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in region I the scattering of charged particles is
due to ordinary plasmons, while the scattering of
photons and neutrons is due to ionic sound.

As x increases into region II, the scattering of
charged particles and of neutrons is still due to
plasmons and ionic sound, respectively. However,
the scattering of photons switches from being due
to ionic sound to being due to plasmons.

In region III, as mentioned earlier, the electrons
and the nuclei become independent. In this region
the electrons behave as if they were an ideal Fermi
gas and hence the scattering of photons behave as
if they were being scattered by an ideal Fermi gas.
On the other hand, when x is in region III but
x &-,' y/v 5, the scattering of neutrons is due to plas-
ma oscillations of the nuclei. If x & —,

' y/v'5, then

the nuclei behave as an ideal gas and consequently,
the scattering of neutrons is as from an ideal gas
of nuclei.

It is interesting to note that it is not until
—', y/f5 «x that the statistics of the nuclei become
important. In fact, even though our calculations
assume that all species are in the ground state, it
is actually only necessary that the electrons satisfy
this condition provided x «-, y/v 5.
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The phase shift for low-energy scattering by a potential consisting of a long-range aud a
short-range part, to first order in the long-range potential, is derived using the two-potential
formula of scattering theory. For the r and for the r potentials and for their superposition,
tango is calculated up to and including the k ink terms, where go is the zero-angular-momentum
(L=0) phase shift. For the r potential and L & 0, tang& is calculated up to and including the
k ' ink term. Finally, the long-range correction to the matrix element for photodissociation
of negative ions is calculated.

I. INTRODUCTION

Effective-range theory (ERT) originated in the
analysis of low-energy neutron-proton and proton-
proton scattering and was an attempt to interpret
the data while bypassing the requirement for any de-
tailed knowledge of the short-range nuclear poten-
tial. In both cases, the form of the wave function
was known explicitly outside the range of the nucleus.
It was then, perhaps, natural that the first attempt
to analyze low-energy electron-atom scattering,
where the dominant long-range interaction is ——,'ae /
r (n is the static electric-dipole polarizability of
the atom), should proceed along similar lines; the

fact that the exact solution of the radial Schrodinger
equation with the r potential could be expressed
in terms of modified Mathieu functions was used in
the analysis. Ultimately, since the modified
Mathieu functions are rather complicated, a (mod-
ified) ERT was obtained in which the effect of the
polarizability was treated in first order; but the
formalism, as developed, placed strong emphasis
on the detailed properties of the modified Mathieu
functions. '~

The significance of the present paper, in this re-
gard, is that these functions need neverbeintroduced
into the analysis if one is interested in first-order
effects only.
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Even in first order, the threshold energy depen-
dence for angular momenta L greater than zero
differs from that for short-range potentials. The
physics of the situation —namely, why it is that,
for sufficiently large L, the coefficients and the
form of the energy dependence of the first terms in
ERT for any long-range potential are given exactly
in the Born approximation —was understood but not
deduced mathematically except for the r ' case.

A number of subsequent derivations have been
given which do not require the exact solution, in-
cluding an asymptotic-expansion approach3 and an
iteration of the integral equation of scattering, but
these derivations still contain some unnecessary
elements of complexity. In this paper, we will pre-
sent a much simpler derivation based on the well-
known two-potential formula of scattering theory.
The derivation contains one weakness: the require-
ment that the short-range potential vanish identically
beyond some specified distance d. We assume here
that we are concerned with an equivalent one-body
potential. The connection with the original many-
body problem has been studied, '6 though not com-
pletely.

Subsequent to the original derivation of an ERT,
to first order in +, a formal analysis, good to ail
orders in a, was developed in terms of a long-
range phase shift p and functions C and h which are
the analogs of C and h which appear in ERT for
short-range plus Coulomb interactions. Numerical
tables of p, C, and K have been published, 4 and
analytic forms for these functions have also been
obtained. The question then arises as to what
purpose is served by a rederivation of the more
primitive result —the form of ERT valid only to
first order in z. For one, the first-order theory
often suffices, and it is useful to have a simplified
derivation which makes transparent the lack of
analyticity in the wave number k of the forms which
arise in ERT, and which simplifies the application
of ERT to problems involving indirectly the elastic
scattering of electrons by atoms. An example is the
energy shift of an atom containing a highly excited
electron in the presence of a. second atom. A sec-
ond purpose is that it greatly simplifies the deter-
mination of further terms in the ERT expansions
for the r 4 potential and for any long-range potential;
we will, in fact, give the ERT expansion for the r '
potential to all powers in k . Finally, and most
significantly, the considerable simplification of the
derivation should point the way to the extension of
ERT to the more complicated, but more interesting,
case of multichannel scattering involving long-range
forces.

