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Radiationless transition probabilities to the atomic 1s shell are calculated for all transitions
that contribute measurably to the Auger effect. Screened nonrelativis tie hydrogenic wave func-
tions areused. The effective charge for the continuum-electron Coulomb wave function is taken
to be the geometric mean of the effective charges appropriate for the state fromwhichtheelec-
tron originates and the next-higher state. The results are combined with Scofield's radiative
transition probabilities to derive theoretical K-shell Quorescence yields. Agreement with a
selected set of most reliable ~z measurements is very good in the range from Z=10 to 55, and
total K-level widths agree very well with measured values.

I. INTRODUCTION

Atomic fluorescence yields have gained interest
in recent years because of their importance in
pure atomic physics and in applications. Radia-
tionless transition rates are more sensitive to the
detailed nature of the wave functions than many
other measurable atomic quantities. Fluorescence
yields are necessary for the interpretation of many
nuclear and atomic measurements. Moreover, a
precise knowledge of fluorescence yields is re-
quired for the accurate calculation of photon trans-
port processes and for the design of shields and
of many radiation detection devices. A compre-
hensive effort to derive fluorescence yields from
theory is justified at the present time because
rather numerous precise measurements have be-
come available and have been critically evaluated, ~

and because accurate calculations of radiative
transition probabilities have been accompl. ished. '

In the present paper, we show that K-shell
fluorescence yields and widths in very good agree-
ment with the best experimental results can be
computed for a wide range of atomic numbers
(10 ~Z& 55) by combining Scofield's radiative
widths3 with radiationless transition probabilities
calculated from nonrelativistic hydrogenic wave
functions, provided that (a) a suitable screening
rule for the continuum wave function is introduced
and (b} all contributing transitions from outer
shells are meticulously included. In a subsequent
paper, we work out Coster-Kronig transition prob-
abilities and certain I.-subshell fluorescence yields.

II. THEORY

A. Ansatz

Radiationless transitions are auto-ionization

processes that arise from the electrostatic inter-
action between two electrons in an atom that ini-
tially is singly ionized in an inner shell. The ba-
sis of the quantum-mechanical theory of radia-
tionless transitions was formulated by Nentzel. '
The transition probability is given by the familiar
formula of perturbation theory:

gv~, = (2v/S}~ J gfvf, dr~ p(E~},

where

and p(E&) is the density of final states for the en-
ergy Ez that satisfies conservation of energy.
This expression has to be summed over all possi-
ble final states.

After a radiationless transition filling a single
inner vacancy, the atom is left doubly ionized in
inner shells. The states of such nearly-closed-
shell configurations with two holes can be expressed
in terms of completely-closed-shell configurations
together with the correlated two-electron configu-
rations. In fact, in I.S coupling the electrostatic
energies are the same for the two systems. ' The
initial and final states can therefore conveniently
be represented by the two-electron configurations
correlated to two-hole configurations that consist
(initially) of one inner-shell vacancy and one hole
in the continuum, and (finally) of two inner-shell
vacancies.

The direct matrix element occurring in Eq. (1)
then is of the form

Here, ill, is a continuum wave function, while g„
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g„and g„are bound-state wave functions. The one-
electron wave functions of the initial and final statec
are assumed to be orthogonal. This assumption is
justified by the small difference between the self-
consistent fields of the initial and final configura-
tions. ' The exchange matrix element F. is similar
to D [Eil. (2)], except that electron 1 is in state g,
and electron 2 is in the state g,. The transition
probability per unit time is

ki//, f = (2i//8)
I
D —E I' p(E/) (3)

If the continuum wave function g, is adjusted to
yield one electron ejected per unit time, ' '" then

p(E/)= h ' and the transition probability becomes

ki//, = (1/fi )ID —EIk. (4)

This formula has been used in the calculations of
Burhop'2 and in subsequent work.

B. Wave Functions

iZ~
& 1E1 k+ 1+ ' 2k+ 2; 2iKr Y~(e, y . 5

K

Here, ,E, (a; f/; c) is the confluent hypergeometric
function, K is the wave number of the ejected elec-
tron, k is the orbital angular momentum quantum
number of the ejected electron, and Z~ is the ef-

