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In this article we analyze the quenching of metastable hydrogen atoms by helium in the energy

range below roughly 250 eV. Two methods are discussed. In one, a perturbation-theory

approach is used; in the other, a pseudopotential is employed which attempts to relate the

quenching matrix elements to low-energy-electron elastic scattering data. At thermal ener-
gies, both methods predict very large quenching cross sections. The pseudopotential approach
gives a result of about 807tao~, while the perturbation analysis yields 40mao. As one goes to

higher energies, the cross sections decrease, with the pseudopotential result falling off much

less rapidly than the perturbation-theory result. Reasonable agreement between experiment
and the pseudopotential method is found at about 300 eV, which is the lowest energy experi-
mentally available at present.

I. INTRODUCTION

The study of the quenching of metastable hydrogen

by its interaction with various systems has proven
to be of considerable theoretical and experimental
interest. This has been due both to the theoretical
simplicity of the hydrogen atom and the advanced
technology associated with the production of meta-
stable hydrogen beams. Research in this program
is currently directed towards the investigation of
collisions between metastable hydrogen atoms and

simple atoms and molecules.
The mechanism responsible for the quenching

may be understood simply as follows. In the ab-
sence of external perturbations, the hydrogen 2s
state would decay primarily by two-photon emission
to the ground state, with a lifetime of approximately

y sec. In the presence of time-dependent perturba-1

tions, ho~ever, transitions to the 2p state are in-
duced and subsequent radiative deexcitation wi11.

ensue. The quenching of metastable hydrogen atoms
by static electric fields' and by ions has been dis-
cussed previously. In an experiment designed to
determine the 2s-state lifetime, cross sections for
the quenching caused by molecules were measured.
Quenching cross sections for hydrogen-molecule
targets have also been reported. The theory for
the quenching caused by mol. ecules at low energies
has been given. ' There the quenching was found to
be caused by the electric fields which stem from
the molecular multipole moments.

Nore recently, experimental effort has gone into
measuring the cross sections for quenching by
atoms. In the present paper we develop a theory
for such processes. We begin by analyzing the dy-
namics of the problem focusing our attention on the
low-velocity region where only transitions between

the metastable state and the nearby 2p state are
important. After reformulating the problem in
terms of certain effective one-body potentials, we
consider the problem of evaluating these potentials
in an approximate manner. We use two methods.
The first is based on perturbation theory. This
necessitates the development of an exact method
for obtaining the effective potentials at large inter-
nuclear separations. The exact asymptotic poten-
tials are used to normalize certain of our perturba-
tion-theory results. Next we utilize a semiphe-
nomenological method to obtain the effective poten-
tials. This method replaces the helium atom by a
Breit-Fermi pseudopotential whose magnitude is
determined from scattering lengths found in elec-
tron-helium scattering experiments. Finally, with
the relevent potentials having been deter'mined by
two independent methods, we obtain results for the
quenching of metastable hydrogen by helium which
can be compared with experiment.

II. THEORETICAL PRELIMINARIES

At the energies of interest in this paper, the prob-
lem may be viewed as that of a heavy projectile
following a classical straight-line path which im-
pinges on a target, producing excitation of the pro-
jectile or the target. Because of the slowness of
the projectile (v«1, in a. u. , which we will use
throughout this work), only states very close in en-
ergy to the initial state can be excited with appre-
ciable probability. Thus, if both the target atom
and the projectile were in their respective ground
states, we should have only elastic scattering (un-
less there is a pseudocrossing of atomic levels as
a function of internuclear separation). However,
when the incident hydrogen atom is in its meta-
stable 2s state, transitions to the nearby (essen-
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where 4 ' "is a solution which at remote past times
represents a hydrogen atom in its 2s state and a
target atom in its ground state. V(t) is the inter-
atomic potential which depends on t via the internu-
clear distance, which may be written as

R (52 f2)2I(2 (2)

b being the impact parameter and v the relative
velocity of the collision. We will take the incident
velocity to lie along the z axis. We wish to find
4'+' at remote future times; the component of
4((2"(t =+~) along the state vector corresponding to
a target atom in its ground state and a hydrogen
atom in its 2p state will give us the probability of
a transition to the 2p state.

Suppose that ((j(„(t)fis the complete set of ortho-
normal solutions to

[H, + V(f))l „(f}=E„(f)((„(f).
[We are displaying only the t dependence; of course
g„(t) and V(t} depend also on impact parameter as
well as on all the internal coordinates of the target
and the projectile. ] Let us assume for the moment
that we know E„(f) and (I(„(t) for all n. Writing

4' '(f) =Z„a'„"'(f)C„(f),

we obtain from Eqs. (1) and (3)

(4)

a „'
"(t) +Z (0„(&), $„ (&))a'„'" (f) = —2 E.(&) a.'" '(~) .

(5)

The boundary condition is

tially degenerate) 2p state can occur with high

probability.
We must therefore attempt to solve Schrodinger's

equation in the form

.de '"'
= [H, + v(f)] 4 '"',

2 E (Z) (2s&(Z)
(9)

for all nQ I subject to

(2s((Z ~) (10)

In Eq. (9) we have used the symbol I to denote the
index set consisting of the four states (2s, g),
(2p „g), (2p((, g), and (2p, g), where g denotes the
ground state of the target atom.

It is now necessary to discuss E„(Z) and (C(„(z) in
some detail. Since the 2s and 2p states are asymp-
totically degenerate, we must consider them together
and obtain g„and K„by degenerate perturbation
theory. Let us denote the zero-order wave func-
tions of the system by (t)„and their corresponding
eigenvalues by &„. Then, to second order in the
potential, the interaction matrix is

(~ v~ ) g ((t(~ v(p )((p» v(pg )

m I & —&m

Let U be the matrix which diagonalizes M. Thus

U-'MU=D,

where D is a matrix whose diagonal elements are
the E„Then Eq. .(5) becomes

separations down to fairly small separations. This
is in contradistinction to the more familiar "level
crossing" case, where two levels, which are as-
ymptotically separated by a large amount, can come
very close together over some small region of in-
ternuclear distances.