The two-potential derivation is presented in Sec.
II. It is used in Secs. III-V to calculate the phase
shift for V+ U, where V is the short-range potential
and U is the x potential, the x potential, and a

superposition of the two. In Sec. VI, we calculate
the long-range correction to the matrix element for
the photodetachment of an electron from a negative
ion.

II. TWO-POTENTIAL DERIVATION

uz, ,= krj z, (kr) —tanrii, ,kruz (kr), r & d

j~ and nI are the usual spherical Bessel and Neu-
mann functions, respectively. Substituting into
(2. 3) and adding and subtracting [tanriz, krj& (kr)] in
the integrand, we find

tang~ = tang~, —k '(1 —tan q~, )I(L)+ 2k ' tanqzg(L)
—k 'tan t)~,K(L)+O(U ) (2 4)

where

I(L) = J (kr) j~(kr)U(r) dr

J(L) -=J (kr)j 1,(kr)nl, (kr)U(r) dr (2. 6)

We use the following notation. L is the orbital-
angular-momentum quantum number. U and V are
the long- and short-range potentials, respectively,
and U= (2m/8 )U. Here, V vanishes identically for
x & d and need not be known, and U vanishes iden-
tically for r&d and is presumed known. g~„A~„
rl, and ql, A~, rl are the phase shift, scattering
length, and effective range associated with V and
U+ V, respectively. I(L), J(L), and K(L) are in-
tegrals defined by Eqs. (2. 5)-(2.7). k is the wave
number of the scattered particle. x 'u~ is the eigen-
function of the radial Schrodinger equation of energy
E = k2k~/2m with both U and V present. r 'uz, sat-
isfies the same equation with only V acting. u~ and

uI, satisfy the boundary conditions

u~ (0) = u~, (0) = 0

u~ -sin(kr- , Lv)+tan—pecos(kr- ,'Lw), as r-—~

uq, —sin(kr —,' Lv)+ tan—qz, cos(kr —,' Lv), as r- —~

From conventional ERT, we have

k2~ ' tang~, = —AI, , —2r~, A~,k +O—(k') . (2. 1)

By multiplying the radial Schrodinger equation
containing V alone by u~ and that containing U+ V by
u~„subtracting and integrating, we obtain the stan-
dard two-potential formula,

tang+=tang~, —k '
J u IUu Idr . (2. 2)

The range of integration is limited from d to ~ be-
cause U vanishes for r &d. Since we are concerned
with first-order effects due to U, and since uz dif-
fers from u~, by a term of order U, we arrive at

tang& = tanri~, —k ' J "ul, ,(r)U(r) dr+ O(U ) . (2. 3)

For r &d, u&, represents a free wave with phase
shift g~, due to the short-range potential V. Hence,
we find
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The interaction of a charged particle with a neu-
tral polarizable system in a spherically symmetric
ground state has a, long-range interaction U(r)

,ae /r' —Weth. en have

2m o!/ao PU(r)= 3 U{r)=—,=-- —, , r&d

with p having the dimensions of a length. For elec-
trons of a few eV incident on an atom, a partial-
wave decomposition is useful. The L = 0 and L& 0
cases must be treated separately. We begin with
L=O

Using (2. 1) and the results of Appendix A in (2. 4),
we find

tan3!o = —Aok ——,'w(Pk) -+3AQ, P k lnI 2kdI —oroAok

+ 3wP'A'Q. k' 3P'ro. A-o k'»I dI + O(P', k'),
(3 I)

where

AQ=AQ3+P &

& = —{d —Aop+ 3 AQ3)/d

A roroo3AQ3+ P 5

'5 [ 3 !f 2AQ3 d + 3 rp3 AQ3 ro3Ap3 d

—~3(2C —~3)A „d']/d'

(3. 2a)

(3. 2b)

(3.3a)

(3. 3b)

Note that ~ and 5 are independent of P. C is Euler's
constant.