In first approximation, the e1.ectrons in bound

states can be represented by single-particle wave
functions in a central potential. We use nonrela-
tivistic screened hydrogenic wave functions. "
Such functions have been used in Burhop's pioneer-
ing work'2 and by Callan in his calculations of K-LL
Auger transition probabilities' ' ' and of L,-L23M4,
Coster-Kronig transition rates, '7' as well as by
others. Relativistic hydrogenic wave functions
were first employed by Massey and Burhop" and
most recently by Chattarji and Talukdar. ' ' Added
realism and sophistication can, in principle, be
attained by using self-consistent-field (SCF) numer-
ical wave functions or analytic solutions of the
wave equation for an approximate SCF potential,
as done recently by McGuire. ' However, the
advantages of using simple analytic wave functions
are obvious and, for the purpose of calculating
fluorescence yields, results apparently can be at
least as satisfactory as those derived from other
approaches. This somewhat surprising result
may be due to the fact that the main contribution
to the Auger matrix element comes from inter-
mediate distances from the nucleus, where the
hydrogenic approximation is quite good.

For the continuum electron, we use a screened
Coulomb wave function, normalized to one electron
emerging per unit time" "

1/2 20+1 iZ kf't
rz /2s k+1/2 F fi+ 1+

I
rk -iver

(2k+ 1)! K )

fective charge, discussed in Sec. IIC.

C. Screening

The importance of choosing an appropriate ef-
fective charge Z~= Z —o. is well-known; the result
depends critically upon this choice. "' For the
bound-state wave functions, we follow the Hartree
recipe" and let o=Z —((r„)/(r)). Here, (r„) is
the mean hydrogenic radius and (r) is the mean
Hartree-Fock radius. We use (r) as computed by
Froese for neutral atoms. '

It is more difficult to select an appropriate ef-
fective charge for the continuum electron which
sees a steadily decreasing charge as it moves away
from the nucleus. We find that best results are
obtained if Z~ in the continuum wave function is
taken to be the geometric mean of the effective
charge appropriate for the state from which the
continuum electron originates and the effective
charge pertaining to the next-higher state. Thus,
for the K-L23M23 transition, for example, the ef-
fective charge in the continuum wave function is
[Z*(3p) Z~(3d)]'/' for the direct and [Z*(2p) Z'
(3s)]'/k for the exchange matrix element.

D. Evaluation of Radial Matrix Elements

Separation of the matrix element (2) into radial
and angular factors is accomplished by expressing
the Coulomb interaction potential in terms of sca-
lar products of irreducible tensor operators' '":

(6)

where

v/ v+1

r r
rv(ri rk) /

(8)

the Y„,being spherical harmonics.
The direct radial matrix elements then are of

the form

= e' j J y„R&.,-(r, )R„,(r, )R„.;(rk)R'(r, )r,r,'dr, drk.
f 1 ~ 'Y2

(8)

Here, the R's are radial wave functions that de-
scribe states characterized by the quantum numbers
identified in Fig. 1. The notation is that of Asaad
and Burhop; the quantum numbers n l are sup-
pressed when there is no chance for confusion.
The derivation of an explicit general expression
for the radial matrix elements is outlined in Ap-
pendix A.
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where

&p(n f nzlaLML)= Q (l m lam&ILMI)&p&(f m~)&Pa(f~mz)

FIG. 1. Schematic representation or direct (D) and

exchange (E) Auger processes, illustrating the notation
used to designate quantum numbers that characterize the

pertinent states.
y(2 —,'SM~) = p (z m, ~zm, .

I
SM,)if, (m,)y&(m, }. (12)

E. Coupling: Angular Factors

Evaluation of the angular factors in the matrix
elements (2) depends upon a choice of the appro-
priate angular-momentum coupling scheme. If
spin-orbit coupling is neglected, the initial and

final two-hole states of the atom can be expressed
for different values of the total angular momentum

J in the LSJM representation of Russell-Saunders
coupling. For the heavier atoms, this is not a
good approximation, because the spin-orbit inter-
action outweighs the electrostatic interaction, and

inner-shell electron states are described more
realistically by j-j rather than LS coupling. If one
is interested in the relative intensities of the vari-
ous radiationless transitions leading to a given
final-state configuration, as in Auger-electron
spectroscopy, it is important to choose the appro-
priate coupling scheme for each range of atomic
numbers. Thus, calculations have been carried
out in LS coupling, "' extreme j-j coupling, ' '
and intermediate coupling. ' However, if the
purpose of the calculation is merely to determine
the total radiationless transition probability into
a certain final-state configuration (regardless of
the term) in order to determine fluorescence yields,
then it does not matter what coupling scheme is
chosen, as long as the initial vacancy is not in the
final configuration. The total transition rate is
independent of the coupling because the wave func-
tions in the various schemes are related by unitary
transf ormations.