Thus, in summary, our problem comes down to
solving

das "(Z) Q ~
d$s ~ (2s) (Z)

dZ gs "' dZ

(2s& (f ss) —5 (6)
(2s)

dUks ~ a(2s) 2 E (2s)
dZ

To appreciate the important magnitudes, it is
convenient to change from the variable t to Z = et.
Then Eqs. (5) and (6) become

da(2s) Z() + p p
"' (2s)(z) E (Z)a(2s((z)

dZ tls dZ ff ft tl

(&)

(2s((z ss) p (6)

As is well known, the only states of any importance
are those for which

(2s)da, dU (2s) & (2s) (14)

where D is the diagonal matrix defined above.
Making the definition n ' =-Ua " and using Eq.
(12), we may rewrite Eq. (14) in the simple form

Letting a' " denote the column vector whose ele-
ments are the a„' " and recalling that the U „form
a unitary matrix, we have in matrix notation

~
&2.(&) —&.(R) I/2' ~'I d~(2s)

Z= ——Ma' "
dZ (15a)

over a significant range of internuclear separations.
In our case, it is clear that the 2p state of hydrogen
will very likely stay close to the 2s state as a func-
tion of internuclear distance from very large

where M is defined in Eq. (13). Since the matrix
U tends to the unit matrix for large internuclear
distances, we have
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a'"'(b, Z=+ )=a'"'(b, Z=+ ),
and thus the same boundary conditions apply to the
equation for a ~' as to the equation for a' ". Also
the quantity I

aa" (b, Z =+ ~) I gives the probabili-
ty, as a function of impact parameter, for finding
the system in the state n after a collision. Equa-
tion (15a) can be written in component form as

(Qj, Vgj ~ )=(&dj~ V(dg ~ ),
where

V(R, r~) = 2(Z *+I/R) e~r*s

(18)

helium integrals and using an obvious notation which
surpresses the implied ground-state configuration
of helium, we have

(2s)dan ~ Q M (2s)
V

(16b) —2(Z + I/~ R ra~ )e-Rr+ IR-rml (19)

III. COMPUTATION OF INTERATOMIC POTENTIALS

The problem to be considered in this section is
that of evaluating the elements of the 4&4 matrix

( V ) g (Ps, VQ~)(Q~, Vgy. )
m 1

t

(16)

subject to the boundary condition a ~2"(b, Z = -~}
= &2+,"~

This is a system of four coupled differential
equations. The key ingredient in their solution will
be the determination of the matrix M, whose ele-
ments are given by the formidable Eq. (11). It
is to this problem that we now turn our attention.

Note that the first term in Eq. (19) contributes only
to diagonal matrix elements, and its contribution
to each diagonal element is the same. It therefore
cannot contribute to any inelastic process, so we
will neglect it in what follows. Thus,

(y„vy, , ) = 2f-~;(r,}[Z*

~ ]
-2z*lR-rgl ~ (r ) (20)

Whenj or j 'is equal to 2s, 2p„2po, or 2p, this
expression may be readily evaluated. By symmetry,
it is clear that there are only four nontrivial quan-
tities of interest. Elementary angular momentum
considerations enable us to write

where j, j 'g I. The sum in Eq. (16) is fn too
complicated to be evaluated for any but the simplest
of systems, except in certain limiting conditions.
In this section we confine our attentions to the case
when the target gas is helium. The problem of
more general target gases will be discussed in a
limited context in Sec. IV.

For the purpose of evaluating the integrals im-
plied by the matrix elements in Eq. (16) we can
write V in the form

2 1 1 2
R tR+rg t tR+r', t tR-r2 t

(@a~~ ~ V42pm)=~ ~ fo(R)+~a mf2(R)

"[» Vamm (&, 0)],
(P „VQ ) =g(&)[~v &,, (&, p}],

(p „VQ,)=h(R),

where A ~ is given by

(21a}

(21b)

(21c)

(22)

1
tR+r& —r2 t lR+rj —r2 t

Here R is the vector from the hydrogen nucleus to
the helium nucleus, r, and r,' are the vectors from
the helium nucleus to the two helium electrons,
and r2 is the coordinate of the hydrogen electron.
In this coordinate system, a typical (t}& would look
like

A~„=X,(ri, r', )~2.(rm) .
In what follows, we will use the simplest screened
hydrogenic wave function with Z *= —,6 for the helium
ground state:

X (rg, r,') =(Z"/;. }e ' '"'""
The first term in Eq. (13) is readily evaluated

using the simple properties of our y, . Doing the

The variables 8 and f define the orientation of the
internuclear distance R. Note that althoughA
is not Hermitian, A ~ Y2 ~ is Hermitian. It is
possible to obtain exact expressions for fo, f„g,
and h, but they are very cumbersome. We omit
these results and show in Fig. 1 a graph of the four
quantities of interest.

If we treat the potential in the integral of Eq. (20)
as a 5 function in the variable R —r2, we can obtain
approximate expressions for fo„ f2, g, and h which
are quite accurate down to about R = 2. We have

(P~, VP, , ) = —2&v~ (R) ~, . (R)f [Z*+1/~ R —r,
~ ]

XeX -2S l a -r2I
2

The integral is elementary to evaluate, so we find

(y, , Vy, )=-(4./Z*') ', (R), (R).
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9 (R)~ ~~ ~ f (R)0
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g p (~y~ V~m)( m~ (26)ff'
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It is fairly straightforward to evaluate this sum by
variational methods.

The expression in Eq. (25b) is much more com-
plicated. In this equation the double prime on the
summation indicates that we include only excited
helium configurations as intermediate states. In

general, one cannot obtain an exact value for this
term, but fortunately at asymptotically large inter-
nuclear separations an exact result can be found.
In Sec. IV. we will obtain such results, not

only for a helium target, but for all noble gases.
At nonasymptotic distances, we try the following
procedure. The denominator is replaced by an
average demoninator 4 so that the sum may be
evaluated by closure. Doing this, we obtain

M', , =(I/n) [(4„V'4,, ) —(~„Va~, , )] . (27)

-6
'0 0 IO

FIG. 1. First -order contributions to the 2s-2s,
2s-2p, and 2p-2p matrix elements. The sign of the ma-
trix elements is given explicitly. Notice that g(R) changes
sign at R=2, and that the 2p-2p element has an L=O part
and an L= 2 part, which are shown separately.

