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A general theorem is derived which applies to any quantum-mechanical system subject to two
perturbations H and G. It is shown that the eigenvalues of the system can be found by first solving
exactly the secular equation in H. Then the first-order perturbation of the energy by 6 can be
written explicitlv without solving for the eigenfunctions. This leads to a simple method for finding
the exact Lande g factors for the Zeeman effect of any quantum-mechanical system. These
results are applied to the Zeeman effect of the hydrogen molecule in the metastable c 7r„state.
Jette and Cahill's theory of the Zeeman effect is extended to cover all magnetic fields. Excellent
agreement is found between experimental g factors and theory. At higher magnetic fields, "anti-
crossings" are found between pairs of states for which 4J=+1, +2, 4F=O, +1, +2, and ~M+ =0.
The repulsion between these levels is very small, of the order of a few Mc/sec. This causes
the noncrossing rule of von Neumann and Wigner to be violated experimentally, The Landau-
Zener theory of level crossings is applied. It is shown that the observed loss of quantization in
the molecular-beam experiments is consistent with theory.

I. INTRODUCTION AND HISTORICAL SUMMARY 5=5„,+5„,= (1-o) 5, (2)

This paper is concerned with perturbation theory,
which is commonly applied to the problem of mag-
netism in atoms, molecules, nuclei, and solids.
Although the lodestone was known to the ancient
world, Michael Faraday' was the first man to ob-
serve and distinguish the two forms of diamagnetism
and paramagnetism. Maxwell's macroscopic equa-
tions for the electric and magnetic fields were ex-
tended to the microscopic world by Lorentz. '
Classical electron theory predicted the effect of
the surrounding media on the internal electric and
magnetic fields of atoms or molecules. '

The advent of the precise molecular-beam mag-
netic-resonance experiments by Rabi and co-work-
ers made it necessary to consider the magnetic
field produced within an atom by its own diamagne-
tism. Lamb de "ived an expression for the diamag-
netic shielding in spherically symmetric atoms.
The paramagnetic nuclear or electronic moment of
an atom interacts so as to produce an energy which
is linearly dependent on the external field:

z=- p 5.
The diamagnetic interaction produces an additional
field which is linearly dependent on the external
magnetic vector:

which effectively reduces the paramagnetic moment
by the shielding factor o. Equivalently, the internal
paramagnetic moment produces a polarization of the
diamagnetic charge cloud, which interacts with the
external field to produce the same result as in Eq.
(2). Lamb calculated the shielding factor to be
o =0. 319&&10 ' Z"', on the basis of the Fermi-
Thomas atom model, which gives a shift normally
a small fraction of a percent.

The nuclear-magnetic-resonance technique, in-
vented by Bloch et &l. and Purcell et al. , opened
the way to observing the nuclear coupling with ex-
ternal fields in a wide variety of chemical sur-
roundings. Soon it was found that the shielding
factor of (2) varied from one molecule to another.
Ramsey' developed an extension of Van Vleck's
theory of magnetism to explain the "chemical
shift. " He pointed out that the shift can be large
when a paramagnetic state is nearby to perturb
the diamagnetic state in question.

At that time, Kusch' found a discrepancy of about
0. 7l(} between the magnetic moments of Ga isotopes
as measured in nuclear magnetic resonances and
molecular-beam experiments, which were done on
atoms in the paramagnetic P states. Foley showed
that this discrepancy was caused by a partial break-
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'tlfp ——e 4'~+ b 4'~,

the expectation value of a perturbation G in the
Hamiltonian is given by

&oIG10}=~'&1IGIl)+2 b&1IG I2}+b'&2IG I2&

(4)

Even with a wave function with an impurity of only

1% (b =0.01), the deviation of the expected inter-
action in (5) can be 20%%u(( (2nb =0. 20); or even larger,
if the cross term is unusually large. '

Well-known examples of such interference terms
are Fermi's theory of the perturbation of the alkali
doublet line-strength ratios by spin-orbit inter-
action'; Fermi and Segre's explanation of the anom-
alous hyperfine structure in atoms, caused by small
amounts of configuration interaction involving
s electron excitation"; Rarita and Schwinger's
explanation of the quadrupole moment of the deu-
teron'; and Franken's discovery of interference
effects in resonance fluorescence. '