The relation between j-j and LS wave functions
is discussed in Appendix B, where attention is
called to an important class of transitions for which
total rates are most conveniently evaluated in j-j
coupling. However, for the calculations with which
the present paper deals, it is possible and easiest
to express the transition rates in LS coupling, and

we restrict ourselves to this scheme.
In LSJM representation, the antisymmetrized

and properly normalized two-particle wave func-
tions are of the form'

g„(n,l„n ~l~; SLJM)

Here, rp, (l&m&), R,.(n, l&), and }(;(m,.}are the single-
particle angular, radial, and spin-wave functions

of electron i, with quantum numbers n&, I,„m&,
and m, .

The total transition probability into all possible
states of L and S for a given final configuration of
the atom then is

~ (2$+ 1)(2L+ 1)
2(2l "+ 1}

2 2

(n f—~kSLJM —nln l'SLY}, (13)
+12

where the single-particle radial wave functions are
normalized; they are denoted by their quantum
rumbers as defined in Fig. l. Equation (13} is
summed over the magnetic quantum numbers of
the final atom and the orbital angular momentum
0 of the ejected electron, and averaged over the
quantum numbers of the initial vacancy.

Separation into radial and angular factors, as
discussed in Sec. IID, leads to

2

(14)

where the plus sign goes with even L+ S and the
minus sign with odd L+ S.

The functions D„and E„are the direct and ex-
change radial matrix elements I(n f )1(nl)(n l ),
v, k) and ((n"l')1(n l )(nl), v, k) discussed in Sec.
IID and Appendix A. The angular factors d„and e„
are as follows:

Here, (f li C" )(l ) is the reduced matrix element of
the spherical harmonic, multiplied by [4a/(2v+ 1)]' a,
and
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TABLE I. Auger transition probabilities to an initial 1s vacancy, in LS couplings, in terms of radial matrix ele-
ments {(nl)(n'I'), v, S}.

Final-s tate configuration Term Transition probability»

ns

ns

nP

ns

ns

np

n s

n'P

n'p

n d

n'd

n'f
n'f

n'd

n'f

Sn' S
f . 3Pi, Poi2

'S{), 3Sf

f, 3
~22 Di23f, 3D2' Df23f, 3Pi & Pof2

f . 3F3' F234

f . 3F3' F234

, 3&2' &f23

f . 3
G4, G345

iso' 3$ii, 3
&f23i, 3

G4, G345

i . 3Pi, Poi2

. 3F3, F234

i . 3
+5& +456

~Here, we have n= y if n =n', & =1 if n & n', and

y(2&+1) n l{(ns)(n's), 0, 0}+{(n's)(ns), 0, 0}lt

&(2J+1) l {(ns)( n'p), 0, 1}+~r{ (n'p)(ns), 1, 1}
l

t

v(2J+I) n l{ (np)(n'p), 1, 0}+{(n'p)(np), 1, 0} lt

(2d+1) tt I{(np)(n'p), 1, 2}+{(n'p)(np), 1 ~ 2}

2 (24+I)
l
{(ns)(n'd), 0, 2}+ 5{(n'd)(ns), 2, 2}

l

rt(2d+1) l{(np)("d) 1»~ it{("d)(np) 2. »l'
~ (2d + 1)

l
{(np) (n ' d), 1, 3}+ f {(n' d) (np), 2, 3}

l

t

y (24+1)
l
{(ns)(n'f), 0, 3}+

& {( fn)( s)n, 3, 3}lt

*(2J+1)
l
{(np)(n'f), 1, 2}+ f {(n'f)(np), 3„2}

l

~» (44+2)
l
{(np)(n'f), 1, 4}+ r {(n'f)(np), 3, 4} l'

$ (2&+1) &
l
{(nd)(»'d), 2.0}+{(n'd)(nd)

$ (2e1 +1) tt
l {(nd)(n 'd), 2, 2} +{(n 'd) (nd), 2, 2} l'

$(2&+1) &
l
{(nd)(n'd), 2, 4}+{(n'd)(nd) 2, 4} l'

$(ed+3)
l
{(nd) (n'f), 2, 1}& ){( fn)(d)n, 3, 1}

l

$(48+2)
l

{(nd) (n'f), 2, 3}+ r {(n'f)(nd), 3, 3}
l

$(2J+1)
l

{(nd) (n'f), 2, 5}+ f{(n'f)(nd), 3, 5}
l

y means + for singlet and —for triplet states.

ltlgL {
Etl4$ $

is the 6-j symbol.
In Table I, we list radiationless transition prob-

abilities derived in Russell-Saunders coupling for
all relevant transitions that fill an initial K-shell
vacancy. The angular factors d„and e„have been
derived through a computer program that includes
3-j and 6-j symbol subroutines. Previously de-
rived factorse'~~ are included for the sake of com-
pleteness.

