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The “vibrational” structure is shown to consist of electric dipole transitions of the protons
from their ground state characterized by a principal quantum number n, to an excited state with
n’=n+1. In hydrogen fluoride, the transition from the ground state 108s to the state 109p is
calculated to be 4277.4 cm™! which compares well with the experimental transition of 3961.57 cm™!.
For lithium hydride in its first excited electronic state, an energy of 1562.3 cm™! is calculated
for the first protonic transition. The experimental value is 1359.2 cm"!. Water, ammonia, and
methane are also discussed, as are the electric quadrupole, magnetic dipole, the two-proton,
and the electron-proton transitions. It is postulated that the “rotational” structure arises from
electric dipole transitions from the ground state to states of higher angular momentum with the

same principal quantum number as the ground state.

I. INTRODUCTION

In several papers we have discussed the protonic
structure of molecules.'™® Among the many objec-
tions that have been made against the concept, one
has been the absence of the structure usually attrib-
uted to vibrations and rotations of the nuclear
framework in the calculated protonic spectra. In
this paper we will show how that structure arises
without using vibrations or rotations.

II. “VIBRATIONAL"” STRUCTURE

We will make some drastic approximations to
the Hamiltonian for hydrogen fluoride given by Eq.
(7) in Ref. 3. The approximations are not required
to solve Schrédinger’s equation, but they do make
much clearer what we wish to show here. The
Hamiltonian for hydrogen fluoride will be approxi-
mated by

H=— (i?/21)V% = (Ze?/7) , (1)

where p=m,m,/(m,+m,), m, and m, are the pro-
tonic mass and the mass of the fluorine nucleus,
respectively, and r is the distance of the proton
from the fluorine nucleus. Schrddinger’s equation
becomes
e?
H¢=(E-E'+Z} —>¢=-e¢, (2)
1 Y
where E’ is approximately the energy of the nega-
tive fluoride ion and the 7, are the electron-to-
proton distances. [This approximation is not as

drastic as the usual one, where Eq. (1) is used but
with 1/7 replaced by 2. ] The parameter Z is an
effective charge. We know the solution of Eq. (2).
The radial part of the wave function is

R,(r) =Np'e-2r/mo [ 21+ 1 (1)

n+l

(3)

where N is the normalization constant and L is the
Laguerre polynomial, and

p=(2Z/nAg)r ,

)
-

where

Agy= ;Tﬁe; =0.303494x10™ cm

=0.573532%10" bohr. 4)

The energy levels are
€,=Z%%/ Mm%, . (5)

We solved variationally Schr8dinger’s equation
with an exact spin-free and nonrelativistic Hamil-
tonian for HF using a function of the form »"~le-%r
for the proton. We found that » = 108 and ¢ =61
minimized the energy. Let

§=Z/nA° (6)
and
R, =Nr"-le-%,

When we substitute the above values of n, ¢, and
A, (in bohrs) into Eq. (6) and solve for Z, we get
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Z =3.177843. Note that what we have done is to re-
quire that the proton be mostly at = -1)/t. I
this were not done, the proton would see a repul-
sive potential rather than an attractive potential
long before it got to A,. (If, in fact, we were de-
scribing an antiproton-proton atom, the distance

at which one would predict that he would most likely
find a proton or an antiproton would be at 0. 576 408
x10°!* cm). With the above choice of Z, we get

€108=1. 087057 hartrees
and
€109=1.047568 hartrees,
€108~ €109=0. 019489 hartrees=4277.4 cm™ .