In the linear Zeeman effect of an atomic system,
for a small magnetic field 8, the degenerate energy
levels of a particular state are given by the expres-
sion

down in I.-S coupling by the nuclear hyperfine inter-
action. A second-order cross perturbation between

the matrix elements of the hyperfine interaction,
coupling the Pggp and P3/p states, and the matrix
elements of the applied field caused a deviation
in the observed nuclear magnetic moment.

Pryce' calculated the second-order cross terms
between the spin-orbit interaction and magnetic
moment for the spin Hamiltonian" for electron
paramagnetic resonance in crystals. Not only did

he find large shifts in the electron magnetic moment,
but he found that the field interaction had a tensor
form

E =P(g(qS;Bq . (2)
f, j

The history of physics is full of surprises caused
by unsuspected small admixtures of impurities in
wave functions. If a wave function is written as

from the ideal to be first order in the coefficients.
This paper begins with a general theorem on the
Zeeman effect and other perturbations, with an

application to the particular case of a diatomic
molecule in near case b coupling. In particular,
this paper is concerned with the Zeeman effect of

the hydrogen molecule in the c m„state. The dis-
covery" of large deviations of experimental Lande

g factors from those expected from simple coupling
approximations was the original motivation for
theoretical studies by Chiu. " She calculated the

g factors to second order in perturbation theory.
Jette and Cahill' calculated the Zeeman effect to
all orders in the internal interactions of the mole-
cule and gave the linear terms in the dependence on

the external magnetic field. Discrepancies between
observed and expected intensities in molecular-beam
experiments" indicated unusual behavior of the en-

ergy levels in the high magnetic fields of the de-
flecting magnets. In order to understand these
peculiar experimental results, it was desirable to
understand the behavior of the molecule in strong
fields. The present paper extends the calculation
to the Paschen-Back region.

H. GENERAL RESULT IN PERTURBATION THEORY

Consider a quantum-mechanical system of n

states, subject to a Hamiltonian operator', V which
is the sum of two terms 7 and g. We consider the
case that the matrix G is a linear perturbation of
the form G = gX, where X is a parameter. The
matrix elements are given by the usual expressions

F„= f 4, %%u4,. d~, (6)

the "zero-field" Hamiltonian, and

G(g = &g;, =f 4(;94((d~,

the "Zeeman" or "Paschen-Back" terms, where
4; is the ith wave function, i runs from 1 to n, and
d ~ is the element of configuration space. We assume
all the +'s to be real. The secular equation of the
system is

E (B ) =Mgl(. sB,
F~, +G„—E F,2+G,2 F,„+G,„

where E denotes the energy, g is a dimensionless
number called the Lande g factor, p, ~ is the Bohr
magneton ((U, s/b = 1.4 Mc/sec G), M is the z com-
ponent of angular momentum, and B is the mag-
netic field in G. In certain cases, the various
angular momenta of a system couple in such a way
that it is an elementary matter to calculate the g
factors. Examples of these coupling cases are I.-S
and j-j in atoms, and Hund's case a, b, c, and d in
molecules. Because of perturbations, the zero-
field eigenfunctions of an atomic system are gen-
erally a mixture of simple coupling cases. The

g factors are very sensitive to this admixture,
since interference terms can cause the deviations

Fpj. + Gpi

F„, +G„,

F22+ G22 —E

F.a +G~

Fz„+G2„

F„„+G„„—E

=0.

First we turn off the G perturbation, by setting
X =0. This gives us the n eigenvalues, which rep-
resent the energy levels at "zero field, " the n
roots of the determinential equation

IF i Eb(( I=o-
We assume no accidental degeneracies, so that all
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these levels are distinct. %e also assume all ma-
trix elements to be real.

