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We report the results of calculations of Sternheimer crystalline electric field shielding and
antishielding factors for Pr3', Tm+, W', and Au' iona at all the core electronic sites, in
addition to the unfilled valence electron site and the nuclear site of each ion. The calculations
take into account the effect of polarization of all the closed shells within the ions, including
the exchange interaction terms. Mann's relativistically corrected Hartree-Fock (HF) wave
functions were used in the computations. Our calculations thus extend and improve upon the
previous calculations by Sternheimer and others who did the computations for rare-earth ions
at the location of the 4f electron and at the nuclear site only. Our values of shielding and
antishielding factors Xs at the location of the 4f electron and at the nuclear site for Pr+ and
Tm ions agree well with previous calculations and measurements. The possibility of
experimentally determining the quadrupole splittings of the atomic-core level by the recently
developed technique of ele"tron spectroscopy for chemical analysis (ESCA), which underlines
the great significance of these calculations, is discussed.

I. INTRODUCTION

It has been of considerable interest to estimate
the Sternheimer shielding parameters at the 4f
electron site and the antishielding parameters at
the nuclear site in rare-earth ions. ' The electric
field at any location within the ion is known in
terms of these parameters when the field produced
at the site of the ion by the ligands surrounding the
ion and by other rare-earth ions in the crystal is
given. However, the calculation of crystalline-
electric field (CEF) parameters, defining the field,
is a formidable task except for the simple cases of
high-symmetry crystals. Since the CEF parameter
Az enters directly in the expression for the hyper-
fine energy splitting of nuclear levels, an experi-
mental determination of A.z was always sought. The
spectroscopic measurements' gave information
about Az coupled with the Sternheimer shielding
parameter. Thus, an accurate knowledge of Stern-
heimer shielding is necessary to determine the
value of Az from the experiments. Recent develop-
ment of high-resolution techniques, such as elec-
tron spectroscopy for chemical analysis (ESCA)~
has made it possible to measure very small split-
tings of the electronic energy levels of the order of

0. 5 eV. It has been suggested by Sen' that the split-
ting of some P3~z electronic states should be mea-
surable in some compounds of heavier elements.
The splitting of 5P, &~ and 4P»~ levels has recently
been observed in compounds of Au, Th, U, Pu,
and Np by Novakov and Hollander. In view of these
facts it seemed necessary to carry out calculations
of the Sternheimer parameters for various elec-
tronic sites in rare-earth and heavy ions. We re-
port here the Sternheimer parameters (to be de-
noted by X) for W', Au', Pr ', and Tm ' ions at all
the core-electronic sites, as well as at the nuclear
site of each ion. As a by-product of these calcula-
tions, electronic quadrupole polarizabilities for
the ions were obtained. These are also reported
here.

For W'we have calculated X5g=0 110 and
(y„ in Sternheimer' s notation) = —58. 8; for Au',
X,„„=—74. 2; for Pr', && (om in Sternheimer's
notation) = 0. 745 and &,„„=—84. 8; and for Tm',
A=0. 601 and X,„„=—72. 9. The X's here include
the effect of polarization of all the cores, as well
as exchange interaction terms. Mann's' relativis-
tically corrected Hartree-Fock (HF) wave functions
were used in all the calculations. The results for
Pr ' and Tm' compare well with other previous
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calculations'2 and with the measurements. '
It is shown from our calculation of the Stern-

heimer parameters that CEF could cause mea-
surable splitting of 5p»2 core levels in the cases
studied, whereas the energy splitting of most of
the lower ps~2 levels is beyond the resolution of
present instruments.

The internal-field gradient due to the CEF split-
ting of the unfilled valence electron shell or due
to the covalent bonding orbitals, etc. "appears to
be the primary cause of the splitting of the core-
electronic levels lower than n = 5 and at least a
partial cause of the splitting of the levels in the
n= 5 shell. The calculations are now in progress
to determine the internal electric field gradient
and its shielding-antishielding parameters at
various core-electronic sites, and these will be
reported when available.

II. THEORY

In this section we will derive the general expres-
sions for the CEF shielding and antishielding pa-
rameters and the quadrupole polarizability, fol-
lowing the same lines as Sternheimer [Ref. 1,
Eqs. (1)-(37a)l.