K(L) -=f (kr) [jz(kr)+noz(kr)]V(r)dr . (2. 7)

The determination of an ERT is thereby reduced
to the relatively trivial problem of determining I(L),
J(L), and K(L) as expansions in k and ink, and of
regrouping terms to eliminate the parameters due
to the purely short-range potential while introduc-
ing the minimum number of parameters to charac-
terize the actual short-range plus long-range po-
tential. [The appearance of ln I k I terms exhibits
the lack of analyticity of tang~ as a function of k.
This nonanalyticity associated with long-rangeforces
is well known from dispersion theory. In the pres-
ent context, the nonanalyticity of tang~ is evident
from the fact that the integrals I(L) and d(L) are in-
finite for Imk 0; this is particularly easy to see
for L=O. We would like to thank Dr. E. Gerjuoy
for this observation. ]

One method of performing the integrations is given
in Ref. 4. The integrals are evaluated to all orders
in k in the Appendices.

Since we are here concerned only with terms
linear in U, the effects of the different long-range
tails contained in U can be studied separately and
then effectively added. We begin with the r~ com-
ponent.

HL r POTENTIAL

Since AD and ro differ from Ao, and ro„respec-
tively, by terms of order P, we can rewrite (3. 1)
as

tan3!o= —(kAQ+ —,'roAok')(I++p k lnI2kdI)

——,
'

wp k (1 —k Ao)+ O(p, k ) (3.4)

The short-range parameters Ao, and ro„which
will not normally be of any particular interest, no
longer appear. The terms in k, k, and k ink are
identical with those obtained previously. ' ' [A and
A of Eq. (All) of Ref. 4 differ from A by terms of
order P'. ] The terms in k, k', and k'ink are new.
We note that (3.4) gives six terms in the energy ex-
pansion of tango with only two experimental param-
eters. It would be easy to introduce additional pa-
rameters, starting with the shape-dependent pa-
rameter for the short-range potential, and retain
correspondingly more terms in the energy expan-
sion of tango, since we have evaluated the integrals
I, J, and K to all orders in k.

We now turn to L & 0. On using (2. 1) and the re-
sults of Appendix B in (2. 4), we find

tan3!~= -3' wg(L)(Pk) -A~k '[1- —,'g(L)(Pk) lnI 2kdI ]

where

+O{P,k ) (3. 5)

[(2L)!]'A'„
3 *NL ~ 3NL!) d ')

In the derivation of (3. 5), Az, rather than Az ap-
pears in the ink term but, as before, A~, can be
replaced by A& since the error introduced is of
order P'.

IV. r 6 POTENTIAL

We assume now that

U(r)= —y'r ', r&d

where y, defined by this equation, has the dimen-
sions of a length. In electron-atom scattering, this
form of potential arises as a correction to the static
dipole polarizability P /r potential and has its
origins in both the static quadrupole polarizability
of the atom and the dynamical response of the atom
to the incident electron. The r~ potential also
appears, of course, as the dominant long-range
term in atom-atom interactions.

Restricting ourselves to L=O and using Eq. (2. 1)
and the results of Appendix C in Eq. (2. 4), we find

tan3!o= —Aok —,'roAok +~»w—y k +~QAoy k'lnI2kdI

+O(k, y ), (4 I)

g(L) -=[(L —,*){L —.')(L - -,')] ',
~d"-' A,(3" (u, —!)IrV. QI' ' (3r&)d'.
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where

4 I
A0=A0, + y &

& = —d (—,'d -Ap, d+ s Ap, }

(4. 2a)

(4. 2b)

V. SUPERPOSITION OF r AND r POTENTIALS

We now assume that

(We could generalize this somewhat by choosing dif-
ferent d's for the two components, but we will not. )
Restricting ourselves to the L = 0 case, the integrals
required for the use of (2. 4) are, of course, those
used in the previous sections. With A0 and r0 de-
fined by

Ap ——Ap, + P &+ y 6' (5. 1)

rpAp= rp, Ap, + P 6+ y 6' (5 2)

where Iz, 6, 6', and 5 re defined by Eqs. (3. 2b),
(3.3b), (4. 2b}, and (4. 3b}, we find

(4. Sa)

5 =d [ d (d +Ay ) Ap d(p d rp Ap ) rp Ap ]

(4. Sb}
4' and 5' are independent of y.