%e now try to find a solution of the form E = Eo+gX,

where Eo is an eigenvalue of (9). We expand the
determinant in ascending powers of the expansion
parameter &. Substitution of (7) in (8) gives us

F11 0+(g11 g)~ F12+PI)"
F21+821" F22 E0 + (g)2 g )~

1n+Pin A.

Fan+An &

F11 Eo Fia

Fai Faa —Eo

Fnl+Rnl~ Fna+Pna~ F„„—Eo+ (g'nn g )1 F„| F F„„—Eo

R11 R

Fai
+ ~

F

Ria
'''

Win

Faa-Eo '' Fa.

F.n -Eo

Fii —Eo
R'ai

xy+ ~

F

Fia
Raa -R

Fna

F,n

F —E

+ ~ 0 ~

F,i —Eo
Fal

+

Fla

Faa- Eo
F1n

+ terms of higher order in & =0. (io)

Rni Rna

The first determinant, which is zero order in &,

vanishes because of expression (9). The sum of
the remaining n determinants vanishes, if we ignore
the higher-order terms in (10). This sum can be
written

aP;(g, —o„g}o„=o,
&)4

where 5'&& is the cofactor of the elements F;& —5„.Eo
of the "zero-field" Hamiltonian rhatrix, with the
diagonal eigenvalue matrix subtracted. %e can
solve Eq. (11}for the g factor and obtain

where %denote~ the matrix with elements $,&. By
the Hermitian character of the real matrix, we have

This gives us the nice result that

"magnetic field" parameter X. Thus, it gives the
exact R factors. This solution has the advantage
of requiring only the n eigenvalues, not the n

coefficients of the eigenfunctions, which are the
solutions to Eq. (9)."

Although the language of the Zeeman effect has
been used in this derivation, the result is clearly
a general one for perturbation theory.

III. ZEEMAN EFFECT OF MOLECULES IN CASE b

Jette and Cahill' obtained expressions for the
diagonal and nondiagonal matrix elements of the
magnetic hyperfine-structure (hfs} inter'action, for
a homonuclear diatomic molecule of arbitrary elec-
tronic state and spin in case b, where the "good"
quantum numbers are F~~IJSNA. By considering
the off-diagonal terms in J, they obtained a wave
function

g = Tr(g O)/Tr(O), (12} (i3)

which is exact to all orders in the "zero-field" per-
turbation 7 and is correct to first order in the

where the sum was over all J values. This wave
function was obtained by diagonalization of the hfs
matrix which has the following elements'":

i

N(N+1) (2N- 1)(2N+3)( N(N+1) 3 )I

x(l 3A —N(N+ 1)] 3 cj(—)"N(N+ 1}2i d) .I(J+ 1)
(14)

(yZ —1I; FMriV„„jyJI;FM))

Mz, z a 1 ((S+N —J}(S+J+1—N) 2N S (J+S+N+2)(j+N+1 —S)i
4& N(N+1) 2 I, N (2N+1)(2N —1) N (N+1) (N+1) (2N+1)(2N+3) )
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x {[3A'—N(N+ 1)]z c+( —)"N(N+ 1) zd] (is)

where

l

(F+I+j+1)(I+j—F) (F +j—I) (F +I+1 —j) (N+S+ j+ 1)(S+j—N) (j+N —S) (N+S —j+1}
l/-1, / (aj- 1) (aj+1)

J=N+K, I =X+I,

z [j(j+ 1 ) —N(N + 1) —S (S + 1) ], 5 T= —,
'

[j(j+ 1 ) + S(S + 1) —N(N + 1) ]

N J= z[ j(j+1)+N(N+1) —S(S+1) ], I J= z [F(F+1)—I(I+1)—j(j+1)].
The diagonal elements of the fine structure are

&yNs jI; FM+~3c „lyNs jI;FMF)= +
2

([N(N +I)-3A ] Bo+ ( —) "'v 'N(N-+ 1)Bz}.
AAN f [ 3N f(2N. f+ 1) —4N&N+1) ]

(16)

In the case of very weak magnetic fields, the wave
function given by Eq. (13) can be used to calculate
the linear Zeeman splittings. The interaction with
the external magnetic field is given by

Jtz =gspzf B+pzQ& I&
~ 5-grgNI B,

and the energy levels are given by

Ez)zz(A) =PC J, ~&y j ~ z'I ICzly ji FMz), (20)JlJ

where 4'is used to denote that J is no longer a good
quantum number. It is evident from I" ) that the

low-field linear Zeeman effect necessitates only
use of the matrix elements of 3'-~ which are diagonal
in F.