F. Energies

The binding energies used in these calculations
are taken from the compilation of Bearden and
Burr. " Following Callan, "'"we use neutral-atom
binding energies for E~.;. aud E„, (see Fig. 1 for
notation). In order to take account of decreased
screening due to inner-shell ionization, the binding
energy of a neutral atom of the next-higher atomic
number, Z+ I, is taken for E~;.

III. RESULTS AND DISCUSSION

A. Radiationless Transition Probabilities

The radiationless transition probabilities com-
puted in the present work are summarized in

Table II. The total radiationless K-level widths
and the K-LL transition probabilities are com-
pared in Figs. 2 and 3 with results from two other
calculations. Of these, Callan's K-LL transition
probabilities vary from our values only because of
differences in screening and in level energies. To
obtain total radiationless widths, Callan adjusted
his K-LL transition probabilities with (K XY)/-
(K-LL) ratios calculated by Geffrion and Nadeau~'

from unscreened hydrogenic wave functions.
McGuire's approach, ~s on the other hand, is very
different from Callan's and our own: McGuire
computed the quantity -rV{r) for atoms with a K
shell vacancy by the approach of Herman and

Skillman, 3~ made a straight-line approximation
to -rV{r), and thus obtained a one-electron
Schr5dinger equation that could be solved exactly
in terms of %'hittaker functions for the radial part.
This novel approach leads to excellent (K-LX)/
(K-LL) transition-probability ratios, as illustrated
in Fig. 4. However, McGuire's fluorescence yields
and total K widths agree somewhat less well with
experiment, as indicated below.

B. K-Shell Fluorescence Yields

Auger and radiative K widths and fluorescence
yields for elements from Ne through Yb are listed
in Table III. For the purpose of comparison, re-
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FIG. 2. Theoretical total Auger width of the 1s level,
as a function of atomic number. The results of Callan's
calculations are from Ref. 15, McGuire's are from Ref.
28, and KCC denotes the present work.
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FIG. 3. Radiationless K-LL transition probability as
a function of atomic number. McGuire's theoretical
results are from Ref. 28, Callan's from Ref. 15, and
KCC denotes the present work.

suits of Callan" and of McGuire ' are also indi-
cated. We furthermore list values of w~ derived
from a best fit'" of the function' '

(A+BZ+ CZ )

1+(A+BZ+CZ )

to a critically selected and evaluated set of "most
reliable" experimental results. It should be noted,
however, that this semiempirical curve fits the
experimental data poorly below Z= 20. The pres-
ent theoretical fluorescence yields, on the other
hand, agree well with experiment down to Z=10,
as can be seen from Fig. 5. Also at high Z, the
calculations agree quite closely with experiment.
Neglect of relativistic corrections to the Auger
transition probability causes this probability to be
underestimated, and hence, our calculated values
of ~dr are too high above Z=50 (broken curve in
Fig. 5). However, the excess is only slight, jus-

Q. f i
XY

l —(RIGHT-LL
Ot.

)5 20 25 30

SCALE)
J

)

35 40 45 50
Z

0.(0
KCC 0.08 g

-0.06 &

004 x
-0.02 g

55 60 65 70 75 80

FIG. 4. Theoretical and experimental (K-LX)/(K-LL)
and (K-XY)/(K-LL ) Auger transition-probability ratios
as a function of atomic number. Calculated ratios are
from Geffrion and Nadeau (Ref. 35), McGuire (Ref. 28),
and the present work (KCC). Measured relative inten-
sities of the K Auger-electron groups are those assem-
bled by P. Erman, J. Rossi, E. C. O. Bonacalza, and
J. Miskel [Arkiv Fysik 26, 135 (1964)j, except for the
following: The Zn ratios are from J. B. Bellicard,
A. Moussa, and S. K. Haynes, Nucl. Phys. 3, 307
(1956); the Co ratios are from J. B. Bellicard, A. Moussa,
and S. K. Haynes, J. Phys. RadiiIm 18, 115 (1957); the
Te data are from %. R. Casey and R. G. Albridge Z.
Physik 219, 216 (1969); while Ce and Nd ratios are those
reported by B. B. D'Yakov and I. M. Rogachev, Bull.
Acad. Sci. USSR, Phys. Ser. 26, 191 (1962).