The potential energy of interaction between the
CEF and a negative charge at a point (r, 8, P) with-
in an ion centered at the origin can be expressed as

V(r, 8, p)= —P Q A„r"p„(8, y),
n fn=-n

up(n, I, m) = up(nl) Y, ,

where uQ is the radial part and Y", is the angular
part of uQ with the corresponding normalizations
being given by

j" upP dr= 1,

(5)

(6)

j Y~e Ym dil

We note that

E, = j u,'H', d'r.
It can then be seen from Eq. (4) that the angular
part of u& is

(8)

Y, Yp=( —1) V (5/4v)'i [(2L+1)(2l,+I)t'i
gg=lr-2I

-mm0 000
+2

= (5/4v)'" C"'(fm, l,m) Y.. . (9)
gg= I l-2I

the unperturbed-energy eigenvalue for the state
nl, and H&(= Vs) and E& are the corresponding first-
order perturbation quantities. The wave function
u& is the first-order perturbation in the zero-order
wave function uQ. As usual with this type of calcu-
lation, we are taking uQ, u&, v, etc. as r times the
corresponding wave functions. We write

while the radial part u& is the solution of the in-
homogeneous Schrodinger equation,

on the assumption that there is no overlay between
the charge distribution of different ions. Here,
A„represent the lattice sums over the point charges

2
and effective multipole moments in the surrounding " f&(l&+ I)

V2 + 2 +
Q Q u1( 1/ions. The functions P„are linear combinations of dr r

spherical harmonics Y„and Y„. We shall concern
ourselves here only with the term -A2s (t)~ of the = up(nl) (rp —(r')„,5„,) .
expansion in Eq. (1), because this is the only
term which could directly interact with the nuclear In Eq. (9)
quadrupole moment or with the p electrons. We
write this term explicitly as

(IO)

(Hp —Ep) u i -- (Ei -Hi) u p, (4)

where HQ is the unperturbed Hamiltonian and EQ is

Vs=-Apr Yp(8, p) .
The contribution to the interaction energy due to
V„on an electron represented by wave function
e(n„ l„m, ) can be written as

Es= je~Vse dPr .
The potential V„ interacts with all the electrons
within the ion and this acts as a perturbation on
them. The perturbed Schrodinger equation for an
electron other than the one considered above, with
wave function up(n, I, m), is written in first order
as

is the usual Wigner 3-j symbol, '

C+'(Im, f,m) =(4w/5)'~ j Yp Y,, Y", d&, (11)

where l1 is an angular-momentum quantum number
of u&, VQ is the effective potential originally in-
troduced by Sternheimer and obtainable directly
from the unperturbed Schrodinger equation for
uQ, viz. ,

1 dPup l(I+1)
u' d~2 r2

Q

described by Sternheimer, ' and (r )„, is the ex-
pectation value of r over up(nl). The wave function
u& corresponding to the change in angular momen-
tum l-l, could then be written as
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u~(nl-l, ) = (5/v)' AzC' '(lm, l,m)u', (nl-l, ) Y",

with the condition that for I =l1

J u 0(nl }u~(nl - l ) dr = 0. (14)
0

Due to the perturbation we have the following in-
teractions in addition to that defined by Zq. (3):
(i) The overlap density p (r) given by p (r)r = 2ufu&

interacts with the charge density p(r) given by

p(r)r = v~v; and (ii) the overlap density p'*(r)
given by p'*(r)r = 2v'u, interacts with the charge
density p (r) given by p (r)r =v*uo . The first
is termed the direct Sternheimer addition and the
second, the exchange Sternheirner addition, to
E~

We shall now proceed to calculate both terms
with one general approach. Let us rewrite our
wave function u, as

u, (n, , l „m,) = Bu,'(n, l, ) Y, ' .

Its overlap with another wave function&

u)(n, l, m) =(u'(nl) Y, ,

we write generally as

p(r)r2= 2Bu,'(m~l, )u'(nl) Y~~& Y~)
1

&& C' )(f,m~, lm)YP~'

where

1/2C' '(l, „ l )=(

The potential due to the charge density p(r') at
any point r is then given by

l) 4
d( ) fd'r', =

i

d'r' Z ), l f d(r l)', ,'(v) )' , '(r')",'

l1+ l 1/a
= 2B Z, Y). (r} dr', ', ~- u, m' Z C~(1&m, , lm)

l tfft I + 0 ~) L Il lI

dQ YL 1'" r' Y, ~
r'

