is one of the major causes
for the departure. Unfortunately, no theory for the
exchange effect is as widely applicable as the first
Born approximation for the direct process. The
exchange effect is important when the energy trans-
fer is large, and thus the binding energy of the
atomic electrons involved is expected to play a sec-
ondary role. To gain some insight on the energy
dependence of the electron-exchange correction,
we have used the Mott formula for the scattering of

—0. 067 for m/M=1,
~OX

—0. 270 for m /M = 0;

and thus for the ionization

(53b)

(53c) 0.4 0.5
I i

I.2—
LI+(1 S)

T(IteV)

2 5
t

I I

a, = 4zaoz (R/T) [0. 1445 1n(T/R) I,O

+ 0. 137+y( R/T], (54a)

with

—3.439 for m/M= 1, Born (a), (54b)

y, = —5. 439 for m/M=1, Born (b), (54c)

—1. 276 for m/M=O. (54d '

NO 0.8
0

0.6

04

The Born (b) cross section [Eqs. (54a) and (54c)]
agrees very well with the "length" form of the Born
cross section calculated by Economides and
McDowell ' down to T= 300 eV. Comparison with
the electron-impact data of Peart et al. (Fig. 6)
indicates that the Born approximation overestimates
the ionization cross section for T & 3 keV. (As in
the case of He, the double ionization cax. be ne-
glected in the comparison with experiment. )

O.2' I I

5
IA (T/R)

FIG. 6. Cross sections for the ionization of Li' (1 S)
by electron. The labels are the same as those used in
Fig. 3. The circles represent the experiment by Line-
berger, Hooper, and McDanial [Phys. Rev. 141, 151
(1966)], and the triangles that by Peart, %'alton, and
Dolder (Ref. 29). The error limits quoted are the sum
of random and systematic errors.
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(55)

where c is the energy of the slower electron after
the collision. The first term in the brackets of
Eq. (55) is the direct term [same as Eq. (3)], the
second is the interference term, and the last is the
exchange term. Equation (55) can also be derived
from the Ochkur approximation by using the free-
electron GOS, Eq. (16). ' Since the direct term is
already accounted for in the Born cross section,
the integral over e of the last two terms in Eq. (55)
gives the necessary correction for exchange

(T+ I) /2 1 1
o'exch = 47t'00 XR T

:-4vaoN(R/T) [ln(I/T)+1] (56)

when I/T«1. The lower limit I of the integral in

Eq. (56) need not be exactly an ionization potential,
but in the following applications it is taken as the
first ionization potential of the atom.

It is also worthwhile to note that the contribution
of the exchange term alone, in Eq. (56), is the
same as the difference between the Born (a) and

(b) cross sections 4vaoN(R/T}, in support of the
argument presented by Rudge. We conclude,
therefore, that Eq. (56) should be used in conjunc-
tion with the Born (b) cross sections. Alternative-
ly, only the logarithmic term in Eq. (56) should
be used with the Born (a) cross sections. The re-
sulting ionization cross sections with the free-
electron exchange correction are presented along
with the Born (b) cross sections in Figs. 3-6.
Although the agreement with experiment is improved
in all cases, the success must be accepted with
caution.

We expect that the exchange correction based on
a free-electron model is appropriate only when

I/T is small. The model is justifiable only in the
part of the Bethe surface where the Bethe ridge is
dominant, and we should expect such a theory to
work better for H than for Li', for instance. The
comparison with experiment, however, does not
bear this expectation out. In fact, the exchange
correction when combined with the Born asymp-
totes seems to work equally well in all the cases
discussed below. The most useful lesson to learn
from the asymptotic Mott formula is the dependence
of o'exch on T.

The experimental data ' on H presented in Fig.
3 have been normalized to an absolute measurement
on H~. The theory is in better agreement with the

two electrons. '
According to the Mott formula, the cross section

corresponding to Eq, (3), but including the exchange,
is given by

da, =4maoNR [e —e '(T —e) '+(T —e) ]de/T

high-energy data (T & 300 eV) by Rothe, Marino,
Naynaber, and Trujillo, ' according to which the
theory becomes poor for T& 25R. Other electron-
impact data" on H have been normalized to the Born
cross sections at various energies near or below
500 eV. As can be seen from Fig. 3, the exchange
correction at T= 500 eV amounts to almost 5%. It

may be necessary to renormalize the experimental
data if a better accuracy is desired. The ionization
cross section obtained from Eqs. (47) and (M) is
in excellent agreement for T &80 eV with that cal-
culated by Qchkur" using the exact GOS of H.