The first “vibrational” transition in HF is 3961. 57
cm™. Our error is 315.8 cm™ or less than 10%.
The next experimental transition is 7751. 86 cm™.
This would correspond to €45 — €;10= 8330.0 cm™!.
The third experimental transition is 11 276.72 cm™,
which would correspond to €;05 — €5, =12879. 8 cm™.
Our agreement is getting worse, as it should; be-
cause the maximum of the function has changed
from 1. 75 to 1. 80 bohr, both E’ and E,e"/r“ should
change, but we have assumed them to be constant.
These transitions are allowed by the electric di-
pole operator. * Therefore, they will be restricted
by the selection rules A/=+1and &m =0, 1. In
addition to these transitions, the electric quadru-
pole operator* allows transitions with the selection
rules Al=0, +2and &m =01, +2. These will be
much weaker, though. Even weaker than these
are those transitions allowed by the magnetic di-
pole operator* whose selection rules are Al =0
and am =0, 1. Finally there will be transitions
where an electron and a proton are simultaneously
excited, each restricted by the electric dipole se-
lection rules. These will be weaker than the elec-
tric quadrupole but stronger than the magnetic di-
pole transitions.

We also have a wave function for LiH in its first
excited electronic state (the electronic part of the
wave function was 1s2 2s 2p) for which we found an
n =125 and ¢ =38. The A, is 0.623593x 10~ bohr.
From these we get a Z=2.96207 and

€125—- E’.ze= 1562. 3 (:In.-1 .

The experimental value is 1359. 2 cm™.

Since we have been successful with the two mono-
hydrides, we should consider the other hydrides
for which we have wave functions. These are wa-
ter, ammonia, and methane.® We found a P
ground state in an sp configuration for water.
There is an allowed transition to the 3P of the p?
configuration but the energy difference of about 0. 07
hartrees between these states is much too large to
be of the kind we are looking for. There will cer-
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tainly be a close-lying *P of some p? configuration
whose 7 is less than the ground state n. However,
there can be no electric dipole transition to this
state. This can be seen as follows. Let the
ground-state wave function be

Pa=2"V2det |s(1)p,(2) |
and the excited state
oo =272 det |py(1) p1(2) | ,

where the primed function represents a function
with n different from the unprimed function, and

f p1p1dr=0. For light polarized in the z direction,
the transition integral is proportional to

J¥nz1+2 Y dridry= [szpodr, [piD1d75,

but [p,p1dr =0. The argument here is weak because
it depends on an orbital description. Now let the
excited state be

e = (B[ det |ph(1)p,(2) | - det|pi(1)po(2)] ],

where p’ represents n’p andn’=n+1. Then

S Vnl2y + 2,0 dridr, =272 [ szphdr .

Therefore, there can be transitions where a single
proton is excited from its ground-state nsnp con-
figuration to an n’pnp configuration. There can also
be transitions to an nsn’s configuration. These two
excited states will be different in energy because
the potential seen by the proton is only approximate-
ly Coulombic. In addition to these transitions there
will be a low-intensity transition to an n’sn’p state
allowed by the operator proportional to x;z, where

i and j refer to different protons.* In ammonia the
transitions will be from the ns np? ground state to

an n'pnp® and an nsn’snp excited state. The x,z,
operator would allow transitions to an n’s n’pnp
excited state. In methane the ground state is ns np®
The high-intensity transitions would be to the
np’'np? and nsns’ np? excited states. The low-inten-
sity transitions would be to the n’sn’pnp? state.

We note that in all of these molecules the low-
intensity excited state can also be reached by the
excitation of more than one proton. In water we
could have nsnp ton’pnp ton'pn’s, in ammonia
nsnp? to np’ np? to np’ ns’np, and in methane nsnp®
ton'pnp’ ton’pn’snp?. The electric quadrupole op-
erator would allow transitions such as nsnp to ns nf,
ndnp, n'dnp, or nsn'f in water; nsnp? to ns npnf,
ndnp?, n'dnp?, or nsnpn'fin ammonia; nsnp" to
nsnp?nf, ndnp®, n'dnp®, or nsnp*n’f in methane. In
addition to these there would also be the very weak
magnetic dipole transitions and the transitions ex-
citing an electron and a proton simultaneously.