C. Total K-Level Widths

Experimental information on the total K-level
width I' = I&+ I'& can be derived from linewidth
determinations of x-ray emission lines. After
correcting for instrumental contributions to Kn&

and Ka~ linewidths, Ls and I.& level widths are
subtracted to find F . The information is scarce

tifying our assumption that fluorescence yields for
a rather wide range of atomic numbers can be de-
rived from nonrelativistic Auger transition prob-
abilities, as long as the radiative transition rates,
which dominate at high Z, are calculated relativ-
istically. Thus, the present results for &z~ agree
better with experiment for 10 & Z & 65 than the
recent relativistic Hartree-Fock-Slater calcula-
tions of Bhalla, Ramsdale, and Rosner.

It is interesting to note that, in spite of large
differences in calculated radiationless transition
probabilities (see Fig. 2 and Table III), fluores-
cence yields computed in all but the earliest work
are rather consistent, as illustrated in Fig. 6.
This curious effect arises because those calcula-
tions that lead to exceptionally large Auger tran-
sition probabilities also appear to result in large
radiative transition probabilities, as can be seen
from Table III. A more sensitive test of various
approaches can therefore be sought in a comparison
of experimental and calculated total ls-level widths.
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TABLE III. E-shell radiationless widths I'~, radiative widths I'+, and fluorescence yields co+.

Element Radiationless width &~ (eV) Radiative width I ~ (eV) Fluorescence yield co&

Callan~
This

McGuire work Callant Mc Guire Scofield' Callan~ Mc Guireb
Semi-

empi ricald
This
work

1QNy

11Ng

12 g

13hl
14sj
15
16s
17c1

1SAg

19K

20
21sc
22T'
23v
24cr
25Mn

26F'
27 '
28"'
28cll

30"
31Ga
32Ge
33As

34
35~'
35K)
37mb

38"
39
40
41Nb

42
43
44Ru

45Rh

46Pd
47Ag

48cd

49
50
52
54xt
56"
58 '
60Nd

65Tb

70Yb

0.46
0.50
0.56
0.60
0.66
0.68
0.70
0.72
0.75
0.78
0.81
0.83
0.84
0.86
0.88
0.93
0.96
0.99
1.02
1.05
1.08
1.10
1.11
1.13
1.14
1.15
1.16
1.17
1.18
l.19
1.21
1.22
l. 24

0.243
0.264
0.314
0.318
Q. 346
0.390
Q. 425
0.486
0.531
0.576
0.593
0.604
0.676

0.771

0.831

0.882

0.994

1.10

1.13

1.17

1.23

Q. 231
0.289
0.358
0.400
0.438
0.475
0.508
0.536
Q. 576
0.611
0.650
0.671
0.692
0.710
0.725
0.740
0.754
0.768
0.780
0.791
0.802
0.818
0.833
0.848
0.861
0.875
0.888
0.902
0.912
0.928
0.939
0.950
0.959
0.968
0.977
0.985
0.993
1.000
1.007
1.016
1.024
1.038
1.051
1.064
1.074
1.082
1.102
1.133

0.05
0.06
0.09
0.11
0.13
Q. 16
0.19
Q. 23
0.28
Q. 32
0.38
0.44
0.51
0.59
0.67
0.82
1.00
1.20
1.44
1.77
2. 10
2. 34
2, 61
2.89
3.20
3.53
3.89
4. 27
4. 69
5.13
5.60
6.10
6.64

0.0045
0.0071
0.0109
0.0144
0.0217
0.0313
Q. 0420
0.0586
0.0769
0.101
0.129
0.157
0.206

0.445

0.851

1,13

1.95

3.21

4.81

6.40

8.48

0.0048
0.0071
0.0100
0.0138
0.0202
0.0288
0.0398
0.0540
0.0717
0.0933
0.119
0.150
0.186
0.228
Q. 276
Q. 333
0.396
0.469
Q. 551
0.643
0.747
0.864
0.996
1.142
1.305
1.486
1.686
1.905
2. 144
2.405
2. 688
2.995
3.32S
3.687
4.075
4.493
4. 940
5.423
5.940
6.494
7.089
8.402
9.894

11.57
13.44
15.52
21.75
29.65

Q. 098
0.117
0.138
Q. 155
0.165
0.190
0.213
0.242
0.272
0.291
0.319
0.346
0.378
0.407
0.438
0.469
0.510
0.548
0.585
0.628
0.660
0.680
0.702
0.719
0.737
Q. 754
0.770
Q. 785
0.799
0.812
0.822
Q. 833
0.843