For H, the exchange correction again brings the
theoretical cross section closer to the experimental
data in Fig. 4. We see, however, a small sys-
tematic departure at T & 100 eV. Certainly the dif-
ference partially comes from the polarization and

distortion, but it is difficult at present, because of
the large experimental uncertainties, to speculate
on the magnitudes of such effects and also on the
region of T in which they are significant.

On He, after the exchange correction, the theory
is in excellent agreement with the experiment by
Smith for T & 500 eV (see Fig. 5). For Li', the
theory departs from experiment only below T & 2
keV (Fig. 6).

For a hydrogenic ion of nuclear charge Ze, I
= Z R, and the ionization cross section with the ex-
change correction is given by [Eqs. (47) and (56)]

o, = 4va2o (R /T)((0. 2834/Z2) ln(84. 241 T/Z2R)

—(R/T} [1.6294 —lnZ +in(T/R)]) . (57)

In Fig. 7, Eq. (57) is compared with the experi-
ment on He' by Peart, Walton, and Dolder. 9 Again,
the inclusion of the exchange correction improves
the agreement between theory and experiment. The
excellent agreement for T&1 keV, however, may
be fortuitous because the experimental values for
2 kev & T & 5 keV hint that they may be too large by-

5%~ or more. If all the experimental data are re-
duced by - 5%, then the departure between the theo-
ry and experiment follows the general pattern as
those we have seen in Figs. 3-6.

VI. CONCLUDING REMARKS

Although we must distinguish the type of incident
particle to evaluate the constant C in Eq. {1), the
numerical procedure is far simpler than that re-
quired in evaluating the second constant B. In fact,
Eqs. (41) are very simple to use and will provide
reliable values particularly when only crude values
of the first two constants in Eq. (1) are available.
The comparisons with the exact Born cross section
of the hydrogen atom and other theoretical data for
He and Li' amply demonstrate that our method can
represent the Born cross section with high precision
down to rather low values of T, much lower than the
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FIG. 7. Cross sections for the ionization of He' {1s)
by electrons. The labels are the same as those used in
Fig. 3. The circles represent the experiment by Peart,
Walton, and Bolder {Ref. 2S). The error limits quoted
are the sum of random and systematic errors.

region where the first Born approximation by itself
provides realistic cross section. We find that the
modification proposed by Rudge to exclude the ex-
change contribution from the first Born approxi-
mation [Born (b)] requires only a simple change as
indicated in Sec. III B. We also find, for the ioniza-
tion cross sections of all cases presented here, that
the distinction between cases (a) and (b) in Rudge's
notation becomes significant only in the low-inci-
dent-energy region where the electron-exchange ef-
fect contributes substantially also.

Among the many theoretical detachment cross
sections of H quoted in Paper II, our result agrees
best with that of McDowell and Williams. By
comparing our detachment cross section with avail-
able experimental data, we conclude that the first
Born approximation overestimates the detachment
cross section for incident electron energies below
100 eV. For H, He', He, and Li', our results
confirm the Born cross sections calculated directly
from continuum wave functions, and therefore
support the general experience that the Born ap-
proximation is reliab1. e when T 40I for these
cases.

Our treatment here has been nonrelativistic. It
is very likely that for relativistic incident veloci-
ties, the Bethe asymptote should be sufficient, and
the third term [C in Eq. (1)] would be required only
in the nonrelativistic region. A naive replacement
of v in the third term by the relativistic counter-
part Pc would lead to a constant bias of the Bethe
cross section in the limit P-1, which contradicts

Let [see Eq. (23)]

Y(x) = lny(x) = In(2/[I+ (1 —x)'~ ]) . (Al)

By expanding dY/dx in power series and integrating
term by term, we get

Y(x)=Z x
t t

for 0&x&1,(2k —1)!!
(A2)

where (2k)!!=2&& 4&& 6X ~ ~ ~ x (2k) and (2k —1)!!
= lx 3x 5x x (2k —1). Define W(x) by

W(x) =- [Y(x) ——,'x]/x' . (A3)

Then it follows from Eq. (A2) that dW/dx& 0 for
0&x&1 and therefore W(x) is monotonically increas-
ing in that interval. In other words, W(0)& W(x)
& W(1), which is equivalent to inequality (24).