IV. GENERAL SOLUTION: NONLINEAR ZEEMAN EFFECT

For higher fields, for which the linear theory no
longer holds, it is also necessary to consider ma-
trix elements which are not diagonal in F. It is a
relatively straightforward matter to extend Jette
and Cahill's evaluation of matrix elements to these
cases. By the signer-Eckart theorem we have

I

(yj I;F™Fla.~.& B lyjI; FM ) = &- )' "z~.usB
l M, M l&y

j'I Fl IS I
'ly« ». ' (ai)

The reduced matrix element on the right in the uncoupled representation of J and I is
I

&yj' FllsllyjI » =(-)""'(2F+i)'"(aF'+i)'"
F j I &yNs; j'llsll»s j)'

where

( yNs J
)
)sl)res z ) = ( —) '*"')(ax'+ &) (zt ~ ))s (s+ &) (2s ~ )) )

"'

Similarly, the orbital interaction is given by

(yj'I;F'M, lq, +I, BlyjI;FM, &=(-)' "'~sB.
I M 0 (yjI;F llew I, llyjI, »,

where

I

&yj'I'F'll ~ I~lly jI » =( )""(2F+I)"'-(2F'+I)'" ', (yNs' j'll z I~llyNs' j),

(22)

(23)

(a4)

(as)

I
2N+ 1'A

(yNs; j
l l Q I, l l y Ns; j& = ( —)"""

[ ( 2j+ 1) ( 2j'+ 1)] '" j N 1 [N(N+ 1)(2N+ 1)]
(2'6)
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The nuclear Zeeman term is given by

I' F' 1F&yJ'»F™zl-ss&zl.&lyJI'FMz=- &
)'-"a&zB. (27)

&yJ'I;F']](I~i]yJI;F}=( )"-"'f],., (2F+1)'" &2F'+1)'",''
,
[I(I+1)(aI+1)]&',

J =J, F =F; (29)

where there are no off-diagonal terms in J. Note
that the convention here, which Jette and Cahill used,
follows the usage of nuclear physics, rather than the
molecular-beams literature. The g& factor is unity
for a positive nuclear moment of 1 p.„.Hereafter,
we shall follow the usual, molecular-beams notation,
where a nuclear moment of 1 p. „has a g, factor of

4) 4) 1888 '
Before these expressions are evaluated, it is con-

venient to lump the matrix elements into different
categories. These are listed in the expressions
which follow:

H~zzz(JFMI) =(yJI; FM ~Xz ~yJI; FM}:

I

&yJ+ UiF 1Mz~&z lyJIiFMz}

=(yJI2 FMz
I
&z 1yJ+ 1IF F

=&yJ'- 1I; F'+ 1M, ~V, ~yJ'I;F'M, &,

where

J =J+1, F =F —1.

Explicit expressions for these quantities can be ob-
tained by evaluating the 3-j and 6-j symbols, and
by substituting Eqs. (21), (24), and (27) into Eqs.
(19) and (20). The results for the matrix elements di-
agonal in F have been obtained by Jette and Cahill.
%e write those elements which are diagonal in J:

Hg g23z(JFMI) = MBzi) z8'22 5

Hggpp(JFMI) =&yJI;F + 1M
~
Fz

~
yJI; FM ):

J =J,F =F+1

H~pzz(JFMI) =&yJ+ 11;FM
~
Vz ~yJI; FM}:

J =J+1,F =F)

(20)
where

gz=[F(F+1}]2(g~ P X+g, f' f ),
g, =[J(J+1)]-'y,5 X+g„N X ),

where

Hzzz~(JFMI) =(yJ 1IiF + 1M I'JI'z lyJIi FM&:

J =J-1,F =F+1. (aa)

In general, there are nine different matrix elements
with all possible combinations J'= J, J+1; F'=F,
F~ 1. However, all can be obtained from the five
(See Note added in proof. ) basic elements [(29-32)]
by use of the Hermitian character of H~. For ex-
ample,

g =A'l[N(N+1) ],
gq =2.0023,

gi = -0.00302;

0 X= —,
' [F(F+1)+J(J+1)—I (I+1) ],

F.T=-,' [F(F+1)+I(I+1)-J(J+1) ] .
(24)

The matrix elements diagonal in J, but off-diagonal
in F, are given by the expression

)
(3„-2 )5 B

]

l(F ((P 5P]((+F+E+2)(—(+F+F+()((+-F 2+()((—F+i))"5 (35-)
2(F+1) (2F+1)(2F+2)

These matrix elements off-diagonal in J, but diagonal in F (previously given by Jette and Cahill) are given
by the expression

( )
MBz]))2(pz-g„) (N+S+J+2)( —N+S+J+1)(N —S+J+1)(N+S—J )
F(F+ 1}4 (J+ 1) (2J+1)(2J+2}

1/2
x (I+F+J+ 2 ) ( —I+F+J+ 1 ) (I—F+J+ 1 ) (I+F-J ) (as)

The matrix elements off diagonal in J and F are of the two types:
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pzBz(gz-gz) (N+S+J+1)(—N+S+J)(N —S+J)(N+S —J+1)
JNFP 4J(F 1 } (2J —1 }(2 J'+ 1 ) (2F+ 1) (2F+ 3)

1/2

x (I+F J+-1)(I+F J+-2)(I —F+J —1)(I—F+J)[(F+1)'—M ] (37)

—pzBz(gz —g„) (N+S+J+2)( —N+S+J+1)(N —S+J+1)(N+S —J)
4 (J+ 1)(F+1) (2J+ 1) (2J + 3) (2F+1) (2F+ 3)

1/2
x (I+F+J+2) (I+F+J+3) ( —I+F+J+1)( I+F—+ J+2) [ (F+1)' —M'] (36)

The following checks are made on the computations:
(a) Matrix elements diagonal in J are checked to

make sure that agreement is achieved with Jette
and Cahill. "

(b) The entire calculation is done independently
by the vector matrix elements listed in Condon and
Shortley. '

(c) Additional checks on the computation are made
after the matrix elements are inserted in a computer
program. These checks are described in Sec. V.

V. COMPUTER CALCULATIONS: LINEAR ZEEMAN EFFECT

The matrix elements ar used to set up a Ham-
iltonian matrix which is diagonalized by the Jacobi
method. The program is written in version 13 of
the FORTRAN IV language and the computations are
done on the Yale 7090/7094 direct coupled system.

The problem is done by three independent methods:
(a) The matrix elements of the fs and hfs inter-

action are calculated from the constants and by the
method of Jette and Cahill, "by use of expressions
(14)-(17). The calculated energy levels a.re com-
pared with the seven experimental energy levels '
of the hydrogen molecule, c m„; X=1; J=1,
F=2, 1, 0; J=2, F=3, 2, 1; and J=O, F=1. A
best fit is obtained for the constants, which are
given in Table I. Then, by a program prepared by
Wik, ' Jette and Cahill's method' [expression (20) ]
is used to obtain the g factors from the calculated
eigenfunctions. This calculation involves diagonal-
izing two 1& 1 matrices, one2 x 2matrix, andone
3&& 3 matrix for the F= 3, F=O, F=2, and F= 1 lev-
els, respectively.

(b) The matrix elements of the fs, hfs, and Zee-
man interaction are simultaneously diagonalized at
each magnetic field to give the 27 Zeeman sublevels
of the seven hfs levels. This calculation involves
two 1x 1 matrices (M~=+ 3), two 3x 3 matrices
(M~=+2), two 6x6 matrices (M~=+1), and one
7x 7 matrix ( Mz=0).

(c} The third method of calculating the Zeeman
effect is by inserting the zero-field eigenvalues in
expressions (9)-(11).