0.0182
0.0260
Q. 0336
0.0412
0.0592
0.0743
0.0899
0.108
0.126
Q. 149
Q. 177
0.205
Q. 233

0.364

0.499

0.659

0.740

0.806

Q. 842

Q. 871

0.012
0.017
0.025
0.0336
0.0447
0, 0581
0.0739
0.0922
0.113
0.136
0.162
0.190
Q. 220
0.251
0.284
0.317
0.351
0.386
0.419
0.453
0.485
0.517
0.547
0.576
0.603
0.629
0.654
0.677
0.698
0.718
0.737
0.754
0.770
0.785
0.799
0.811
0.823
0.834
0.844
0.854
0.862
0.878
0.891
0.903
Q. 912
0.921
0.938
0.950

0.0204
0.0240
0.0272
0.0333
0.0441
0.0572
0.0727
0.0915
0.111
0.132
0.155
0.183
0.212
0.243
0.276
0.310
0.344
0.379
0.414
0.448
0.482
0.514
0.545
0.574
0.602
Q. 629
Q. 655
0.679
0.702
0.722
0.741
0.759
0.776
0.792
0.807
0.820
0.833
0.844
0.855
0.865
0.874
0.890
0.904
0.916
0.926
0.935
0.952
0.963

E. J. Callan, Ref. 15.
E. J. McGuire, Ref. 28.
J. H. Scofield, Ref. 3. These radiative widths agree to within at least three significant figures with the relativistic

calculation of atomic x-ray transition rates recently published by H. R. Rosner and C. P. Bhalla [Z. Physik 231, 347
0.970)).

Fit of Burhop's semiempirical relation [Eq. (16)j to selected "most reliable" experimental results (Refs. 2 and 37).

and widely scattered, but fortunately has been col-
lected by Leisi et a/. ,

' who find that 1"is well
represented by the expression

+=1.73xg~ ~x 10 eP

for Z& 40, within the errors of measurement.
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FIG. 5. Theoretical K-shell
'luorescence yield from the pre-
sent work, as a function of
at;omic number. The data points
are "most reliable" critically
evaluated experimental results
from Ref. 2.
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1n [1—&(()/(d((] = —m 1nZ+ In((.', (18)

accor(ting to which a plot of 1n[(1 rdz)/(d((]—against
lnZ should give a straight line of slope —m and

intercept inc. Such a ylot of the results of the
present calculation is shown in Fig. 7. For
15 Z 70, the theoretical fluorescence yields
can be least-squares fitted by a straight line with

In Table IV, we compare Callan's, "McGuire's, '
and the present total E-level widths with Leisi's
semiempirical values. The lower I' values of
the present calculation are seen to agree best
with experimental widths.

D. Byrne-Howarth Plot

Because it is difficult to fit Burhop's relation
[E(1. (16)] over the entire range of atomic numbers,
Byrne and Howarth~ have recently suggested the
alternative semiempirical expression

m = 3.94 and inn = 13.5.
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and KCC (the present work).
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the range 13 ~ Z(70, the results closely fit a straight
line.

Miss Louise K. Permann and Miss Margaret C. -K.
Yeung helped with some of the computations. One of

us (B. C. ) wishes to express his appreciation to
Dr. Hans Mark and Dr. Eugene Goldberg, "E"-
Division Leader, for their hospitality during

1.96S-69 at the Lawrence Radiation Laboratory,
Livermore, where some of this work was done.

Atomic
number Callan~

This
Mc Quire work Experiment

40
41
42
43
44
45
46
47
48
49
50

4.34
4. 68
5.05
5.44
5.87
6.32
6.81
7.32
7.88

4.58

6.23

7.85

9.96

3.63
3.95
4.29
4.66
5.05
5.48
5.93
6.42
6.95
7.51
8.12

3.42
3.77
4, 14
4.55
4.98
5.43
5.93
6.45
7.00
7.60
8.22

APPENDIX A: RADIAL MATRIX ELEMENTS

With nonrelativistic hydrogenic bound-state
wave functions and the continuum wave function
of Eq. (5), the radial matrix element becomes'

~E. J. Callan, Ref. 15.
"E. J. McGuire, Ref. 28.
'Semiempirical values of H. J. Leisi et &l. , Ref. 41.