Thus, we have

fa(R) = fa(R) = —(I/24Z *
) R e

g(R) = —(I/4Z *')(1 --,' R) Re ",
h(R) = —(I/2Z "')(1--.' R)'e ' .

(23a)

(23b)

(23c)

M)) ——(P), VP. ).)+M);. +M),'
where

a ~ I (P), V@m)(gm& VQq. )Mff. —~
mal ~ EN

(24)

{25a)

The second term in Eq. (16) is not trivial to
evaluate. It is also clear that it cannot be neglected,
for at large distances it will fall off like some in-
verse power of R (the power depending on P, and

Q& ), whereas (QJ, VP~. ) falls off exponentially for
all j andj ' with helium in its ground state. Let us
write this term as a sum of two terms:

M'a. , aa =G'(R)V~awyi, (8, 0)],
Ma, a, ——H'(R) .

(28b)

(28c)

A ~ is given by Eq. (22). Since the expressions
for F,, F 2, G', and 0' are uninstructive and very
lengthy, we will not reproduce them here but will
show them in Fig. 2. We have used the value
a= —1.09, obtained from Sec. IV. Note that the
four functions shown in Fig. 2 are significantly
larger than the "first-order" functions of Fig. 1.

It is possible to extract from Eq. (27) the as-
ymptotic behavior of F ~, F ~, G', and H' by expand-
ing the potentials in multipoles. One finds, for

example,

Using the results of Sec. IV. , which give M ff. ex-
actly at large separations, we can fix b, . In doing
this we are assuming the A dependence of ~ to be
unimpor tant.

Equation (27) cannot be evaluated in closed form,
but it can be simplified by Fourier transforming
everything and working in momentum space. It is
then possible to reduce the nine-dimensional in-
tegrals implied by Eq. (27) to a one-dimensional
integral which can be done numerically. As in the
case of (P„VP, ~ ) the results can be written as

M asm', aam= 5m'mF0 (R)

+W. ..F', (R) [P&y, ., . (I), y)],
(28a)

+"(y„vy.)(y., vy, . ) (25b) 1 59 6100H'(R) = —~ +
R R

+ ~ ~ ~ (29a)

In the first sum, the prime indicates that the sum
runs over only intermediate states in which the
helium target remains in its ground state. This
term will fall off exponentially at large distances.
Using Eqs. (18)-(20), Eq. (25a) can be rewritten as

1 755 88 300
R R (29b)

Similar expressions may be obtained for F 0 and
F 2. The most striking feature of these equations
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(0'

10
~ /

/

I;
f ~

I:
0-' L-&0

i

~

H '(R):——54/R

for 6= —1.09. Similarly, one finds

(u&a„U&uz~ )=(540&/R') [~rv 1'| (8, Q)]

(31a)

20% with the results shown in Fig. 2. Asymptoti-
cally, for example, one finds

(&u„, U&oz,):——42o/RB = —58/R

This is to be compared with the leading term in
Eq. (29a) which gives

=(V45/R') [~v 1', (e 4))

fP-5—

H'(R)
———G (R)

~ Fe (R)0
0 ~ ~ ~ ~ ~ F'I (R)2

f0-6
fp

FIG. 2. Lang-range part of the second-order contri-
butions to the matrix elements.

is the fact that they show that at R = 10 one is still
a long way from the asymptotic region. In fact, it
is not until about R = 20 that the form of the matrix
elements begins to look asymptotic.

It is interesting to compare these results with
analogous ones obtained by a semiempirical meth-
od. ' We could consider the target to be simply a
polarizable atom, taking the polarizability to be
given by experiment. Then in the electric field of
the hydrogen atom, we find an additional potential
energy given by

A

1
U —20E —2a —

2R (R -r2f
2R —r2

JR-r, lg

The matrix elements of interest to us will be
(&u~, U&uj, ). These matrix elements will diverge
because of the form of U, so let us cut the potential
off by writing empirically

R-r,
R +g JR —r I +a IR-r2I

(so ')

This cuts off U in a, plausible way as we get inside
the target atom. For helium, we would expect a
to have a value like 1/Z * (= 0.6), corresponding to
the maximum point of the helium ground-state
charge density. Using this value for a and the ex-
perimental value 0'. = 1.38 one obtains values for
I 0, F2, G', and H' which agree for R 4 to within

The coefficient of the term in brackets is to be
compared with Eq. (29b), which gives

G (R) = 686/Rv (slb)

for b, = —1.09. Thus, our average energy denom-
inator method seems to check well with the empiri-
cal approach, although it should be pointed out that
in the region of most physical interest, namely,
R&10, the magnitude of the matrix elements of U

depends rather seriously on the choice of a, even
though the asymptotic expansion is unaffected by
this choice.

It remains only to discuss the modifications of
the second-order potential which comes from Eq.
(26). The sum given in that equation could, of
course, be evaluated by the same closure methods
used on M ~~. , but in this case we have no asympto-
tic technique available for determining the average
energy denominator. Instead let us proceed as
follows. We define

W ( p) = —2(Z '+ 1/p) e '

then if we can solve

( - -,
' V' —1/r + .') t),( r ) = —W ( R - r )~-, ( r )

(32)

(33)

x u~(r ')d r d r ' . (36)

for j =2s, 2/m subject to the constraint that P& con-
tain no components of ~2, or (d», we have simply

M 2, h, = (&u2„W ( R —r) g2, ), (S4a}

Mt, z =(&u2„W(R —r) g&„), (34b)

M~„~ ~, =(&u@. .. W(R —r) $2q~) . (34c)

We proceed by introducing the Coulomb Green's
function G(r, r ') which satisfies

(--,' V —1/r+ —, )G(r, r ')= —6(r —r ') . (35)

Since the energy appearing on the left-hand side is
an eigenvalue, G will be finite only if it does not
include 2s or 2pm contributions. In terms of this
restricted Green's function we may rewrite Eq.
(34) as

Mf~ = ffmj(r) W(r —R) G(r, r ') W(r ' —R)
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Integrating Eq. (35) around a small sphere in the
neighborhood of r= r ' it is easy to show that
G(r, r ') can be written in the form