If we use more boldness than logic we can use
the Hamiltonian of Eq. (2) to get some idea of the
energies involved in the single-proton excitations
in water, ammonia, and methane. The data are
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TABLE I. Predicted single-proton excitations in
water, ammonia, and methane.
A,(ohr
nt g2 z x 10%) €y= €, 1(cm™)

H,0 115.0 63.0 4.19444 0.578943 4328.13
NH; 125.0 63.0 4.59750 0.583809 4022. 39
CHy 125.0 57.0 4.20601 0.590324 3327.52

2We have rounded off the numbers given in Ref. 3.

summarized in Table I. The values are at least of
the right order of magnitude and decrease as they
should from water to methane. Of course, the
Hamiltonian of Eq. (2) is much worse for these
molecules than for the monohydrides.

One obvious use of the analysis of “vibrational”
structure presented here is to give some rough idea
of a good first choice of #n’s and ¢’s for calculations.
We require that # - 1)/¢ =R, or

t=m-1)/R, (7

where R is the experimentally determined maximum
in the wave function of the nucleus (i.e., the bond
length). From Egs. (6) and (7), we get Z=n(r-1)
XA¢/R. Then

e —c  lnn-DAJRP (1 1 \_nA

nT Snel” 24, w2 m+1?) RZ >
or
n=(€,- €,,1)R*/A,

for large n. I we try this for HF we find n=94. 0
and {~54.4. For InCl, for which Ay~ 0.21x10™*
bohr, R=4,5 bohr, and Ae~9x10™ hartrees, we
would expect n= 913 and £ =203. For a molecule
such as CO, the e? in the potential term of the
Hamiltonian of Eq. (2) would have to be changed to
g% where ¢ =2e, then Ag=1/(4u) =0.20 x 10 bohr,
R~ 2.1bohr, and A€~ 9.0%107% hartrees, and n~179
and ¢ = 38.

III. “ROTATIONAL” STRUCTURE

We have said already that the energies of the
protons do not depend only on n. Different values
of I for the same % will give different energy levels.
These changes in [ are, in fact, the “rotational”
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structure. In other words the “rotational” struc-
ture consists of transitions allowed by the electric
dipole operator from the ground-state configuration
to higher angular momentum states. In HF, the
ground state for the proton is#=108, =0, m =0.
The excited states would bel=1, {=3, I =5 and so
on, all with»=108. In addition to these transitions
there should exist very weak electric quadrupole
transitions to the even ! states. We should make
clear that the electric dipole operator has nothing
to do with a permanent dipole moment. The con-
cept of a permanent dipole moment can have mean-
ing only in the Born-Oppenheimer approximation.
Since the dipole moment operator vanishes for
homonuclear diatomic molecules, * they have no
“rotational” or “vibrational” structure of the elec-
tric dipole type. However, the electric quadrupole
operator does not vanish, so they will have struc-
ture allowed by that operator.

The “rotational” structure of the polyatomic
molecules is more complicated, and our simple
model Hamiltonian is not good enough to allow us
to interpret these transitions.

IV. CONCLUSION

There remains much to be done. We must show
why methane whose dipole moment operator does
not vanish does not have “rotational” structure.

We must reinterpret the concept of permanent di-
pole moments in terms of an external field.’ We
must investigate the effects of spin-orbit and spin-
spin interactions. We must calculate wave functions
for molecules such as D,O, ND;, CD,, etc., which
require a symmetric wave function for the deuterons
for which we have already given the matrix ele-
ments of the Hamiltonian.® We must extend this
work to nonhydrides which, as we have shown here,
may not have forbiddingly highn’s. (Even if they
do, Gaussian functions rather than Slater functions
could be used.) It should be clear, though, that it
is not necessary, and it may not be desirable, to
ascribe to small molecules, vibrations, rotations,
hindered rotations, inversions, and so on. Molec-
ular structure can be described simply and suc-
cinctly by using Schrédinger’s equation with no ap-
proximations in the Hamiltonian, It would have
been very surprising had this not been possible.
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