+l
4 1/2

= 2B Z —— C' '(l&m&, lm) Y~"&'
L= I l -l I

1

L

P1 +
V)

l +l 1/2
=2B 2 ~

C' '(l,m„ lm) Y~~&~ F~(r),
L=) l -l I

+
1

Fg(r)=(1/r ') f" u~~'r' dr'

B = (5/v)&~ A C (fm I m)

&u = u()(n, l, m),

u, =u, (n, l„m),

(20)

(21)

(22)

and therefore,

e(r) = 2(5/v)"'A'C"'(fm, l,m)

Let us first consider the direct perturbation term
of the interaction energy defined in (i) following
Eq. (14). In this case

+l 1/S
C' '(1~m, lm) Y~+F~(r) . (23)

L= I l1-l I
2L+ I

The quadrupolar part of this potential is that for
which L = 2, and is

Cz(r) =4A2O [C(~)(lm, l,m)]2Y2OF2(r) . (24)

Higher moments of the potential 4 will be present
in general but they will not interact either with

P electrons or with the nuclear quadrupole moment.
However, while considering the interaction of 4
with electrons having l & I one should, strictly
speaking, consider also higher moments of 4.
In our calculations, we have not considered the
latter. The interaction energy of 4 ~(r) with the
electrons, represented by v(n„ l„m, ), could then
be written as



548 GUPTA, RAO, AND SEN

Ew(n, l-lg, m)= f v~4&v dwr

x f dQYwwY, ~ Y, ~ (25)

=4Aw[C+'(lm, 1~m}]w f dr v'w Fz(r}

x J dAYwY» Y, ~

= (5/4w)'~wAww C I'(l,m„ l,m, )

x C,e, ' j dr v' Fw(r) . (2'l}

In order to obtain total E2 due to a closed shell we

must sum over all m values in Eq. (25) and mul-

tiply by 2 to take into account the two spin states
for each n'. If we define

Now in an exchange interaction, the overlap density
is given by

pW*(r)r = 2(5/w)'~

ABACI'(lm,

l~m)

then we find

Ew(nl-l, )= ARC„ f dy v' Fw(y)

(26) x u'(nl -l,)v'(n, l, ) F, , Y,~,

and the potential due to p'* at any point r [from
Eq. (19)] is

(as)

1/2
(y) = 2(5/w)' AwC' '(lm, l,m) 2 C' &(i,m l m ) Y N F (y)

Ln I l g-le I
+

Thus the exchange energy can be written as

l(+l
1/2

E'*(n&l-l „n ) = —2(5/w) AwC' &(lm&lqm) Z C' '(l,n, l,m, )
Z, =ir, -l, i

2L + &

x drv'(n, l, )uw(nl) F~(r) ~ dAF, Y~ Yp

(as)

+l1 e 1/2
= —2(5/w)'~ AwC' '(ln, l,n ) 2 ~ 1

C'~'(lgm, l,m, )
L=ll )de I

x — C' '(lm, l,m, )
4m

dr v'(ng, ) uo (nl) F~(y) . (30)

The total exchange energy for a closed shell for the perturbation, nl- l& is obtained by summing Eq. (30)
over all m values. If we define,

Ci(nl-l, ) =4 Q C' '(lm, l,m)C' '(lim, l, m, )C' '(lm, l, m, )/C' '(l, m„l, m, ), (31)

then
l j+l e

'E( ln-lq)= —(5/4w) ~ AzC' '(1~m„l, m, ) cr Cz(nl-1&}
L = I l g -le I

dr v '(n, l,) u '(nl ) F (r) . (32)

Also we can write E„given by (3) as, v' F2 r
»I -

& g & I g (r2)
0 ne le

(34)

= —(5/4w)~~wAwoC' '(l, m„l, m, )(r )„,, (33)

Thus, the fractional change in the energy ER due to
the perturbation I- l& of the nl shell is

= —(Ez E+)/ER = —(A„&„& +X„& & )

where

l ~+1

Z C~(nl —l g)
L n I l g-lel

(35)
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The total effect of V~ at any site n, l, m, will be

E=Ea(1 —QZ &„, , )=E„(1—X„,,) . (36)
n ll

Let us now consider the effect of perturbation of the

I

closed shells at the nuclear site. Since exchange-
type terms do not have any physical meaning for
the nuclear site, only the direct perturbation term,
1.e. ,

=C(
nl l1 ll1

0

v,„„(r f'uou, 'r' dr+r f„uou~'r' dr')
dr (37)

should be considered.
Assuming the nuclear wave function v, 1 to be a

& function, we get

= C' ~ u'u'r-3dnl-l1 ll1 J0 Qu1 (38)