G'(R) = (- 25/64Z ') (1 --', R)Re

H2(R) =(-25/32Z * )(1 ——,
'

R) e

(39b)

(39c)

(- -,
)

1 F(r, r')

M2Pm', 22m=4 mF o(R)+A~. ~F 2(R)

x[~v Y, . (e, 4)],
M f, 23 =G (R)[~3m Y3 (8, p)],
M;, „=H'(R),

with

(38a)

(38b)

(38c)

F32(R}= F22(R) = (- 25/384Z )R e, (39a)

{0-I

T
I
j
I I
I j
t

-Sj l

I

H {R)

———GQ {R)

—~—' F~ {R)*F~ {R)0 2

t

I

~04 t—

I

I

I

10

The function F is smoothly varying and F(R, R) = 1.
The function W( p) is sharply peaked about p= 0 and
so, to a good approximation, we have

1 - -
t

W(p)W(p')
M2/, = ——&o/(R)~, (R) ~ - dpdp '.

2r Ip- pr

Upon expanding the denominator in terms of Legen-
dre polynomials this expression reduces to a sum
of elementary integrals. Thus we find

M,', = —(253//4Z") ~, (R}&u,( R) . (37)

Thus we have

For comparison with the other potentials in this
section, we have plotted these functions in Fig. 3.

In order to check these approximate expressions,
we have also solved Eq. (33) variationally by two
different expansions. In one, we used a very sim-
ple helium-centered trial function of the form

A e-e)R-rl
t

suitably orthogonalized to remove components of
co&, and ruz& . Putting such a function into a varia-
tional principle, we found results for the quantities
in Eqs. (39) which were about 15% smaller in mag-
nitude than those obtained from the Green's-function
method given above. A second variational calcula-
tion using an expansion in partial waves of the form

/), = gC„,r "P,(cosa;)
gave at R = 4 a result which fell between the helium-
centered variational result and the Green's-function
result given in Eqs. (39). Since convergence in
partial waves is poor for all but very small values
of R it was necessary to extrapolate to higher
partial waves. These variational results suggest
that the results of Eqs. (39) are probably accurate
to about 10/o.

Up to this point, we have said nothing about the
possible effects of the Pauli principle, which we
have neglected in the foregoing discussion. To
take exclusion into account precisely would be very
difficult, so we will attempt to remedy its omission
by using a Gombas exchange pseudopote«iial. ' This
is obtained by treating the electrons as a free-
electron gas. Following Gombas, one finds the
following simple expression for the effective poten-
tial felt by the hydrogen electron:

V„( R, r)=-'. [32'p( R- r)]"',
where p is the target electronic charge density.
For the simple product wave function we have used,
p is given by

p( R —r ) = 2(Z *'/3/) e '
so that

V ( R r) &

Z t2(6&)2/3e-42 IR-rl/3

To evaluate the exclusion principle corrections to
M&&, we will consider

M // .= ((u/, V,„(u/. ) . (40)

to'
0 &0

FIG. 3. Second-order contributions to the matrix
elements coming from intermediate states in which the
helium target remains in its ground state.

This expression is readily evaluated exactly by the
same methods used in obtaining (P/, V&t&; ). The
results for F 0", F ~", G'*, and H'* are given in
Fig. 4. Here Fo", F,'*, G", and H'" are defined
as usual by
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&0 '
x [~5~ Y, .(e, y)], (41a)

&02

M2.*,~=G'*(R) [~-, ~ Y, .(e, 4)],
M3*,3,

—H'*(R) .
(41b)

(41c)

,0-&

Using the "peaking" approximation, we get the
following analytic expression:

M q~p = (27m/16&*)(6m) "(u ) ( R)(uq. ( R) .

Thus,

(42)

104

F '*(R) = F '*(R)—:~(6w)"' R'e

G'*(R)= —,6(6m)"'(1 —;R)Re ",
H'*(R) = -'(6~)"'(1- R)'e-'

(43a)

(43b)

(43c)

i05—
H (R)
G'" (R)

F,
'" (R)

F2 (R)
Mzpm, adam

= 4 ~ F o (R) +&m ~ F 2 (R)

"[~w Y, „,(e, @)], (44a)

Finally, we can combine all our results, including
the Gombas pseudopotential contributions, to write

&06
0 tp

M2, ~~—- G (R)[~3m Yq (e, p))

Mz~q~ = H (R)

(44b)

(44c)

FIG. 4. Exchange contributions to the matrix elements
as given by a Gombas exchange pseudopotential.

where

F (R)= f (R)+F'(R)+ F (R)+F'*(R), (45a)

F 2 (R) = fp(R) + F q(R) + F~~(R) + F~2*(R), (45b)

ip' ip'

N (R)--—e'(R)
Fo (R)

F~ (R)2

10 —
O+

10

l
/

ip' —I

(0

)0-5 ~

l

I

, ti04 I—

)0-5— io'—

,p-6
0

l,
I I l)

fp
,0-6

0 (0

FIG. 5 (a). Total 2s-2s matrix element and total 2s-2p matrix element. (b) L=O and L=2 parts of the total 2p-2p
matrix element.
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G (R) = g(R)+G'(R)+G'(R)+G'*(R),

H (R) = h(R)+H'(R)+H~(R)+H'*(R) .
(45c)

(45d)

These total matrix element contributions, F o, F~,
G, and H are shown in Fig. 5. The most striking
aspect of Fig. 5 is the fact that the sum of the four
contributions to each curve is much less than any
individual contribution. This depends heavily on
the inclusion of exchange; without the Gombas con-
tributions, the results for H, G, F o, and F 2

would be larger by nearly an order of magnitude
over most of the range shown in the figures.

IV. ASYMPTOTIC POTENTIALS

The electrostatic potential energy of Eq. (17) can
be expanded in a multipole series which is useful if
the internuclear separation is very large. Thus, V

consists of a dipole-dipole term

Vuu = —'24v ~ P.(I) l 2(2) Tw(R), (46)
g, b, c

a dipole-quadrupole term

Vz'= —v'60m Q [p,,(1)q&(2) —g, (2) q2(1)]
123

a, b, c

x T~(R), (47)

V In, l) &n, l I V

Eo —E~ +E2 —E„
(48}

The index n denotes the totality of hydrogen states,
while E represents the spectrum of states of the
target. Omitted from the sum is that term for
which n and l refer simultaneously to the hydrogen
2s or 2P state and the target ground state which is
assumed to be an s state. The energy corresponding
to the former state has been denoted by E~ and that
corresponding to the latter state by Eo.