In the derivation of (4. 1), the coefficient of the
ink term contains A0, rather than A0, but the re-
placement by A0 is legitimate since the error intro-
duced is of order y'. Equation (4. 1) does not appear
to have been obtained previously.

and

uz(r) -sin(kr- ,'Lz—z+ziz}, (6. 3)

We recast (6. 2) as an integral equation:

uz = cospzuz+ J Gz(r, r')U(r'}uz(r') dr', (6.4)

where

pz Iz ~Ls

and the Green's function is given by

Gz(r, r ) = uz(r(}uz (r&)

with u~ and u~ the regular and irregular solutions
to (6. 2) with 6= 0 and asymptotic behavior

uz -sin(kr- ,'Lzz+z}z, ),—r-~
uz -k 'cos(kr —,'Lzz+7}z,—), r-~

We can rewrite (6.4) as

uz=uz+ J Gz(r, r')U(r')uz(r')dr'+ O(U') . (6. 5)

Substituting (6. 5) in (6. 1), we get

Mz, z, = J "dr vz, .(r)r[uz(r)

—J uz(r, )uz'(r&)Uuz(r') dr')+ O(U')

(6.6}
Since v~. represents a bound state, we can choose
the cutoff distance d so that the contribution to
M~. ~ of the integral for r &d is negligible and since
U=O for r&d, (6. 6) becomes

tanzip= —Apk ——,
'

v(Pk}P —fApP k in~ 2kd~ ——,'rpApk

+ pw(PAp+py}k

—p(p~rpAp —
p y )Apk In~ 2kd

~
+ 0(k, p y, p, y )

Mz'z = Mz' z(l —Bz)+ O(U ),
where

Bz = J "uz'(r)U(r)uz (r) dr
d

(6. 7)

(6. 8)

VI. PHOTODETACHMENT

(5 3) (6. 8)Mz. z -=f 'vz. (r)ruz(r) dr

since we can now set r&= r and r&= r. Further-
more, V=O for r &d and hence, for r &d,

c
d L(L+ 1) 2m

V kq V+k u& —Vu~ (6. 2)

where k k /2m is the energy of the emergent elec-
tron, that is, the difference between the energy of
the incident photon and the binding energy of the
active electron. The boundary conditions on u~ are

u, (o) =o

The radial dipole-matrix element required for
the evaluation of the photodetachment cross section

~ 10
+yhoto ~s

Mz. z = J vz. (r)ruz(r) dr (6. 1)

where v&. and u~ are r times the radial wave func-
tion of the active electron in the bound and continuum
states, respectively, and L =L+1. u& satisfies
the radial Schriinger equation

uz, (r) = krj z(kr) cosz}z, - krnz(kr) sinz}z, (6. 10a)

uz (r) = —lz[krnz(kr) cosz}z, + k, rjz (kr) sinzlz, , ]

(6. 10b)

Substituting the last two equations in (6.8) we obtain

Bz = —k ' sin2z}z, I(L) —k ' cos2zlz, J(L)

+ —,k ' sin2z}z, K(L)

where I(L), J(L), and K(L) are defined by (2. 5),
(2.6), and (2.7). By using the effective-range ex-
pansion (2. 1) and the results of Appendices A and
B, B~ can be evaluated explicitly.

For the photodissociation of a negative ion the
dominant long-range interaction is r~. For this
case, we find
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kin 2kd -
3

C— APPENDIX A: EVALUATION OF l(0), J(0), AND E(0) FOR
AN r 4 POTENTIAL

2
Ap, , „+
s O Moq Orok)

——
Ap, P k + —wAo, P k + O(k ) (6. 11)

With

V(r)=- P'r ',
l(0)

(Al)

Bp ~B~+Bp&P k lnl2kdl +BozP k +BpoP k + O(k )

(6. 12)
and for L&0, we have

2 " '&... ——
) ~ l(((k)A ) )k'kkk)

f(0), defined by (2. 5), becomes, setting kr = z,

f(0)= —P k f"z sin zdz

Integrating by parts three times, we get

f(0) = ——',(Pk} [2a '+a '(1 —2a ) cosa

+a sina ——,v+ Sg(a)]

where

~ =2kd,

(A2)

(As}

q((k))+ —,'(k)((do+ 1)g(L) (1/2(v)] P k + O(k ),

Bo =Bop+ Bz qP k»
l
2kd

l
+ BzoP k +O(k )

(6. 1s)

The g function is the logarithmic derivative of the
I" function and f~ = L+ —,'.