III. CALCULATIONS

The solution of the inhomogeneous Schr'odinger
equation [Eq. (10)] for u,

' is, in effect, the most
significant part of the computations. The method
of direct numerical integration was used in solving
this equation. For this purpose, the differential
equation [Eq. (10)] was written with the help of Eq.
(12) as a difference equation (see Ref. 13), from
which u1 could easily be written as

,
( ),( )

2 li(lan+I) -l(l+I)

and the total Sternheimer nuclear antishielding fac-
tor is

(39)
1

Similarly, the quadrupolar polarizability is written
as

&, = Z Z a„', , = Z E C'„, ' f uou[r dr . (40)
n l1 n l1

ditional expansion coefficient of the u1. This ad-
ditional information about u1 has not been found of
much use in calculations of Pr ' and Tm ' but for
Au' and W' and for other ions of higher atomic
number such information was indispensable. The

Numerov method of numerical integration did not
show any great advantage over simple integration
[direct use of Eq. (41)] and therefore only the latter
was used. The variable mesh was employed for
numerical integration purposes and the starting
mesh size near r =0 was reduced until consistency
in u1 output resulted. In general, the starting mesh
size of the order of 0.0005 a.u. was found satis-
factory for the cases studied. For angular exci-
tations, only an outward integration of Eq. (41) was
necessary. The proportionality constant relating
to the known behavior of the u1 wave function near
r =0 was adjusted until u1 behaved properly at r

For radial excitation (l&=l), the outward in-
tegration of Eq. (41) was done up to r = 0.05 or r
=0.1 a.u. , and inward integration from r= ~ to
r = 0. 05 or r = 0. 1 a.u. (as the case may be) was
done with many starting values of u~(r) until it
matched the former smoothly. For very large val-
ues of r, u, (r), and u, (r+ 5) are related by the fol-
lowing expression':

u,'(r + 6) —2u,' (r) + u', (r —5)
uo(r)

u,'(r 5) =+u', (r) e '""""',
with

(42)

—u,'(r —6) -ua(r)6'(r'-(r )„,&„,) . (41)

It can be seen from Eq. (41) that in order to de-
termine u1 completely one has to know the unper-
turbed wave functions uo (nl) and the two boundary
conditions onu~. Hartree Fock-uo(nl) wave func-
tions have recently been calculated by Mann and

we have used them throughout our work. The two

boundary conditions are obviously u1= 0 at r = 0 and
at r=~. However, it was found necessary to feed
some more analytic information about u1 to the
computer in order to get a unique and consistent
numerical solution of u1. It can be shown analytically
that u&(r)- 0 as r" for the perturbation /&=l+ 2
and l1=l, and as r' 'for theperturbations l1=l —2.
For radial excitations (I& =l) one can even find an-
alytically the constant of proportionality and an ad-

( )
u,'(r + 5) —2u', (r) +u,'(r —5)

5'uo (r)

I'(I'+I) -l(l +1) u,'(r)r
r' u,'(r)

(43)

For large r, X is a constant equal to -E0.
Various angular integrals represented by the

coefficient C in terms of the signer 3-j symbols
were evaluated in the computer. The total time
taken for the calculations presented here by the
central processing unit of the IBM-360-65 computer
at the University of Manitoba in FORTRAN rv lan-
guage was less than 12 min with an estimated ef-
ficiency of 70/o (because of nonprofessional pro-
gramming).
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TABLE I. Shielding-antishielding factors at the different sites within the Pr ion due to various perturbations. The
first column gives the values of quadrupole polarizability &, for different perturbations. Values of ( r ) are in units of
of aH. The total was obtained after subtraction of the self-interaction terms from the sum.