Since collision durations are typically several
orders of magnitude smaller than fine-structure,
hyperfine, or Lamb-shift periods we shall neglect
these details and take H, to be a spinless, nonrel-
ativistic Hamiltonian. As mentioned previously,
we are concerned with the matrix elements of 'U re-
sponsible for connecting the 2s to the 2p state.
Since these are states of opposite parity, the portion
of 'U causing such transitions must also have odd
parity. Thus U must be linear in both V«and V«.

plus higher-order terms. The above two terms will
suffice for the remainder of our discussion. In
Eqs. (46} and (47), p, (i) refers to the dipole operator
for atom i, while q, (i) represents the quadrupole
tensor operator. The irregular solution to Laplace's
equation R" '

Y( (R) has been denotedby T(R).
According to the discussion of Sec. III, we must

investigate the large-R behavior of the matrix ele-
ments of the effective interaction

The dipole operator acts twice on the target atom
but only once on the hydrogen atom. By parity and

angular momentum considerations it follows that
the only terms contributing to the l sum are P
states. Similarly only P and D states are included
in the n summation. The sum may therefore be de-
composed into a contribution from the 2&I state and

a contribution from all other excited states

'U = 'Ui+ 'U2,

~2 VI2P, l) &2P, I IV
'Ug ——~ Eo-Eg

V 2
"

Eo -H2 E2 H1
Vdv, (E, —H2) +~ (Em —Hi) +~

In the first sum, the prime indicates that we omit
the helium ground state from the summation. In
the second sum we have used closure and the fol-
lowing integral identity9 (valid for a &0, b &0):

1 2
" a b

a+b g a +4 b2+(d2

The techniques used for evaluating 'U, and 'U~ are
somewhat different, so they will be discussed in-
dependently. One notes that the only nonvanishing
contribution to the matrix element is when V«acts
on the 2 s state to form an intermediate p state,
which is subsequently operated on by V„ to form
the final 2p state. Thus, we have

&fI'ili}=~ ~ &2p', 0) V,~~ /), l)
m

x&2p, lI V„~~2s, 0)(EO —E, ) '.
The aximuthal quantum numbers of the intermediate
and final states have been included explicitly in the
above equation. Equations (46) and (47) are then

combined with the above expression and the follow-
ing formulas are used to simplify it'

(22"12&1)122)=&-)"(,', )&22II2IIS&

&22"I2.&(&l»&=&-) "( 2) &22llr II2'&

= —3&~a ~

(), „(112)(123)(1 21)

x T„(R}T,„(R)

35" 1 2 3 23 1 Y~gii
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Thus, we have

( f I
'0,

I i& =+108~3»» a(0) Y „(»I)/R',
where»». '(0) is the static polarizability of the target
atom

&(0) =2~
» «I ~ol I & &Il » ol0&(E» Eo) '.

Applying similar angular momentum techniques
to 'U2 yields the following expression:

»»o 1 2 3& 'I2 3 1 Yf„(R)(fl ol
'& =- o

2»» 0 0 0]II2 I I

Using a well-known technique'o' "evaluation of
I x&

can be accomplished by solving the inhomogeneous
equation

[(Eo H,-) +uP]C =(-r+-,'r )e ' (s2)

where

v + ~ ——,
I «) = —(8»») —cose .1 d 1 1 i&2 4

2 dr y y' r
This, in turn, may be solved by a variational pro-
cedure using a trial wave function of the Sturmian
form

98 vo Y» (R)
5m

4(r) =roe "' Z„c„r". (s3)

where
The procedure is straightforward and will not be
duplicated here. Having solved for the c we then
have

E2 -Hq
—p + (aF

E2 -Hq
+ 2P q, 2 2 P. 2S d .E2-H, ~ +~ (49)

The first factor can be related to the dynamic po-
larizability of the target atom evaluated at imaginary
frequencies

(0 g ',', g 0)= l/3 a.'»i~!.
Eo Ho + &u-

Expressions for a(»»»») have been given by several
authors" for a number of atoms. Usually they take
the form

(ii' . 0 ~, s w 2 )= —,—, 'o»z( ~ 6)!
Eo —H») +»»»

(s4)

One may apply an analogous technique to the second
term in the quenchability.

The quenchability has been computed for a range
of frequencies and is plotted in Fig. 6. Twenty
terms were included in the trial wave functions and
the algebraic manipulations were performed on a
digital computer. Gaussian elimination was em-
ployed to obtain the c and d vectors. The matrix
elements computed converged to the asymptotic
values

(2t» q E 'H, o', P, 2s — —(30)"'»d
Eo —Hg» +»»»

~=i ~~++2 is!

where M is some finite number. The {»o»}repre-
sent a set of pseudoresonance frequencies and the{f» }a set of pseudo-oscillator strengths, which
are determined by a variational principle, or by
relating them to generalized oscillator strengths,
or even by direct numerical fits to spectroscopic
data.

The problem is thus reduced to evaluating the
matrix elements contained in the brackets of Eq.
(49). We shall coin the word "quenchability" when
referring to this quantity, since it is a measure of
the propensity of the hydrogen atom to be quenched.
It will be denoted by Q(»o). We begin by considering
the first term of the quenchability. We write

(
E -H

(Eo —H») +»d

(so)
where
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I&& =(E H )o, ~v I2s&. FIG. 6. Dynamic quenchability Q(ce) of metastable

hydrogen.
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DYNAMIC POLARIZABLITY
OF HELIUM

(a)
In Fig. 8 we have plotted the quantity

E2 -Hg 12S i"0 2 2 I"0 2S z H (I )
(Ez -Hi) + &

which is the dynamic polarizability of metastable
hydrogen (up to a factor). The Van der Waals in-
teraction may be written as a fold of the two
polar izabilities,

'u, (2 s) = —(3/zR') J, n „*(iur)o(i~)d~,

plus a contribution due to the 2p state

~ (2,)
3 g fz.-z.(1) fi(2)

2R6
l E2S-Eap El-Eo (56)

.Ol
.OI

IOO

IO

I

O. I

XENON

1

I.O

DYNAMIC POLARIZABILITIES

IO.O

where fz, ~z is the oscillator strength for a 2s-2p
transition and f, is the corresponding strength for
a 0 to l transition in the target. The expression in
Eq. (56) reduces to

&,(2 s) = —27 o(0)/R',

which just involves the static polarizability of the
target. For the case of helium,

18.75 35.48 54. 261+ 2 6 6 6R R R

Comparing this result with that of Eq. (29a) again
yields 4 =- —1.09 for the average energy denomina-
tor, in agreement with the result obtained from
Eq. (55).