The computer program for method (b) is checked
by several methods. First, it gives the correct
energy levels of the completely coupled angular
momenta [see Eq. (33}]at low fields. Methods

H(NSIM„MzMI} = (gzMz + g~M, + g„M„)ps 8, (40}

where the values of g~, g„and gN are given in
Eqs. (34).

VI. RESULTS: COMPARISON WITH EXPERIMENT

A conventional diagram of the energy levels of
8» c 7t„ in an %=1 rotational level is shown in
Fig. 1. This figure is constructed in the following
way. The Lande g factors are calculated for the
energy levels by a simple case b coupling model.
These are given under the heading "first order" in
Table II. The linear Zeeman effect [Eq. (3')] is
obtained from these g factors and is shown at the
left-hand side of the diagram. The energy levels
are obtained at high magnetic fields by complete
uncoupling of the nuclear and electronic spin. The
levels at high field are given in Fig. 1 by Eq. (40),

TABLE I. Fine-structure and hyperfine-structure
constants used in this calculation.

Constant

A(
Bp

B2
02

a~
C

Value (Mc/sec)

-3717.137
-1420.458
-4484 ~ 053

27. 900
449. 887
103.838

0. 000

~Energy levels depend only on the difference 3e —d.
d was arbitrarily set equal to zero.

I

(a}, (b), and (c) give the same Lande g factors with-
in computer round-off, approximately five decimal
places. A comparison of these theoretical g fac-
tors with experimental results is given in Table II.

Further checks of method (b) are made by setting
the hyperfine constants equal to zero. This de-
couples I from J completely. At low magnetic
fields [pzB«(fs separations) ), the energy levels
agree with the diagonal matrix elements

H ( JI M~M~ ) = (g ~M~+g, MI ) p zB+E (8}, (39)

where the values of g ~ are given in Eq. (35). Finally,
the fs constants also are set to zero. This com-
pletely decouples the angular momenta I, S, and N.
The energy levels agree with the diagonal expression
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TABLE II. Comparison of theoretical and experimental
g factors in H~, c 7I„, orthohydrogen, M= 1 level.

Level

J F Observed g z
0 1 -0. 170 + 0. 005
1 0

1
2

2 1
2

3

0. 830 + 0. 005
0. 651 a 0. 005 '

1.85 g 0. 01
1.026 + 0. 003
0. 833 + 0. 003

Calculated g+

First order' Exact

-0.003 -0. 16808

0. 624
0.624
1.878
1.042
0. 8331

0. 829814
0. 64756
1.83749
1.01857
0. 83310

~ Reference 26. This work. ' Reference 17.

where the projection of the total angular momentum
along the magnetic field is the "good quantum
number" m~ = m~ + m„+ m„and where the internal
interaction terms are ignored. The von Neumann-
Wigner noncrossing rule ' is used to connect low-
and high-field energy levels.

The low-field energy levels can be checked pre-
cisely with theory (3'), by studying the Zeeman
splitting of transitions of the form hF = 0, + 1,
~+=0, +1. These results are shown in Table II.
There is a clear discrepancy between experiment
and the first-order values in several cases. The
exact calculations (see Table II}are in excellent
agreement with experiment in all but one ca,se,
where the experimental error may be somewhat
optimistic.

It is interesting to note that the nuclea, r g factor
of the J=0, F =1 level is "shielded" from the bare
proton value of -0.003 04to an effective g equal to
-0. 168. This enormous distortion is caused by
the perturbation of the electronic coupling scheme
by the nuclear hfs, and represents a gross exag-
geration of the same mechanism as was found in
atoms. '

The high-field energy levels were not measured
by observing radio-frequency transitions. How-
ever, the deflecting magnets operate at high fields,
at approximately H= 5000 G (psB/h= VOOOMc/sec).
The use of the correlation supplied in Fig. 1 and
the slopes of the high-field energy levels makes it
possible to predict the relative intensities of the
transitions within a Zeeman multiplet. These are
governed by the change in magnetic "moment" p, ,
where

dE
p, AM~ + g„i'V1~+ glM~, (41)

which is obtained from expression (40}. There is
a clear discrepancy between observed intensities
and the predictions of (41).