Pertur-
bation

5P -f
5s —d
4d —s
4d —d
4d-g
4P ~P
4P «f
4g ~d
3d —s
3d d
3d~g
3p-p
3p-f
3s d
2P-p
2p-f
2s —d
1s —d
Total

(1-X) (r')

0. 327
l. 246
0. 322
0. 002
0. 002
0. 006
0. 001
0. 003
0. 002
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
1.911

-73. 088
0.470
0. 275
0. 024

- 2. 693
0. 235

— 8. 388
0. 171
0. 043

- 0. 020
— 0. 317

0. 090
— 1.486

0. 079
0. 046

- 0. 244
0. 036
0. 027
0. 011

-84. 777

-l. 531
0. 751
2. 350

-1.170
-0.604
0. 242

-0. 136
0. 133
0. 565

-0. 229
-0. 050
0. 072

-0. 012
0. 090
0. 185
0 ~ 014
0. 006

-0. 001
0 ~ 000
0. 642
0 ~ 0106
0. 004

-0.741
0. 044
1.069

-0.432
-0. 206
0. 239

-0. 046
0. 244
0. 242
0. 007

-0. 006
0. 021
0. 015
0. 020

-0. 007
0. 001
0. 000
0. 000
0. 000
0.458
0. 0883
0. 048

3d

-l. 262
0 ~ 073
l. 196

-0. 508
-0. 123
0. 244

-0. 103
0, 235
0. 277

-0. 046
0. 022
0. 029

-0. 004
0. 038
0. Q43

0. 000
0. 001
0. 001
0. 000
0 ~ 113
0. 0720
0. 064

-0. 254
0. 692
0. 371
0. 015

-0. 007
0 ~ 095
0. 026
0. 059

-0. 009
-0. 002
0. 000
0. 002
0. 001
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000
0. 980
0. 5138
0. 010

A.4d

-0.330
0. 754
0. 374

-0. 040
0. 040
0. 094

-0. 004
0. 074
0. 037

-0. 002
0. 001
0. 002
0. 000
0. 002
0. 002
0. 000
0. 000
0. 000
0. 000
0 ~ 995
0. 6126
0. 616

A.4g

-0. 154
0. 625
0. 208

-0.018
-0. 006
0. 040

-0. 002
0. 030
0. 020

-0. 001
0. 000
0. 001
0. 000
0. 001
0. 001
0. 000
0. 000
0. 000
0. 000
0.745
1 ~ 3479
0. 344

0. 103
0. 162

-0. 019
-0. 001
0. 000
0. 007
0. 001
0. 004
0. 003
0. 000
0. 000
Q. 000
0. 000
0. 000
0. 000
0. 000
0 ~ 000
0. 000
0 ~ 000
0. 216
3.737
2. 922

IV. RESULTS AND DISCUSSION

The results are presented for Pr ', Tm', %',
and Au' in Tables I, II, III, and IV, respectively.

In the calculation of total &„„ the self-interaction
terms have been subtracted. The self-interaction
term arises because when n, l, n, =nlm, the elec-
tron interacts with its own perturbation. We call

TABLE II. Shielding-antishielding factors at different sites within the Tm' ion due to various perturbations. The
first column gives the values of quadrupole polarizability e~ for different perturbations. Values ( r ) are in units of
aH. The total was obtained after the subtraction of the self-interaction terms from the sum.

Pertur-
bation

5p-p
5P-f
5g —d
4d —s
4d —d
4d -g
4P-P
4P -f
4s —d
3d s
3d —d
3d g
3P -P
3P -f
3s d
2P -P
2p-f
2g «d
ls —d
Total

(1-~) (r')

0. 154
0. 520
0. 131
0. 000
Q. 001
0. 002
0. 000
0. 001
0. 001
Q. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. QOO

0. 000
0. 000
0. 810

-64. 487
0. 573
0. 221
0. 013

— 2. 080
0. 184

— 6.411
0. 142
0. 379

- Q. 014
- 0. 239

0. 073
— l. 154

0. 065
0. 036

- 0. 200
0. 030
0. 022
0. 010

-72. 863

-1.394
1 ~ 497
1.889

-0.890
-Q. 449
0. 191

-0. 105
0. 105
0. 470

-0. 195
-0.035
0. 057

-0. 010
0. 074
0. 170
0. 011
0. 005
0. 000
0. 000
l. 388
0. 0076

-0.003

-0. 677
-0.703
0. 910

-0.358
-Q. 155
0. 188

-0.036
0. 199
0. 215
0. 007

-0. 004
0. 016
0. 012
0. 017

-0. 007
0. 000
0 ~ 000
0. 000
0. 000

-0.381
0. 0600
0. 083

-1.166
-0. 513
1.018

-0.419
-0.098
0. 193

-0. 082
0. 191
0. 245

-0. 042
0. 017
0. 024

-0 ~ 003
0. 032
0. 042
0. 000
0. 001
0. 001
0. 000

-0. 559
0. 0473
0 ~ 074

-0. 238
0. 568
0. 350
0. 011

-0. 006
0. 072
0. 020
0. 048

-0. 008
-0. 002
0. 000
0. 002
0. 001
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000
0. 812
0. 3397
0. 064