V. PSEUDOPOTENTIAL APPROACH

.I
.OI IO IO.

FIG. 7. (a) Dynamic polarizability of helium. (b)
Dynamic polarizability of the other noble gases.

~Pu~Z ' „,', q 2s — - (120)"' &~-z .Ez-H&y +(d

The integration of Eq. (49) may now be done nu-
merically. In Fig. 7 we have plotted &(i&a) for
several rare gases. The final result is

(fI &I I&= —c~i (R)/R',
where

Having discussed in the previous sections a per-
turbation approach to obtaining the quenching ma-
trix elements we now turn our attention to a semi-
phenomenological model. There are two charac-
teristics of the metastable hydrogen-helium system
which deserve attention. First of all, the hydrogen
atom is much larger than the helium atom. Thus,
the maximum in the helium charge distribution
occurs at r = I/2 ~= g, while for metastable hydro-
gen the dominant maximum occurs at about r = 5.
This suggests that it might be possible to replace
the helium atom by a localized potential of some
sort, especially when the two atoms are well sepa-
rated (R &5). The second noteworthy feature is that
the energy of the electron is only —8 a.u. below the
continuum. Thus the hydrogenic electron can be

TABLE I. Tabulation of parameters of the effective
interaction for the rare gases.

C = —108 (3z) &(0) + ( 72/5w) f, n(i )Q(I'd) d(u .
(55)

Values of &(0) and C appear in Table I for the rare
gases. Comparing the value of C obtained from
Table I for helium with the result of Eq. (28b) we
find that 6 = —1.09.

Gas

He
Ne
Ar
Kr
Xe

o, (0)

1.3799
2. 6667

11.0863
16.7765
27.0718

—1412.6
—2815.4

—11418
—17112
—27118
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IZABILITY

f (R)= fq (R)= +~aR e

g v (R) = —,
' a R (1 --,' R)e ",

g "(R)=-,' a(1 --,' R)'e-' .

(58a)

(58b)

(58c)

these need not be calculated since we take a to be

given by experiment. The final term represents
a cross-polarization term. It is nonsingular enough

at 0= r tobe evaluated in first-order perturbation
theory without the use of a cutoff.

Let us now compare the matrix elements of the
Breit-Fermi pseudopotential with those of the cross-
polarization potential. The matrix elements of the

pseudopotential are given simply, in our familiar
notation, by

-.I '

.OI I.O

HG. 8. I3ynamic polarizability of metastable hydrogen.

V„q=2ma5(p) —, (py) .

regarded almost as a zero-energy electron. We
therefore suspect that an essential ingredient in
our theory will be scattering length for electron-
helium scattering. This quantity has been the object
of extensive experimental' and theoretical re-
search. " The value we shall use is the one obtained
by Bransden and McDowell' and is a = 1.1ao. We
therefore combine the above-mentioned properties
and introduce a Breit-Fermi pseudopotential to
replace the helium atom:

These are of the same form as the first-order po-
tentials and are plotted in Fig. 9.

The cross-polarization potential, given by the
last term in Eq. (57), can be written as

& R ~ (R-r) o d 1

R —rl' R dR 1%-rl

Thus, the matrix elements of Ucp involve only ma-
trix elements of the Coulomb potential, which are
trivial to evaluate. For example, we find for the
2s-2P matrix element

6& 6 6 3 1 1 1 g

to'

1 & 1 o R (%~r
2 R 2 l%-rl R lR-rl (57)

The first term does not connect the 2s state to the

@ state and so is relatively uninteresting. The
second term represents the polarization interaction
of the electron with the helium atom. This term is
one of the ingredients that goes into a calculation
of the electron-helium scattering length. Thus, by
using a pseudopotential, we have in effect included
it. The pseudopotential of course contains in addi-
tion exchange and penetration contributions, but

For a nonsingular wave function, this reduces
simply to 2wa5(p)g. This type of pseudopotential
has been employed in nuclear physics' and statisti-
cal physics'~ but does not seem to have been of much
use before in atomic physics.

Unfortunately, the electron is not the only entity
interacting with the helium atom, since the proton
is also nearby. We thus have to account for the
polarization effect produced by the proton. To do
this we refer back to the polarizable sphere model
discussed earlier. From Eq. (30) we have a polar-
ization interaction

t

I0-5

~l
ii
Ij

IO

g I (g)
e ~ ~ hFS (g)

f0
0

I

IO

FIG. 9. 2s-2s, 2s-2p, and 2p-2p matrix elements
calculated using a Breit-Fermi pseudopotential.
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$0-I

10

IO

CROSS —POLARIZATION g (R)

fines a set of four coupled first-order differential
equations in the variable Z. The impact parameter
b is merely a label so far as the actual solution of
the equations is concerned. Furthermore, we need
a solution to Eq. (15b) only for Z- ~, not for all Z.