The computer calculation of the Zeeman effect
(see Fig. 2) reveals an apparent violation of the
noncrossing rule at several values of the magnetic

Energy

Fs2

~s
2 2
I

2
I

0

J=i
F*l

F.O

I

0
-I

0 i

1 0

J=O, F*I

Fa3

0 0

0
-1 0

-2

J=2

F=l

Magnetic Field H

0 -i

-2
-1 -1

0
-3
-2 -2 -i
-I

FIG. 1. Correlation diagram, H~, c &„, X=1.

fields. Careful repetition of the calculations in
the very close vicinity of these crossings reveals
an extremely small repulsion between some of
the levels (see Figs. 3 and 4). These results are
summarized in Table III.

Examination of Fig. 2 reveals two types of inter-
actions between energy levels. One type is well
illustrated by the levels J=1; 8 =0, 1; M~=0 at
zero field, or the levels J=O, 1; F=1; M~= —1,
which "cross" at V430Mc/sec. These pairs of
levels strongly and visibly repel each other on the
gross scale of Fig. 2. The second type of level
pairs (listed in Table III) have repulsions of only
a few Mc/sec, which are too small to be seen on

Fig. 2.
The repulsions are caused by matrix elements

of the magnetic field perturbation, p. ~ B. This is
a vector operator which satisfies the selection
rules zF = 0, + 1; bJ = 0, + 1; bMF = 0. The strong
repulsions are of this form. The weak repulsions
occur in crossings with the quantum numbers
which violate the selection rules. Either l hF t & 1
or lM) &1 in all such cases. These repulsions
get their strength from the admixture of small im-
purities of wave functions with different values of
F or J. Because the repulsion occurs only in a
high order of perturbation, the interactions are
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FIG. 2. Energy levels of 82, c n'„, N=1 in a magnetic
field.

weak.

VII. LANDAU-ZENER MODEL

It is evident that the assumption of adiabatic be-
havior has broken down, because of the extremely
close approach of "crossing" energy levels. The
occurence of nonadiabatic transitions is well
known in molecular-beam spectroscopy under the
term "Majorana transitions. " These occur when
the magnetic field rotates or oscillates at a fre-
quency comparable to the separation (in frequency

units) between energy levels. "
The transitions here are of a different type that

have not been observed previously in molecular-
beam spectroscopy, but are well known in the field
of atomic collisions. When two energy levels ap-
proach each other rapidly and go through the re-
gion of mutual repulsion in a time short compared
to the period associated with the energy of re-
pulsion, the transition is "diaba. ic." That is, the
levels cross.

The theory of level crossing has been worked
out by Landau, Zener, and Stuckelberg. " The
probability of a diabatic transition (crossing) of
energy levels between two states S and S', given
by the Landau-Zener formula' is

where

-t250

O

-1500
V

-1550

CF

e
C - |400

-I450

2v(X», )
~(dBI«)(t —t') '

where 'K~~. is the matrix element which produces
the repulsion between levels, p. and p,

' are the
magnetic moments of the two states, and dB/dt
is the rate of change of the magnetic field. U we
put this expression in units of frequency,

800 900 F000
MeenetiC F'end, yoHsh (MC/eeC)

K" =hf~~. , . -lS JS
h

FIG. 3. Avoided crossings of energy levels, J=0 and J=2. we obtain
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TABLE III. Repulsions bebveen selected energy levels of H~, c3~„, N=1 level.