-0. 325
0. 558
0. 360

-0 ~ 041
0. 033
0. 074

-0. 003
0. 064
0. 035

-0. 002
0. 001
0. 001
0. 000
0. 002
0. 003
0 ~ 000
0. 000
0. 000
0. 000
0. 753
0. 3848
0. 095

A.4f

-0. 189
0.491
0. 236

-0. 027
-0. 006

0 ~ 039
-0. 002
0. 033
0. 024

-0. 001
0. 000
0. 001
0.000
0. 001
0. 001
0. 000
0. 000
0. 000
0. 000
0. 601
0. 7062
0 ~ 282

0. 079
0. 148

-0. 017
-Q. 001

0 000
0. 004
0. 001
0. 003
0. 002
0. 000
0. 000
0. 000
0. 000
Q. 000
0. 000
0. 000
0. 000
0. 000
Q. 000
0. 181
2. 7272
2. 233
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TABLE III. Shielding-antishielding factors at different sites within the %' ion due to various perturbations. The

first column gives the values of quadrupole polarizability n, for different perturbations. Values of ( r ) are in units

of gH. The total was obtained after subtraction of the self-interaction terms from the sum.

Pertur-
bation

5p ~f
5s —d
4f ~p
4f -f
4f —h

4d —s
4d —d
4d —g
4p-f'
4p-f
4s —d
3d~s
3d —d
3d-g
3p'- f'

3~-f
3s d
2p- p
2p -f
2s ~d
ls —d
Total
(r )

(1-A) (r2)

n, (A. 5)

0, 047
0, 136
0. 053
0. 069
0. 004
0. 005
0. 000
0.000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0 ~ 000
0. 000
0. 000
0. 000
0. 314

&mci

-47. 591
0.448
0. 205
0. 014
1.840
0. 208

— 0. 030
l. 743
0. 161

— 5. 574
0. 124
0. 060
0. 013
0. 213
0. 067
1.041
0. 059
0. 023

— 0. 184
0. 028
0. 021
0. 009

-56. 848

-1.000
-0. 309
l. 579
3.061

-1.659
0. 207

-0.719
-0. 364
0. 169

-0. 091
0. 084
0.435

-0. 183
-0.030
0. 052

-0. 009
0. 068
0. 161
0. 011
0. 005
0. 000
0. 000
l. 465
0. 0065

-0. 003

-0.469
1.416
0.774

-3.858
-0.792
0. 187

-0.303
-0. 122
0. 166

-0. 030
0. 183
0. 202
0. 007

-0. 004
0. 015
0. 011
0. 016

-0. 007
0. 000
0. 000
0. 000
0. 000

-2 ~ 612
0. 0507
0. 183

-0.833
1.251
0. 866

-3. 181
-0.486
0. 193

-0. 355
-0. 076

0 ~ 172
-0. 071
0. 174
0. 230

-0.041
0. 015
0. 022

-0. 003
0 ~ 030
0. 040
0. 000
0. 001
0. 001
0. 000

-2. 051
0. 0396
0. 121

-0. 152
0. 385
0. 308
0. 021

-0 ~ 108
0. 100
0. 008

-0. 005
0. 063
0. 017
0. 045

-0. 007
-0. 002

0 ~ 000
0. 001
0. 001
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000
0. 670
0. 2793
0. 092

-0. 222
0.435
0. 320

-0. 221
-0. 037
0. 099

-0. 039
0. 027
0. 067

-0. 003
0. 063
0. 035

-0. 002
0. 001
0. 001
0. 000
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000
0. 524
0. 3053
0. 145

X4f

-0 ~ 176
0. 353
0. 266

-0. 088
0. 088
0. 074

-0. 038
-0. 006
0.049

—0.003
0. 047
0. 035

-0. 002
0. 000
0. 001
0. 000
0. 001
0. 002
0. 000
0. 000
0. 000
0. 000
0. 598
0.4159
0. 167

0. 058
0. 060

-0. 014
0. 113
0. 002
0. 013

-0. 001
0. 000
0. 004
0.001
0.003
0. 002
0 ~ 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0, 221
1.9397
l. 511