The first half of inequality (33) is readily seen
by expanding y(x) in power series for 0 & x & 1:

y(x) = 1+—,'x+ -,'x'+ ~ ~ ~

& 1+-,'x.

the excellent performance of the Bethe cross sec-
tions of fast electrons and positrons scattered by
He reported in Paper I.

The present theory is not restricted to the target
atoms in the ground state. All discussions are ap-
plicable to any initial state. The theory should
also be applicable to molecules as well, with ap-
propriate modifications to account for the additional
de~rees of freedom.

The inclusion of the asymptotic Mott formula for
the exchange scattering improves the agreement
of theory and experiment in all cases presented.
The theory leads to (InT)/T~ dependence for the
direct-exchange interference term in the cross
section, and T dependence for the exchange term
alone. With the exchange correction (56), the Born
asymptotes are expected, in general, to produce
reliable ionization cross sections for incident elec-
tron energies of about 20-30 times the first ioniza-
tion potential, and higher. Our ionization cross
sections for H, He', and He may serve as alterna-
tive standards to which high-energy electron-impact
experiments can be normalized.
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APPENDIX Ae PROOF OF INEQUALITIES (24) AND (33)
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For the second half of inequality (33), we note
that [y(x)] is a convex function for 0&x&1 be-
cause dzy/dx &0 in the interval. " Therefore,

=~'.2ZZ o (*,-*,(' o) . (B3)

[y(x)] & Iimol —x) [y(c)] +x[y(1 —c)] }.

APPENDIX B. DERIVATION OF EQ. (35)

Sum rules for the derivative with respect to Q
of the GOS can be computed either by (a) summing
the expression for each derivative over states, or
by (b) summing first the GOS over the states and
then differentiating with respect to Q. Formally,
methods (a) and (b) are equivalent as long as the
summation and the differentiation are interchange-
able.

To follow method (b), we define S(1, K) by

S(1,K) =Z ~ f„(K)R

It is obvious from Eq. (B3) that S'(1) = 1 for a one-
electron atom regardless of the state and nuclear
charge. Further simplification occurs when a
single-determinant wave function is used in evalu-
ating the cross-term integrals in Eq. (B3). Let

2
B'

If„= 0 z j —z~ 0
BZjBZy

Then, from the odd parity of the operator

B2
z2

f Bz,Bz„

and the well-known rules for the Slater determi-
nant, ' we have

We replace E„by the commutator of the Hamilto-
nian operator and get

S(1, K) = —(QR ) P (0~ [H, Z e '"'(
] ( n)

a11

r. 2.(„=—27 r (( .—' )(( .—' ()

a z —b (B4)

with

x (n I [H, Z e 't]10),

H = —( h '/2n }Pq v,'+ V,

(Bl) where a and b refer to orbitals in the determinant.
Equation (B4) is further simplified by partial inte-
gration to read

Z +I»=- +2K Z a z —b
N(N —1} B

k4j a b Nfl BZ

V standing for the Coulomb potential terms. We
take the direction of K as the z axis for brevity.

After some manipulation, Eq. (Bl) reduces to

S((,K(=—(OlxlO) ~ ((((~ Z r(ole' "f' '(0()4
3R

B2
4am g g 0 elÃ(c&-s(, &

0) . (B2)
f kloof

Bzf Bz~

where X is the kinetic-energy operator. Equation
(B2) leads to the well-known expression for the
corresponding sum rule of the dipole-oscillator
strengths' when K-0. Note that

(1S, K) - NQ as K - ~ .

For large momentum transfers, the binding of
atomic electrons becomes insignificant and Eq.
(B2) is expected to reduce to the free-electron re-
sult S(1, K) =NQ [see Eq. (14)].

The first derivative S'(I) is then given by

S'(1) =—[S(1,K)]
d

dQ
' q-o

S'(1)=N+correction terms, (B6)

where the correction terms may be positive or
negative.

As can be seen from the examples given in Table
I, the correction terms in Eq. (B6) depend on the
electron correlation and amount to 10% or less
of N Equation (B6.) has been used also in the the-
ory of the stopping power. The same result is ob-
tained by summing the expression for the first de-
rivative of the GOS [see Eq. (5) of Ref. 13] over
all states.

and we finally have

(s'((l(.. ....,...,..., =(( ~ 47 r —
b)

' .
o

bled

Bz

(B5)

For the Hartree wave functions, the exchange in-
tegrals in Eq. (B5) do not occur. For correlated
wave functions, Eq. (B4) does not hold, and Eq.
(B3) must be computed directly. In view of Eq.
(B5), we expect, in general,
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