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It is shown that both the energy and the wave function of the stable ICartree-Fock solution
are nonanalytic functions of the coupling constant at the branching point, dividing the sym-
metry-adapted and the broken-symmetry solutions. The &-electronic model of benzene is
used to illustrate this fact for the case of the Hartree-Fock singlet instability. It is indicated
that the same type of nonanalytical behavior is found in other types of instabilities, i.e. ,
nonsinglet (triplet) instabilities for closed shells and doublet instabilities for simple open
shells. This nonanalyticity persists even after the projection on the totally symmetric sub-
space is carried out, and can only be avoided by projecting before the variational principle
is applied.

As is well known, ' the energy difference between
normal and superconducting states depends on the
nonanalytic function of the coupling constant. This
was the main reason for the failure of the early at-
tempts to explain the superconductivity phenomenon
using the perturbation theory. Consequently, this
problem has received considerable attention in the
theory of superconductivity.

%e would like to point out in this paper that a
very similar nonanalytical behavior may occur in
the Hartree-Fock (HF) problems of the electronic
structure of the atomic and molecular systems,
when currently used quantum-chemical methods
are applied. Indeed, the HF solutions, describing
the electronic structure of the atomic and molecu-
lar systems, may display various types of insta-
bilities with respect to the charge and spin-density
fluctuations, leading to different broken-symmetry
HF solutions. These instabilities are, formally,
not unlike the instabilities leading to the violation
of particle-number conservation laws, 3 which are
essential in the BCS-Bogoliubov theory of super-
conductivity.

In previous papers of this series, we have re-
derived the Thouless's stability conditions for the
solutions of the HF equations and specified them to

the closed-shell (Paper I) and the simple open-shell
(Paper II) electronic systems with spin-independent
Hamiltonian. This enabled a useful classification
of the instabiliti s on the singlet and nonsinglet
(triplet) ones in the closed-shell case, and on the
doublet and nondoublet ones in the simple open-
shell case. Moreover, various cases of the insta-
bilities of the symmetry-adapted HF solutions for
the n-electronic systems, described by the Pariser-
Parr-Pople-type model Hamiltonian, have been
demonstrated (Papers I, III, IV, and VI). Finally,
simple rules have been formulated (Papers III and
IV) for the w-electronic-model systems, based on
the symmetry properties of the pertinent Kekule
structures, which determine whether the given
symmetry-adapted HF solution will be always sin-
glet stable or whether it may become singlet un-
stable. In the latter case we find, generally, that
while the symmetry-adapted HF solution may be
stable for small enough coupling constant X, it will
become unstable when the coupling constant is suf-
ficiently increased. In this case, one can always
determine the critical values Xo of the coupling con-
stant A. , such that the symmetry-adapted HF solu-
tion is singlet stable for ~ & Xo and unstable when

Analogously, the critical values Xo may be
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determined for other than singlet instabilities.
Clearly, in the instability region X & Xo, another HF
solution(s), violating some conservation law, while
having lower energy than the symmetry-adapted
HF solution, exist(s). We will show in this paper
that both the energy and the wave function (or den-
sity matrix) of the stable HF solution are nonana-
lytic functions of the coupling constant X at the
branching point X =Xo, corresponding to the onset
of the instability of the symmetry-adapted HF solu-
tion.

In other words, we will show that the broken-
symmetry HF solutions, which constitute the ground
state of the system in the instability region A. & Xo,
do not represent an analytical continuation of the
symmetry-adapted HF solutions, constituting the
ground state in the stable region X &Xo.

We shall illustrate this phenomenon on the sim-
plest possible model case, namely the singlet in-
stability of the benzene m-electronic model, for
which the energy and the density matrices may be
expressed in a closed form. We have shown in
Paper I, that this simple model will display the
singlet instability if a large enough coupling con-
stant is chosen.

The model Hamiltonian used in these calculations
as well as various parametrization schemes for
this model have been described in detail in previous
papers, as well as in the subsequent Paper VI. We
shall, therefore, limit ourselves here to merely
giving the model Hamiltonian for our special case
of the alternant nonheterocyclic m-electronic sys-
tems, in a tight-binding approximation. This Harn-
iltonian may be conveniently written, in the second-
quantized form, as follows:

zr n Y' '
= P ~ af, a„+~ yf p al fyapga~gaI a

g, v, a

where a~, and a„, are the creation and the annihila.
tion operators, respectively, defined on the basis
of L5wdin orthonormalized carbon 2p, atomic or-
bitals, P is the nearest-neighbor resonance inte-
gral, and y„„are the Coulomb repulsion integrals

r„.= (p~( & /& 3 ~
p~) .

The prime on the first summation symbol means
that only the terms for which p. and v are nearest
neighbors are included.

