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with the Slater approximation. The difference in the
two theoretical rates (with C = 1 and C =-,') decreases
smoothly with atomic number starting with a value
of = 14%%uo for Z=10 decreasing to = 1%%uo for Z=54.
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The formulas for the rotational excitation of diatomic molecules in the adiabatic theory are
generalized to include rotational excitation within molecular states of arbitrary A symmetry.
For A not equal to zero (non-Z states), the rotational quantum number can change by any integer,
and not only an even integer as is the case for Z states.

In two recent papers' we developed explicit for-
mulas for the rotational excitation of diatomic mole-
cules by electron impact in the framework of the
adiabatic theory. In those papers we (inadvertent-
ly} took the rotational wave functions to be ordinary
spherical harmonics Y& (Qo). That, however, is
only correct for Z electronic states, and the results
of Refs. 1 and 2 are implicitly restricted to rota-
tional excitation of Z states.

More generally, the relevant part of the electronic-
rotational wave functions is given by'

e„(go}= [(2i + I)/16' ]
"' [+A'"(po}

The new quantum number here is A, representing
the angular momentum of electrons about the inter-
nuclear axis (A=Z, II, A. . . ). For A&0, there are
two degenerate linear combinations specified by
&, E =0, 1 defining the spatial symmetry of the wave
function under exchange of the nuclei. y, is the
complementary nuclear spin function with the usual
orthornormality properties

(x~, x,&-&, ~.

For nuclei which are composite bosons, only the
space symmetric solutions e = 0 exist. [Correspond-
ingly, for such homonuclear molecules the splitting
(A doubling) that does occur for composite fermion
nuclei diatomics by virtue of the finite mass of
nuclei, does not occur. ] The situation is fundamen-

tally different for A& 0 as opposed to A = 0. In the
latter case, there is a unique correlation between
the + character of the Z state, and its nuclear ex-
change character (cf. Table 14. 1 of Ref. 4}.
Therefore, one does not have to refer explicitly to
the nuclear-exchange character e in that case.

To complete the definitions of quantities in Eq.
(3), the B functions are the rotational harmonics,
which is our name for the well-known irreducible-
representation coefficients of the rotation group. '
The angles Po=—(o.o, Po, Yo) can be taken to be the
three Euler angles needed to rotate a coordinate
system attached to the body-fixed internuclear axis
into a space-fixed system most conveniently defined
by the incident direction of the impinging electron
beam. 6 The integrations needed for the rotational
function [Eq. (1)] are simple generalizations of the
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original integrations (some details of those are
given in the Appendix of Ref. 2). We give here the
generalized results.

For the amplitude itself, we find (I"-=j, m, h,

Here we have used the 6-j symbol (in braces)'
plus the ordinary Clebsch-Gordan coefficients to
accord with the notation of Ref. 1.

The total or integrated cross section is

f (0')=5...5„.«$ a,„„Y,„,(A')[(2j+1)(2j'+1}]'~2
or r = —56 e5«« ~ s riage L „(2h+ 1) '(- 1) '"

A'r

x (f~~ —~
~

ZO)(f~n —n
~

ZO)(j ZA —A
~

j'0)'.

(4)

(2)
The sum in this expression goes over all indices
not contained in 1' and F. The a»„are fixed-nuclei
scattering parameters defined as in the second paper
of Ref. 6, and 0' is the scattering angle. ~ The
parenthetical expressions are the 3-j coefficients. '

The differential cross section (summed over m

and averaged over m') is

der'r hr ~ ~ 's «'« ~ y ( 1) i i
do& y 4+ ~ g f~tn~~a a,

r

& [(2l(+1)(2&,+ 1)]' (l(X, 00~ Lo)(lgq 00~ Lo)

l, ~, I.
(f, f, m —m ~zo)(~, x, i n~ zo-)

(j Jh —A
~

j'0}~P«(cose'} . (3)

ln Eqs. (2)-(4), the 5„,«explicitly shows that the
adiabatic transitions occur within a specific elec-
tronic level. Similarly 6... indicates that the char-
acter under nuclear exchange cannot change.
(Actually 5„,«comes about because the underlying
fixed-nuclei theory was confined to elastic scatter-
ing in a fixed electronic level. ) As opposed to
Ref. 1, the presence of the last Clebsch-Gordan
coefficient for h00 removes the I j —j'I= even,
selection rule.

The modified formulas for rotational excitation of
a charged molecular system' (molecular ion) can
be generalized trivially in the same manner as thole
formulas generalize the neutral results ' lt is
understood in all these formulas that a» are syrg-
bolic of scattering parameters coming from a con-
sistently formulated fixed-nuclei theory for the ap-
propriate non-Z state of the target molecule.
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Hyperfine Structure of the 2'5, State of He"
D. Rosner and F.M. Pipkin [Phys. Rev. A 1, 571
(1970)]. The following misprints in this article
should be corrected.

(i) p. 572 "&& = —9.89«0. 04 ppm" should read
"~2= —8. 89 + 0. 04 ppm. "

(ii) p. 574 Equation (43) should read "&v (He ',
»ii2}= V- "

(iii) p. 576 "E(-', , —-', ) =E,=-,'h& v+" should read
"E(—'„—~) = EB= ——', hh v + ~ ~ ~ ."

(iv) p. 577 "This is realized experimentally in the

hyperfine transitions with I' = 1, mf =0, + 1".. .
should read "~ ~ ~ with ~F =1, &m =0, +1."f

(v) p. 577 Equation (57) has a P» which should be
~11

(vi) p. 578 "Io= 2&& 10' photons/cmmsec Hz" should
read" ~ ~ 2x105 ~ ~ ~ ."

(vii) p. 580 "~ ~ ~ evacuated with baking to a pres-
sure of 10 Torr" should read "

~ ~ 10 Torr. "
(viii) p. 580" ~ ~ roughly 1 to 2 liters h" should

read " liters/h. "
(ix) p. 581 "Harvard University J. A. Division of