-0. 007
0. 044
0. 018
0. 048
0 ~ 000
0. 004
0. 000
0. 000
0. 001
0.000
0.001
0. 001
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 110
4. 3548
3.876

the corresponding term in Eq. (26) the self-inter-
action term. The self-interaction term is then
(21 ', m)-' times the total term given by Eq. (27),
and is present only when n, l, = nl. The self-inter-
action terms correspond to unphysical situations
and are to be subtracted from the final results.
However, all results include the exchange-interac-
tion energy term ~'„". . . which was often found com-nl -l g~

parable to, and sometimes even dominant over, the
direct term &„l-l, . The comparison of the results
obtained here with some of the available estimates
is shown in Table V. One can see that we have not
obtained very different results even though we used
better wave functions than those used by other
workers, confirming that it is not necessary to know
the core-electron wave functions very accurately
for this type of calculation.

The results ~,„„=—56. 8 for tungsten, and ~,„„
= —74. 2 for gold have been obtained.

We shall now see if the energy splitting of any of
the p3/2 state or any other electronic state, due to
the crystalline electric field, could be measured.
The energy splitting of an F 3/2 state could be writ-
ten asv

Phillips and Grodzins have given the values of
field gradients in the compounds WS2 at the nucleus
of the tungsten ion as —2. 0&&10'8 V/cm, i.e. ,

4A~ (1 —Q„„)= 2. 0&& 10 V/cm

Therefore we have A02 = 0.875&&10'~ V/cm . The
square-bracketed term in Eq. (44) is -', . Also, it
can be seen from Table III that among the P states,
the maximum value of (1 —&„,)(r )„,is 1.51 a„'

for the 5P state. Thus, aE» =0.3 eV, which is»3/2
at the threshold of resolution of the best instruments
available at present.

Let us study another case, namely, PrC13. Hutch-
lngs and Ray' have calculated A2 = 2. 35x10-3 a.u.
at the Pr '-ion site in PrC13. For 55 states in Pr '
we find (1 —X»)(r )»= 2. 92a„ from Table I. This
gives &E5p3/2 0. 15 eV. In PrBr3, we find that

~E5p3/2 0. 3 eV. These values are not far from
being measurable. Higher values of Az are possible
in some compounds of the ions studied. One can,
therefore, conclude that at least a part of the split-
ting of 0&» lines in gold' could be caused by the
CEF. The &E4&3&2 for Pr ', Tm', and W' came
out to be less than one tenth of &E»3/2. For Au',
&E4~ was greater than &E»

/
. Thus, one should

look forward to the internal electric field as the
partial or total cause of splitting of N,» and 0»,
lines. The internal electric field gradient is the(44)—(3cos 8 —1 )/ 3/g „/ gg/3]

&E„/, =A2 (1 —
&„/,) (r )„q[(3cos e —1 )f 3/2 I/ t3/2--

3/2
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TABLE IV. Shielding-antishielding factors at different sites within the Au' ion due to various perturbations. The
first column gives the values of quadrupole polarizability a~ for different perturbations. Values of ( ~2 ) are in units
of aH. The total was obtained after the subtraction of the self-interaction terms from the sum.

Pertur-
bation

Gd- s
5d —d
Gd-g
5P -P
GP-f
Gs-d
4f -P
4f ~f
4f -a
4d —s
4d —d
4d-g
4P ~P
4p-f
4s-d
3d s
3d d
3d-g
3P -P
3P-f
3s d
2P-p
2P-f
2s —d
ls —d
Total
(r' )

(1-X) (y )

2. 295
0.568
1.032
0. 018
0.059
0. 024
0. 003
0. 001
0.001
0.000
0. 000
O. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0.000
0. 000
0. 000
4. 001