Numbering the benzene atomic orbitals along the
cycle from 1 to 6, and realizing that the pertinent
Hamiltonian is invariant with respect to the opera-
tions of the point group De„, we can define conve-
niently the coupling constant X as follows:

The singlet-stability condition for the symmetry-
adapted HF solution, which is given fully by the
symmetry of this simple model, gives X &1 . Con-

E(X)
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FIG. 1. Dependence of the energy E (in units of the
resonance integral I P I ) of the stable-restricted HF
solution for the 1I-electronic model of benzene on the
coupling constant ~ (defined in the text). The dashed
line corresponds to the physically meaningless continu-
ation of the energy of the broken- (space) symmetry
solution into the region, where the symmetry-adapted
solution is stable and represents the ground state of
the system.

sequently, in the instability region X & 1, the bro-
ken- (space) symmetry solution, having lower en-
ergy than the symmetry-adapted solution, must
exist. Clearly, the branching point, dividing the
stability and instability regions, corresponds to
X = 1. The difference bS' between the energy E~ of
the broken-symmetry HF solution and the energy
E~ of the symmetry-adapted HF solution ~=E~
—E~ may be expressed through the coupling con-
stant X as follows:

LE(X) = 2 —X —1/X, X ~ 1

&E(X) = 0, X &1 .
in this expression, the energy difference ~(X) is
expressed in terms of ( P I units. The graphical
representation of this dependence is shown in Fig.
1, where we have also indicated the physically
meaningless part for X & 1 by the dashed line. Clear-
ly, the symmetry-adapted HF solution represents
the stable ground state in the region A. & 1, while the
broken-symmetry HF solution(s) represent the sta-
ble ground state for A. & 1.

We now observe that while the energy difference
~(X), as well as its first derivative d(&ATE)/dX, are
continuous functions of X, the higher derivatives are
not, having the discontinuity at the branching point
X = 1. Indeed, calculating the second derivative at
the point X=1, as a limit from the left-hand side
and from the right-hand side, we obtain

d ( E)/d~ Ii-&&+0& =

while

d (~)/dX ~g y( 0~
= 0,

Consequently, there is a nonanalyticity of bE(&) at
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A, = 1(+0)

while

dp„„
dX „= i(-0&

Finally, it is interesting to notice the behavior of
the broken-symmetry solution for X- ~. The above

relationships yield

-0.5

FIG. 2. Dependence of the first-order density (bond-

order) matrix elements pf2 p23 and p~4of the stable-
restricted HF solutions of the &-electronic model of
benzene as a function of the coupling constant & (defined

in the text).

P~~ =1» ~v, f +a =0

Consequently, it is sufficient to consider the ele-
ments p„„, where p. and v differ by 1 or 3
(modulo 6). In the stable region X&1, these are
well-known benzene-bond orders

2
~12 ~23 3 t P14 3 ~

However, in the unstable region we get

1(1 + 3X + 3[(X 1)(y+,' )jQ/X
pcs )

p)4 = —g/X; j.~ 1.

These results are shown in Fig. 2. We find imme-
diately from the above relations that already the
first derivative is discontinuous at X =1, since

P12
%~1(+ 0)

dPas

X ~1(+ 0)

X = 1 so that ~(A) is not an entire function of X.

Let us now examine the behavior of the first-order
density matrix in the atomic-orbital representation
(i. e. , the so-called atomic-charge and bond-order
matrix) as a function of the coupling constant. Since
we consider only alternant solutions, we shall al-
ways have

lim p, 2=1, limp23 =limp&4 =0,
)t ~en

which means that the stable solution for X - ~ corre-
sponds to the three separated "ethylene" molecules.

The same type of the nonanalytical behavior may
also be found in cases of other-type instabilities,
namely in the case of nonsinglet (triplet) and doub-
let instabilities, as may be easily illustrated in
very much the same way as above on the simple ~-
electronic models of the ethylene molecule and the
allyl radical, respectively. Indeed, usi~ the ana-
lytical expressions given in Paper IV, one can eas-
ily verify the same type of the nonanalytical behav-
ior for allyl radical, as already apparent from Fig.
3 of Paper IV.

In conclusion we can state that the nonanalytical
behavior of the broken-symmetry HF solution indi-
cates that this solution is not suitable as a starting
point for a calculation of the correlation effects,

Moreover, it is not difficult to see that also the
symmetry-adapted component, which may be pro-
jected out of the broken-symmetry HF solution,
will display the same type of nonanalytical proper-
ties. Consequently, the only way to avoid this dif-
ficulty is to perform the projection prior to the ap-
plication of the variational procedure, i. e. , to use
the multiconfigurational self-consistent-field (SCF)
wave function. In this case the nonanalyticity dis-
appears, and the resulting wave function represents
an appropriate starting point for the calculations
going further beyond the independent-particle pic-
ture.

This work has been supported by the National
Research Council of Canada, by the Department of
University Affairs of Ontario, and by the University
of Waterloo Research Committee grants, which we
hereby gratefully acknowledge.

*For the previous Papers I-IV, see Ref. 2.
)Quantum Theory Group article No. M-110.
~N. N. Bogoliubov, V. V. Tolmachev, and D. V.

Shirkov, A Net Method in the Theo~ of Supercon-
ductivity (Consultants Bureau, New York, 1959).

J. Cxzek and J. Paldus, J. Chem Phys. 47, 3976
(1967), Paper I; J. Paldus and J. Cizek, Chem. Phys.
Letters 3, 1 (1969), J. Chem. Phys. 52, 2919 (1970),

Paper II; J. Cfzek and J. Paldus, ibid. , 53, 821 (1970),
Paper III; J. Paldus and J. Cfzek, ibid. (to be published),
Paper IV; Phys. Rev. (to be published), (Paper VI).

J. Paldus and J. Cfzek, J. Polymer Sci. C 29, 199
(1970).

Note that this is equivalent with the condition given
in Paper III, Eq. (15).