By factoring out the term independent of k, and

by using the fact that Bz is proportional to P,
we can write I,M~ I. I for L = 0 and for L & 0 as

Si(a) = f' x ' sinxdx
p

Using the power series for the sin, cos, and Si
functions, we can write (A2) a.s

l(0)= P'k'( ~ —T (2 ——))', (kk)' '), (Ak)
m=p

where

(-) (2m+1)!
2"'m! (m +1)![r(m + -,')]'

l~'zip= (1-».p) IM" I'(1-».A'»l2kdl

—2B„p'k' —2Bpo!S'k'5~o)+ «& k'»
(6. 14)

where 5« is the Kronecker 0 function.
The ink correction term in (6. 14) had previously

been obtained" by a straightforward analysis of the
Mathieu functions that appear in the wave functions,
but the sign of the ink term was given incorrectly.

The result contained in (6. 14) can be used to ex-
trapolate e,„„,data down to threshold in an attempt
to determine the binding energy of the electron.
However, since the IM~. ~ I factor is itself energy
dependent, being of the form A+Bk2+ ~ - ~, the cor-
rection terms in P k, and in P ko for L= 0, are not
particularly useful. Furthermore, without a know-
ledge of Mz. z, (6. 14) gives only the form of a,„„,.
However, if there is available reasonable data for
the elastic scattering of an electron by the atom
that remains upon photodissociation of the ion —the
(approximate) binding energy of the electron in the
ion would also be useful —one should be able to ob-
tain reasonably accurate estimates of the effective
one-body potentials U and V, and thereby to obtain
reasonable approximations to v&. and ul, and ulti-
mately to M~. l . It should therefore be possible,
given the elastic scattering data, to obtain an ex-
plicit and reasonably accurate expression for o,„„,.

where
+ & cosQ (A6)

Ci(a) = — x 'cosxdx
a

( )kkk 9kkk

=C+lnlal+ P;; 2m(2m)!

C = Euler's constant = 0. 57722. . .

(AV)

Note that considered as a principal value, Ci( —a}
=Ci(a). (The expansion for the cosine integral is
misprinted in Ref. 12, Eq. 8. 232-2, where the ln
term appears with the wrong sign. )

Using (A5}, (A6), and the power series for the
sine and cosine, we have

J(0) =-, p'k/do+ o' p'k'1nl2kd
l

+-', (2C -~o)p'k'+O(k') .
(A8)

EC(0)

With (Al), K(0), defined by (2. 7), becomes

J(0)

Using (Al), d(0}, defined by (2. 6), becomes

&(0) = o P f rsi"n'2krdr

= o(P /d ) ["z sinaz dz (A5}'
1

The last integral is formula 3.761-3 of Ref. 12:

f"z sinazdz = pa [Ci(a)+a '(2a o —1)sina
1
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K(0)= f (kr) [j()(kr)+n()(kr}]V(r)dr
=--', P'/d' . (AS)

where

1 uP+1
2(L) 2((L) —1)

APPENDIX 8: EVALUATION OF J(L), J(L), AND K(L) FOR
AN r 4 POTENTIAL, L &0

r
( —} (2L + 2m + 1}!

2z~'z 'm! (2L+m+1}![I'(L+m+ 2)]

I(L)

With (Al), I(L), defined by (2. 5), becomes

f(L) =- —.
' vP'k' f z"'d,'„„(z)dz . (Bl)

For L & 0, the integrand is finite for z = 0, and we
can write the integral as the difference of two in-
tegrals with ranges 0 to ~ and 0 to kd, respectively.
The integral with range 0 to ~ is ,g(L) (R—ef. 12,
Eq. 6. 574-2). In the other integral use the power
series for the square of a Bessel function (Ref. 13,
Eq. 5.4-6):

d'„„z(z)= g a,.z"""',
m=p

whe e

Ix=L+ ~

We therefore have

(4/P'k)J(L}=(u)d') '-a(L)k'»I2kdl ~(L)k'[C+)!( )z

—())((u) —(2(o) ' + —z'g (L)(u((u'+ 1)]