Low-field quantum numbers of diabatic states Parameters of crossing Type of transition

1
1
0
0
1
0

-1

Location
p &8/k (Mc/sec)

485. 93
835. 16
903. 0

3262. 7
5088
7381
7430

Repulsion
Fss. ~Mc/sec)

1.73
19.35
16.3
4. 6
5. 1

195.6
201.6

Diabatic
Mixed
Mixed
Diabatic
Diabatic
Adiabatic
Adiabatic

(2s)'(fss )'
(dB/df)(d/dB)(fs fs )— (43)

In the apparatus used in the experiments, 2 ~~ the
magnetic transition occurs in four regions each- 1mm long, B= 5000 6 in the deflecting mag-
nets, and the molecules travel at a velocity of
= 2x 10'cm/sec. If we assume a change of mo-
ment p —p'= ps, then fs —fs. = 1.5x10s B, and
we obtain

W= 2. 5x10 "(fss.)' W= ($ Fss. )', (44)

VIII. ANALYSIS OF TRANSITION AT 5215 Mc/sec

We can now take a particular case, the 5215-
Mc/sec transition. This is between the states
J =1, F=1 and J=O, F=1. There are four transi-
tions of the form bM~ = +1, shown in Table IV,
along with the high-field (psB/h =7000 Mc/sec)
moment changes which would be expected in the

where F», = 2~10 f». is the minimum separation
between states, measured in Mc/sec. We can
distinguish three cases:

(a) W» 1 (Fss. » 40 Mc/sec). The system obeys
the noncrossing rule and the transition is adiabatic.

(b) W= 1 (Fss. =40 Mc/sec). The transition is
nonadiabatic, with an appreciable probability of
taking either path after the encounter.

(c) W«1 (Fss, «40 Mc/sec). The transition
is diabatic; the system jumps to the other curve
with high probability.

deflecting magnets. Transitions 1 and 2 have es-
sentially no adiabatic changes in magnetic moment.
These transitions would be unobservable, if only
adiabatic transitions occurred. The experimental
observation of appreciable intensities for these
transitions is unambiguous evidence of nonadia-
batic transitions. The change in moments which
occur with diabatic transitions are in closer agree-
ment with experiment. However, it is clear that
the transitions are not completely diabatic, either.

To see why the transitions are neither diabatic
nor adiabatic, it is instructive to follow the indi-
vidual states through the crossings on Fig. 2 (see
Table III). The levels J= I, F= 1, Mr= 1, 0 both
have high magnetic moments, regardless of what

happens in the transition regions. The states
J= 0, 1; F = 1, M~ = —1 have zero or slightly nega-
tive magnetic moments up to 7500 G, 30 and are
adiabatic at all transitions.

Only the states J=0, F=1, M~ =0, 1 need be
considered. The transition at psB/h= 485. 9
Mc/sec is diabatic, so that both levels reach the
crossings at 835 and 903 Mc/sec. Both of these
are mixed, which ensures that neither the adia-
batic nor diabatic hypotheses are correct. Since
the transition at 3262 Mc/sec is diabatic, there
is an appreciable probability that both states end
together on the curves with approximately unit
slope. Since the moments for these curves differ
by a large amount from those for all other states,
these states can be expected to give observable
transitions. Because of the mixed character of

Transition

J=1, F=1, M=

TABLE IV. 5215-Mc/sec transition.

J=O, F=1, M=

Change in magnetic moment (pz)

Relative observed intensities

Adiabatic
Diabatic

-0. 02
-0.40

17

1.57
2. 04

24

0
1.47

12

2. 97
1.59

20
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the transitions involving these states, the lines
will be weaker than those of purely adiabatically
allowed transitions. Table IV reveals that these
two levels are just those that participate in transi-
tions 1 and 3, which had the anomalously high in-
tensity. In the case of transition 4, it can be
shown that the nonadiabatic behavior of the state
J=O, F=1, M=O would act to weaken the line in-
tensity. Since this line has the largest adiabatic
moment change and is yet not the strongest line,
the theory again agrees with observed intensity.

IX. CONCLUSIONS

The presence of nonadiabatic transitions has

been experimentally observed in a molecular beam
experiment. Theoretical calculations are in good
qualitative agreement with experimental results.
In general, such transitions can be predicted on

the basis of the Landau-Zener model, which
treats the case of "anticrossings" between pairs
of energy levels. '

Note addedin proof. There is an additional
matrix element

H~pzp(JFMI) =(yd+ 1I; F+1M~Kz
~

yJI; FM)t:

J'= J+1, F'= F+ 1.
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