In the case of the perturbation-theory potentials,
which are significantly smaller in magnitude than
the Breit-Fermi potentials, we integrated Eq. (15b)
by using a standard Adams-Moulton technique. This
was done for a large range of impact parameters.
Then

IO

1

Z (o2&,".'(b, z=-)(' bdb
P fft =-1

(59)

IO

IO-6
0 IO

FIG. 10. Cross-polarization contribution to the 2s-2p
matrix element.

was evaluated by numerical integration. It should
be noted that although the elements of M„„. depend
on &t& [see, for example, Eqs. (21), (28), (39), (43),
and (44) j, one can readily show that o &~"' is propor-
tional to e '"~, so that the expression under the in-
tegral in Eq. (59) is independent of &b. Actually,
because of the factor 1/v in Eq. (15b), it happens
that for small impact parameters and moderately
small values of &&, the integrand of Eq. (59) oscil-
lates quite rapidly. Rather than waste computer
time in this case, we merely obtained an average
value of

while for the diagonal 2s-2s element we have

cz o' 1 1 1 1
b (R)=—4

—c& ~+~+ ~ + — e

Similar expressions can be obtained for the 2p-2p
matrix elements. However, the point to notice is
that these cross-polarization matrix elements are
small compared to the pseudopotential matrix ele-
ments for all important distances. To show this,
we have plotted g (R) in Fig. 10. Comparing this
curve with g (R) shown in Fig. 9, we see that
g (R) represents only a small correction to g (R),
and we will neglect it in what follows. Similar con-
clusions hold for the other, less important, matrix
elements.

Of course, we know that at very large internu-
clear separations the pseudopotential model cannot
be correct because the f, g, and h parameters do
not take on the correct asymptotic values. How-
ever, we shall see that the cross section is deter-
mined not by large R values but by intermediate R
values, where the asymptotic potentials are of little
consequence. Thus we might expect a reasonable
approximation to the true matrix elements by this
method.

VI. QUENCHING CROSS SECTIONS

Having obtained the elements of the matrix M„„.
of Eq. (16) in two different approximations it re-
mains only to solve Eq. (15b). This equation de-

IO

Al Q
O

fO

b

.4)

IO-3 0 2

v; ( IN O.u. )

Io'

FIG. 11. Lower curve represents the values of the
quenching cross section obtained from perturbation theory
matrix elements; the two upper curves correspond to
values of the quenching cross section obtained by using
a Breit- Fermi pseudopotential. One was calculated using
an e+He scattering length equal to 1.1 a.u. , which seems
to be the best experimental value; the other used a=1.4
a.u. to give an idea of the sensititivity of the results to
variations in the scattering length. The data are experi-
mental values from Byron, Krotkov, and Medeiros
(Ref. 6).

~

&&a &(b Z )~R
e= -1

(roughly equal to -', ) in the region of rapid oscillation
and multiplied this average value by mb„where b,
is the impact parameter at which the above quantity
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where we have written the result in matrix form as
in Eq. (15a). According to the boundary condition,
we have

P1

28 (z 00)( )

0
0

This expression for 0.' " can be simplified greatly
by using the method of Byron and Foley and noting
that the integral along Z of the 2s-2p matrix ele-
ments can be done analytically in terms of Bessel
functions since R = (b + Z }"'.

J (1-~ R)Rsin&e dZ=b f (1 —
~ R)e "dZ

=b'[K, (b) -bK, (b)] .
Using this result along with Eq. (58b), we have
from Eq. (5'f)

0 A/~2 0 -A/~
o(as&(b) A/ 2 0 0 0

0 0 0 0
-A/W 0 0 0

1
0
0 y

0

where

A = (a/Bv) b [Ki(b) —bKO(b)] .

(61)

(62)

begins to oscillate rapidly. All numerical checks
which we performed indicated that such a procedure
should produce errors of no more than 5$ in ao.
The results are shown in the bottom curve in Fig.
11.

The one risk that is run in this method is that
one may miss small-scale oscillatory structure in
the total cross section. To illustrate how this might
come about, let us obtain 0'q for the Breit-Fermi
model. Here the matrix elements have a simple
form, so we can analyze them in analytical detail.
To begin with let us note that it is not a bad approxi-
mation to say on physical grounds that the value of
0' is largely determined by the impact parameter
at which one first gets a unit probability of transi-
tion, and this in turn will depend primarily on the
2s-2P matrix element. Let us therefore set all
other matrix elements equal to zero (i.e. , H

=F, =F& =0). Furthermore, the 2s-2bo matrix
element is expected to be unimportant because it is
an odd function of Z as one integrates through the
interaction region (remember that sins=- b/R and
cosH=Z/R). We will also set this matrix element
equal to zero. With all these approximations, the
matrix M ~ commutes with itself for different
values of Z, so Eq. (15b) is solved simply by

'"'= (e p[-(f/ ) f MdZ]j '~'(Z=- ), (60)

Diagonalizing the matrix inside the exponential of
Eq. (61) and resynthesizing outside the exponential,
we find for 0

ao = 2v J sin ((a/8v)b [K,(b) —bKo(b)] jbdb .
(63)

The two upper curves in Fig. 11 show ~~ as a
function of v for two different scattering lengths.
The oscillatory structure, although only at the
5-10% level, is very marked. The reason for its
appearance is easily understood by looking at Eq.
(63) for ao. The argument of the sine is a function
which takes on two extrema, one at b =- 3.2, the
other at b=- 0. 5. Because of the smallness of the
impact parameter, the second extremum will be
unimportant. The argument of the sine becomes
large as v becomes small so that one can use the
method of steepest descent to evaluate the integral
in Eq. (63) in the vicinity of the extremum at b = b,
= 3.2. Doing this, we find that 0'& can be written
(in units of va', ) as

ao(v) = o o(v) -AWv cos(&/v+-', v),
where

(64)

16', f/2 45
a [6b,Ki(b, ) —9b, Ko(b, ) —b K~(b0,)] Wa '

B=-', ah~ [K~(b,) —b, KO(b, )] = -0.145a,
and co(v) is a smoothly varying function of v which
increases gradually as v decreases. For v &0.01,
co(v) is approximately equal to &b, +(&v) b„where
b, is the largest impact parameter for which we have

(a/8v}b'[K, (b) —bK, (b)] = —,'w .