—(-)'vd 'Z(m —I)-'5,.(kd)2™
m=2

K(L), defined by (2. 7), can be rewritten as

K(L) = —z )(P k f z [J'z„gz(z)+J z, ()z(z)]dz . (B6)

Using the identity (Ref. 13, Eq. 9.62)
L

d z,.) lz(z)+d-z, -) Iz(z) = 2 Cz&
m=p

We then have

I(L) = —-', 2 2 (;2(L) —Z (2L ~ 2 —l)'
m=p

(B2)

where

we have

2 ™2~(2L—m)! (2L —2m)!
m![(L-m)!]'

p' + 5,.(kd)z "
d p 2m —2L —3 (B7)

With (AI), d(L), defined by (2. 6), becomes

d(L} = ( —)'~z zP'k' f„z 'dz„(iz(z)d-~-(iz(z) dz

Using the power series (Ref. 13, Eq. 5. 4-7), we
find

d„„,(z)d, „,(z) = P k,.z',

We now consider

V = y'/r' . -
I(0}, defined by (2. 5), becomes

(C 1)

APPENDIX C: EVALUATION OF 1(0), J(0), AND K(0) FOR
AN r POTENTIAL TO LOWEST ORDERS IN k

where

(-) (2m)!
2'(m!)' r(L+m+ z)I"( —L+m+ z)

'

I(0)= —y k f z sin zdz (c2)
kd

By integrating by parts twice and then using the
double-angle formula, we can write (C2) as

and dividing the range of integration into two parts,
we get

d(L)=( —) —,
'

dk ( „—l, l )2kd)

4, sin kd sin2kd 1
5(kd)' 20(kd)' 30(kd)'

1
z sin zdz

5 ~kd
(c3)

where

Iltl (kd)ztll 2

=2 2m —2

B = z dz, .((2(z }d I /22( z)dz+b-r. ln2
1

+

+g rmb

2 fly 2

It can be shown' that

( )I kt

d(L) (C ~ 2(-.') —2( )

(B4)

4, 1 1 m

2(kd)' kkd )2 )
With (Cl), we have from (2. 6),

(c4)

d(0}= zy d f z sin(zz dz
1

where

(c5)

The integral in (C3) has already been evaluated in
obtaining (A3). Using that result, and the power
series for the sine function, we have
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z=r/d and ~=2kd

Using formula 3.761-3 of Ref. 12 and the power
series for the sin, cosin, and Ci functions, we
have K(0)= —y f r dr= ——,'y d '

d
(cv)

J(0) =y k [-,(kd) ——', (kd} —Pin~ 2kd~ +O(k }] . (C6}

From (Cl) and (2. 7}, we have
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The following theorem is proven: The x~ and zz components of the electron energy-momen-
tum tensor t» and the magnetization M of an electron gas in a constant magnetic field B
sat'sfy the relation t~- t~= BM. This relatien is valid at any density, temperature, and mag
netic field strength, if the system is in thermal equilibrium. Since the electromagnetic
energy-momentum tensor t» is anisotropic itself, this relation makes the total energy-mo-
mentum tensor T»= t»+&» become a scalar. Because t~ and t~ can simply describe the
electron pressure in these directions, the above theorem states that the difference p ~-p~
equals twice the magnetic field energy, since M=47(B.

and

f„„,'ffc(l y:.-f-e„yy„q)-

r„„=(4v) (- 8„8„+g 6„„8) .
The wave function P satisfies the Dirac equation

for an electron in a constant magnetic field. '
The wave function |I) is the product of a plane

wave e' ~ since a constant magnetic field in the

Given an electron gas in a uniform magnetic field
8, the total energy-momentum tensor can be writ-
ten as the sum of the electron parts t„„, plus the
field contribution 7'„„, i. e. ,

&w. = t~u+ Yves

where

z direction does not alter the electron motion along
that axis and a Laguerre polynomial of the variable
x +y representing the harmonic motion in the
plane perpendicular to the magnetic field. The
exact form of the eigenvalue is given by'

E/mc =-e(x, n) =(1+x +2nB/8, )",
x =-p, /mc,

B,=m c'/ca=4. 10'4 G. (4)

The x and y momenta in the combination p~+p~ have
been changed into the discrete quantum expression
2nB/B„where n = 0, 1, . . . is the index of the har-
monic-oscillator levels.

Making use of the exact spinors and eigenvalues,
the energy-momentum tensor was computed in