0.422
-30.724

0. 522
-36.206

0. 254
- 0. 689
— 0. 071

1.024
0. 172

— 0. 010
— 1.331

0. 144
— 4. 722

0. 111
0. 055

— 0. 012
- 0. 192

0. 062
- 0. 938

0. 054
0. 022

— 0. 170
0. 026
0. 019
0. 009

-74. 217

-13.459
— 7.217

0. 517
— 0. 753
- 0.380

1, 602
0.430

— 0. 910
0. 171

- 0. 647
- 0 ~ 274

0. 151
- 0. 077

0. 072
0. 402

- 0. 173
— 0. 027

0. 048
- 0. 009

0. 063
0. 177
0 ~ 010
0. 004
0. 000
0. 000

-20. 281
0. 0056
0. 119

-5.935
-3.162
0.520

-0.350
1.019
0. 706

-0.668
-0.400
0. 150

-0. 276
-0. 092
0. 147

-0. 026
0. 167
0. 189
0. 006

-0. 004
0. 014
0. 010
0. 014

-0. 008
0. 000
0. 000
0. 000
0. 000

-7.983
0. 0435
0. 391

-6.779
-2.412
0.517

-0.628
0.866
0. 811

-0. 555
-0. 231
0. 157

-0.321
-0. 063
0. 152

-0. 060
0. 158
0. 216

-0. 039
0. 013
0. 020

-0, 002
0. 028
0. 044
0. 000
0. 001
0. 001
0. 000

-8. 105
0. 0336
0.306

-1.508
-1.194
0. 547

-0. 118
0. 391
0. 261

-0. 060
-0. 046
0. 072
0. 007

-0 ~ 004
0. 055
0. 015
0. 042

-0. 007
-0. 002
0. 000
0. 001
0. 001
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000

-1.552
0. 2310
0. 590

-l. 642
-0.797
0. 544

-0.172
0.430
0. 281

-0. 109
-0. 022
0. 073

-0.040
0. 022
0. 060

-0. 002
0. 061
0. 036

-0.003
0. 001
0. 001
0. 000
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000

-1.277
0. 2437
0. 555

-1.459
-0.943
0. 518

-0. 160
0. 398
0. 265

-O. 102
0.050
0. 064

-0. 050
-0. 005
0. 054

-0.004
0. 055
0. 043

-0. 003
0. 000
0. 001
0 ~ 000
0. 002
0. 003
0. 000
0. 000
0. 000
0. 000

-1.274
0. 2814
0. 640

0.341
-0 ~ 061

0 ~ 289
0 ~ 047
0. 065

-0.012
0. 009
0. 002
0. 008

-0.002
0. 000
0. 004
0. 001
0. 004
0. 003
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0 ~ 000
0. 679
1.4510
0.466

0. 166
0. 194
0. 123

-0. 007
0. 049
0. 019
0. 007
0. 000
0. 003

-0.001
0. 001
0. 002
0. 000
0. 001
0. 001
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0.000
0. 000
0. 000
0.510
2. 8340
I.389

electric field gradient caused by CEF split elec-
tronic levels of the unfilled valence shell. Pre-
liminary calculations in this direction are en-
couraging, giving the correct ratio of energy

splitting of the 4p, ~& and 5/3&, levels in gold. '
Briefly, we describe the procedures of our treat-

ment of the unfilled valence shell. Instead of con-
sidering the potential energy of interaction as in

TABLE V. Comparison of the present and previous estimates of quadrupole polarizability &, antishielding factors
X~l at the nuclear site and the shielding factors A+ for Pr and Tm ions and X~& for W' and Au' ions.

Ion
Present

estimate
Previous
estimates

Present
estimate

~aucl

Previous
estimates

A.4y or A,gg

Present
estimate

Previous
estimates

1.911 1.731'
1.752b

-84. 78
-72. 61«
-80. 82b 0. 745

O. 672'
0.70b

Tm 0 ~ 810 0. 729«
O. 718b -72. 86

-64. 54'
74 16 0. 601 o. 545'

O. 59b
0 34-0 Vlc

0.314 -56.85 0. 110 5d

Au' 4. 001 -74. 22 0.510 Gd

«Reference 2(a); the estimates do not include
contributions from terms with n&4.

Reference 2(b); the estimates do not include
contribution from terms with n & 4.

'References 3(a) and 3(b).
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Eq. (1), we start by writing the potential energy
due to charge distribution of density p(r' ) at any
point r as

4(r} = - f [ p(r') ~l r - r'I ] d'r' (45)

Now, p(r ) is written in terms of the wave function
u, of an open-shell electron, and the quadrupolar
part 4z(r) of Eq. (45) is substituted for H, in Eq.
(4). The result is a slight modification of the an-
gular part of u, [Eq. (9)] and a change in the in-
homogeneous Schrodinger equation [Eq. (10}].In
Eq. (10}, r and ( r')„, are replaced by

K(r) =r f u', ~r' dr'+r t u, r' dr', (46)
0 r

and (K(r))„„respectively. With these modifications
in the basic formulation of the problem, the shield-

ing and antishielding factors for internal electric
field are computed easily. Details of the calcula-
tions of the effect of the internal electric field on
the energy splitting of core-electronic levels will
be reported when available.
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