((n"l")i (nl)(n'l'), v, k)= (e /lf )(m/ll)' A„-,-A„, A„,

(l + s + l + s + 2+ v) t e -(c2/2)csl +c'+1-c~(&
Xl l"e +t+e4+V g Oy

g"A s' 0 s 0 & &&~i + ~2i~ 0

&"+I+ce+c J~SZ(cltc2&2)/2lcXI +8 +I'W+I+c+2-/q(
1} l }d-(l"+s"+l+s+2+v)! Q "

I, ( )] (lf/p / ~ 3 )

where

+c"8+2'-c I 4(cl w2w2)/2lz&l" +2"il'is'il w& lq(& I} ll) d&-
+(l +s +i+2+1 v)1 Z I|( )]/(lac II l 2 .)} y (Al)

( l 1) i
1/2 2Z 1%/2

2Q(n+ l) t]2 nss

(
„, [(n+ l) }] 2Z

(21+1 s+) !sf ( -n1-1-s l }nail

E E g l/8 (E in ey)
13.602~

~

I}= 2'/ll. (A2)

The Z's are effective charges and the E's absolute
values of the binding energies in the respective
states, while a is the Bohr radius. The function

Q, which occurs in the continuum wave function,

is defined as follows:

2'+'
1(~+1

2k+ 1) 1
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x x~e '*~F&(k+1+ir); 2k+2; 2ix). (A2)

The integrais in Eq. (10), involving the confluent
hypergeometric function, F,(a; b; ex) can be evalu-
ated analytically as follows:

(P+ k)!f'(k+ 1+ ig)

. 2ix qF~ k+1+i@,P+k+1; 2k+2; . . (A4)
'L+ g

e *x~Q(x, q, k) dx
The following general result is found for the radial
matrix element

ft"-J"-1 n'-l'-1 ff -l -I
((n"1")~(nl)(n'l'), v, k] =&„.&, &„i Q& Z 2 Z &„-~-,-&n&~ &nw ri

—(l "+s"+ l+ s+ 2+ v)!
) "+a"+f +s+3+p

P~
[~ (c, + cg)] (l"+ s"+ l + s+ 3+ v —j)!

t "+g"+l +S +2-1 P,~ (I"~ s ~ l ~ s ~ 1 — 1! Z
~ ~ ~y~&„

(AS)

where

(l'+ s'+ k+ 1 —v)!
P(l', s', k)= G(k, q), i .)( „.pa~ 3Fg(k+1+i g, l'+ s'+k+2 —v; 2k+2; 2i/( —,'e, +i),

( 2C3+ l (A6)

(l"+ s"+ l'+ s'+ l+ s+ k+ 4- j)!~(k Ii !) 6 &I %1 'll '+3"+1 4 ~l+$+ll+5-3
L 2(Ci + C2+ C3) + ii

x zF(k+ 1+ ir!, l" + s"+ l'+ s'+ l + s+ k+ 5 —j; 2k+ 2; . ,[g(C1+ CR+ C3 + i] (A7)

G(k, 7)) =[2"/(2k+1)!]e'"'
~

1'(k+1+i') ~. (Aa)

The expressions are given in atomic units
(e = k = m = 1). The ordinary hypergeometric func-
tions of complex arguments &F& which occur in the
matrix elements can be computed by the matrix
method of Callan' or they can be constructed3
with the aid of Gauss's relations for contiguous
functions. where

2 l, j& g~(n, l, ; n&l„SLY,
5 L J

APPENDIX B: RELATION BETWEEN WAVE FUNCTIONS
INj-j AND LS COUPLING

The j-j wave functions are given in terms of the
LS wave functions by

2 la 3'a

2 l

S L J

p„(n,l, j„n,l,j» JM)

= + [(2S+ 1) (2L+ 1) (2j,+ 1) (2jg+ 1)]
SL

is the 9-j symbol.
From the relation between the absolute squared

values of the matrix elements of e /r, a in the two
coupling schemes

~

(n'l,'j,', nfl[j~; JM~ e /r~z~ n l, j, , n~l~j» JM)
~

= Q [(2S+ 1) (2L+1) (2S'+ 1)](2L'+ 1) (2j,'+1)
S,L,S', L'

2 a2a

x (2j,' + 1) (2j, + 1)(2j,+ 1)] )-,
'

lf, jf,

k L'J

a Ja

S'Z, ' J

a Ja 2 a )a

);,",'I )'„",'I
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x (n'l,', nfl»; SLY~ e /rm~ sg„n~l~; SLY) (n'l,', n'lf„S'L'JM~ e /rz~ n, l„n 1» S'L'JM), (B2)