Equation (64) is meaningful only when b, &b, .
In practice, one may expect that the small oscil-

lations in c+ will be washed out when all the other
elements of M„„. are included, and a detailed nu-
merical investigation bears this out. The expres-
sion for P(b} under the integral in Eq. (63) varies
very slowly in a region of about 1 a.u. around b,
= 3.2 (for, say, v= 0.01), whereas it varies very
rapidly as one gets outside this region. This is,
in fact, the conceptual basis behind the method of
steepest descent used above. However, the quan-
tity P(b} obtained by numerically integrating the
basic equations with all matrix elements present
varies just as rapidly in the vicinity of b, as it does
in any other region of impact parameter space.
Thus, no oscillatory structure of any significance
is expected in practice. One aspect of the exact
solution which is expected to differ from the upper
curves in Fig. 11 is that the exact P(b) will not os-
cillate with an average value of &, but rather with
a somewhat larger value, so that the true quenching
cross section will be larger than those shown for
the Breit-Fermi case. A computation for p = 0.01
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gave a cross section about 20'lp larger than the ap-
proximate result. Deviations are expected to be
generally of this order of magnitude below v= 0.01,
becoming less significant as one goes to larger
velocities.

It should perhaps be remarked that the oscillations
in the approximate Breit-Fermi cross sections have
an origin quite similar to those that occur in low -en-
ergy atom-atom elastic scattering. In the latter
case, it is the scattering phase shift which has a
stationary point as a function of impact parameter,
while in the former case it is the 2s-2p transition
probability which shows this behavior.

VII. DISCUSSION

In the analysis presented above, we have assumed
that the quenching of metastable hydrogen is due

entirely to transitions to the 2P state. This assump-
tion becomes valid at velocities sufficiently small
so that n. E/v &1 (in a. u. ), where n, E is the energy
difference between H(2 s) + He(1 s ) and H(3s)
+ He(ls ). As n. E/v starts to become comparable
to 1, then excitation of H(2s) to other hydrogen
states with subsequent cascade to the ground state
begins to contribute to the quenching of H(2 s), and

at slightly higher velocities ionization begins to
play a role. In fact, at velocities so large that the
Born approximation is valid, Byron, Krotkov, and

Medeiros have shown that 2s-2p transitions play a
very minor role in quenching H(2s). Thus, for ex-
ample, in the energy range E & 250 eV one will ob-
tain different cross sections depending on whether
one counts Lyman-alpha protons from the interaction
region or whether one detects directly the depletion
of the H(2s) beam. The difference between these
two cross sections essentially measures the ioniza-
tion of H(2s). At energies below about 250 eV,
these two cross sections should be the same.

In this paper, we have attempted two different
approaches to the calculation of the quenching ma-
trix elements. The first was a perturbation-theory
approach. The total matrix element was taken to
be the sum of the first-order electrostatic potential,
the second-order electrostatic potential (i.e. , the
helium atom is clamped in its ground state so it is
effectively just a charge distribution), the long-
range second-order potential (the helium atom is
in an excited intermediate state) evaluated in the
Unsold approximation, and finally a Gombas exchange
term to mimic the effects of the Pauli exclusion
principle. A large amount of cancellation was found
between the various contributions, so that the mag-
nitude of the resultant matrix elements depends very
sensitively on just how good the various approxi-
mations are. In particular, we might expect signi-
ficant deviations for the exchange potential since
it is based on an electron-gas model of the helium

atom. Also, the assumption that the average en-
ergy denominator in the Unsold approximation is
independent of internuclear separation must be
subject to scrutiny. Errors of the order of 25%
in either the exchange matrix elements or the
Unsold matrix elements could lead to total quench-
ing matrix elements whose associated quenching
cross sections would be in reasonable agreement
with experiment at around 300 eV.

We should point out, however, that this same
method applied to the ground state of hydrogen,
i. e. , to H(ls)+He(1 s'), does not exhibit such ex-
tensive cancellation, except in the region where
the attractive potential tail goes over into the re-
pulsive potential core. Comparing the results ob-
tained by this method' with those found by Hartree-
Fock-LCAO techniques one finds that at distances
larger than about R = 3 the perturbation approach
gives more plausible results than does Hartree-
Fock-LCAO, since the perturbation method gives
a much more satisfactory account of the attractive
tail of the potential. This is due to the fact that
many intermediate states are necessary to get the
long-range effects in the H+ He system.

Our second method of attack was able to circum-
vent some of the pitfalls of the former approach.
The target atom was replaced by a pseudopotential
characterizing the electron-target interaction as
determined by low-energy e-He elastic scattering.
Thus, we were able to avoid the calculation of the
various electron-atom interactions by introducing
the experimental scattering length. The pseudo-
potential was then allowed to perturb the hydrogen
atom and the quenching matrix elements were com-
puted using lowest-order perturbation theory.

It would be surprising if either of these two ap-
proaches gave useful results at energies much
greater than 250 eV (v & 0. 1 a.u. ) since in this en-
ergy region the cross section will be determined
by quenching matrix elements at small values of
the internuclear separation, say R &4. Here the
atoms are beginning to overlap rather extensively
and the above pictures undoubtedly fail. Also,
transitions to states other than H(2P) begin to play
a role as we go to the region above v = 0. 1. How-
ever, it is interesting to note that just at the edge
of this region, namely, at 300 eV the data of Byron
et al. agree quite well with the pseudopotential
results as shown in Fig. 11. It is also reassuring
to see the 2s-2p cross section falling belou the ex-
perimental results as more quenching processes
become important. In order to test the above cal-
culations convincingly, however, it would be desir-
able to have experimental results below 250 eV.
The thermal region (v = 0.001) and the region around
2. 5 eV (v = 0. 01) would seem to be the most pro-
mising possibilities.

Finally, we should perhaps comment on several
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alternative theoretical approaches. We have al-
ready mentioned coupled-state and Hartree-Fock
formalisms in connection with the H(ls) + He(ls )
systems, where we believe that at all but rather
small internuclear separations such methods are
unreliable. This is even more likely to be the case
in the problem under discussion, where in addition
to questions concerning the adequacy of the large-R
behavior of molecular energy curves there will be
even more serious doubts about the wave functions
which must be used to calculate the matrix elements
coupling the 2s and 2P states. An approach related

somewhat to our own has been given by Byron
et aE. , who attempt to explain their results in the
region 300 & E &4500 eV by using an effective poten-
tial of the polarization type in an eikonal calculation
(which includes an infinite number of final states).
In view of the important role played by exchange in
our perturbation calculations, the agreement be-
tween theory and experiment found by Byron et al.
would appear to be fortuitous, although it indeed
seems likely that a considerable range of final
states must be considered in order to explain ' the
results of Byron et al. in the keV region.
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