it can readily be shown, by summing both sides over j„jb,lb, jb, J, and M, that

2 2

to= ., Q(2J'+1) 4 D (n,'l,'j,', n~l~j~;8 —n,l,j„n~l~j»J)
2j,'+1 I

2
2

Z (2S+1) (2L+1)Q (n,'l,', n~lf„, SL —n, l, , n, l» SL)
4 s,L

Thus, if the initial vacancy (denoted by quantum
numbers n,', l,', and j,') has different n,', l,' from one
of the vacancies appearing in the final-state con-
figuration, as in radiationless transitions of the
type X-YZ, then the total transition rate can be
evaluated either in j-j or in LS coupling. On the
other hand, if n,'= n, and l,'= l„as can happen in
certain transitions of the X-XY type (e. g. , Lz L,X), -
the summation over j, on the left-hand side of Eq.
(B2) cannot be performed, and the right-hand side
of Eq. (B2) does not reduce to the simple expres-
sion given by the right-hand side of Eq. (B3). In
such cases, it is easier to evaluate the total tran-

sition rate in j-j coupling:

m= 2., ~ (2J+ I)
)a+

2 2
x P ~ ~li ~ „.. . e n, l,j„n,lojaiJ)

X +o alan Sbfb
lPbSb rl2

(B4)
In other words, calculating a transition rate of the
M&-MBX type, for example, in LS coupling would
lead to the wrong answer, because included in the
rate would be processes of the type (3p&12, n,'l,'j,'; J
le /r, z I 3p&q2, n, l,j„J), which clearly do not
occur.

*Work supported in part by the U. S. Atomic Energy
Commission.
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We report the results of calculations of Sternheimer crystalline electric field shielding and
antishielding factors for Pr3', Tm+, W', and Au' iona at all the core electronic sites, in
addition to the unfilled valence electron site and the nuclear site of each ion. The calculations
take into account the effect of polarization of all the closed shells within the ions, including
the exchange interaction terms. Mann's relativistically corrected Hartree-Fock (HF) wave
functions were used in the computations. Our calculations thus extend and improve upon the
previous calculations by Sternheimer and others who did the computations for rare-earth ions
at the location of the 4f electron and at the nuclear site only. Our values of shielding and
antishielding factors Xs at the location of the 4f electron and at the nuclear site for Pr+ and
Tm ions agree well with previous calculations and measurements. The possibility of
experimentally determining the quadrupole splittings of the atomic-core level by the recently
developed technique of ele"tron spectroscopy for chemical analysis (ESCA), which underlines
the great significance of these calculations, is discussed.

I. INTRODUCTION

It has been of considerable interest to estimate
the Sternheimer shielding parameters at the 4f
electron site and the antishielding parameters at
the nuclear site in rare-earth ions. ' The electric
field at any location within the ion is known in
terms of these parameters when the field produced
at the site of the ion by the ligands surrounding the
ion and by other rare-earth ions in the crystal is
given. However, the calculation of crystalline-
electric field (CEF) parameters, defining the field,
is a formidable task except for the simple cases of
high-symmetry crystals. Since the CEF parameter
Az enters directly in the expression for the hyper-
fine energy splitting of nuclear levels, an experi-
mental determination of A.z was always sought. The
spectroscopic measurements' gave information
about Az coupled with the Sternheimer shielding
parameter. Thus, an accurate knowledge of Stern-
heimer shielding is necessary to determine the
value of Az from the experiments. Recent develop-
ment of high-resolution techniques, such as elec-
tron spectroscopy for chemical analysis (ESCA)~
has made it possible to measure very small split-
tings of the electronic energy levels of the order of

0. 5 eV. It has been suggested by Sen' that the split-
ting of some P3~z electronic states should be mea-
surable in some compounds of heavier elements.
The splitting of 5P, &~ and 4P»~ levels has recently
been observed in compounds of Au, Th, U, Pu,
and Np by Novakov and Hollander. In view of these
facts it seemed necessary to carry out calculations
of the Sternheimer parameters for various elec-
tronic sites in rare-earth and heavy ions. We re-
port here the Sternheimer parameters (to be de-
noted by X) for W', Au', Pr ', and Tm ' ions at all
the core-electronic sites, as well as at the nuclear
site of each ion. As a by-product of these calcula-
tions, electronic quadrupole polarizabilities for
the ions were obtained. These are also reported
here.

For W'we have calculated X5g=0 110 and
(y„ in Sternheimer' s notation) = —58. 8; for Au',
X,„„=—74. 2; for Pr', && (om in Sternheimer's
notation) = 0. 745 and &,„„=—84. 8; and for Tm',
A=0. 601 and X,„„=—72. 9. The X's here include
the effect of polarization of all the cores, as well
as exchange interaction terms. Mann's' relativis-
tically corrected Hartree-Fock (HF) wave functions
were used in all the calculations. The results for
Pr ' and Tm' compare well with other previous


