PHYSICAL REVIEW A VOLUME 3,

NUMBER 1

JANUARY 1971

7 Dependence of the K-LL Auger Rates*

D. L. Walters and C. P. Bhalla
Department of Physics, Kansas State University, Manhattan, Kansas 66502
(Received 13 July 1970)

A comparison between the nonrelativistic total K-LL Auger rates of McGuire and our cal-
culations is presented. The effects of the exchange approximations on the Auger rates are

also presented.

In recent papers, '> McGuire has reported on the
nonrelativistic K-LL Auger transition rates for
Z <54. 1t is the purpose of this paper to report
that the K-LL Auger calculations of McGuire are
often erroneous by as much as 25%, and exhibit a
strange local structure versus atomic number.

We have also investigated the effects of two ex-
change approximations in the Hartree-Fock-Slater
(HFS) model by considering Slater® exchange and
Kohn and Sham,*and Gaspar®(KSG) exchange. The
results for the K-LL Auger transition rates are
presented here.

METHOD OF CALCULATIONS

In our work® and that of McGuire, a norrelativistic
HFS program” has been utilized to obtain bound-state
wave functions. In this procedure, the free-eleciron
exchange potential (in the notatton of Ref. 7) is

Vexch= -6C [(3/81!’)| pl ]1/3 . (1)

The Slater exchange approximation (C =1) was used.

We differ from McGuire in the calculations of the
continuum wave functions. McGuire approximates
the screening function associated with the HFS model
by a series of straight lines and then obtains analytic
continuum solutions in terms of Whittaker functions.
The relevant continuum wave functions were numeri-
cally calculated for the HFS potential in the present
work. The calculated Auger electron energies used
in our computations are in agreement (< 0.5% ) with
the experimentally measured energies.

All our computations correspond to an initial state
in which a K-shell electron is missing, and we have
calculated the K-shell Auger rates for every Z be-
tween 10 and 54.

The K-LL Auger rates were also calculated with
the Kohn-Sham-Gaspar (KSG)*'® exchange approxima-
tion [C =% in Eq. (1)] using the same Auger energies
as those for Slater exchange.

RESULTS AND DISCUSSION

Figure 1 contains a comparison of theoretical K-LL
Auger transition rates of McGuire and this work for
C=1. We note that the results of McGuire are con-
sistently lower for Z < 22 and higher for Z >26 as
compared to the present work. The discrepancy is
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=25% in a large number of cases. The relativistic
HFS calculations of Bhalla and Ramsdale® are in
agreement (within a few percent) with our work for
35<Z<55.

A local structure in the K~LL Auger rates of
McGuire is found in Fig.1. Our calculations show a
smooth dependence of the K-LL Auger rates versus
atomic number. Similarly, the theoretical results
of Callan' (using the hydrogenic wave functions with
the effective Z approximation for the atomic screen-
ing) show no local structure inthe K- LL Auger rates.
We believe that the reason for the local structure in
McGuire’s theoretical results lies in the calcula-
tional procedure for the continuum-state wave func-
tions. McGuire approximates the screened potential
and then obtains an analytical solution in terms of
the Whittaker functions. We calculate the continuum-
state wave functions by the numerical integration of
the Schrédinger equation with the appropriate screened
potential.

The effects of the KSG exchange approximation on
the K-LL Auger rates were also investigated. The
rates using C =% are smaller as compared to those
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FIG. 1. Calculated total K-LL Auger transition rates
versus atomic number. The present work is with the
nonrelativistic Hartree-Fock-Slater model. The theoreti-
cal rates of McGuire are joined by lines to emphasize
the local structure. The unconnected circles represent the
relativistic Hartree-Fock-Slater calculations of Bhalla
and Ramsdale,
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with the Slater approximation. The difference in the
two theoretical rates (withC =1 and C = %) decreases
smoothly with atomic number starting with a value
of = 14% for Z=10 decreasing to = 1% for Z=54.
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The formulas for the rotational excitation of diatomic molecules in the adiabatic theory are
generalized to include rotational excitation within molecular states of arbitrary A symmetry.
For A not equal to zero (non-Z states), the rotational quantum number can change by any integer,
and not only an even integer as is the case for T states.

In two recent papers!'? we developed explicit for-

mulas for the rotational excitation of diatomic mole-
cules by electron impact in the framework of the
adiabatic theory.® In those papers we (inadvertent-
ly) took the rotational wave functions to be ordinary
spherical harmonics Y,,, (€,). That, however, is
only correct for T electronic states, and the results
of Refs. 1 and 2 are implicitly restricted to rota-
tional excitation of Z states.

More generally, the relevant part of the electronic-
rotational wave functions is given by*

Yrot(Bo) = (21 +1)/1672 112 [ 2(Bo)

+(= 1) M0 D (B IXe - (1)

The new quantum number here is A, representing
the angular momentum of electrons about the inter-
nuclear axis (A=2,I,A...). For A>0, there are
two degenerate linear combinations specified by
€,€ =0, 1 defining the spatial symmetry of the wave
function under exchange of the nuclei. * X, is the
complementary nuclear spin function with the usual
orthornormality properties

(Xs', Xe>:65'e‘

For nuclei which are composite bosons, only the
space symmetric solutions € =0 exist. [Correspond-
ingly, for such homonuclear molecules the splitting
(A doubling) that does occur for composite fermion
nuclei diatomics by virtue of the finite mass of
nuclei, does not occur. ] The situation is fundamen-
tally different for A>0 as opposed to A=0. In the
latter case, there is a unique correlation between
the + character of the T state, and its nuclear ex-
change character (cf. Table 14.1 of Ref. 4).
Therefore, one does not have to refer explicitly to
the nuclear-exchange character € in that case.

To complete the definitions of quantities in Eq.
(3), the D functions are the rotational harmonics,
which is our name for the well-known irreducible-
representation coefficients of the rotation group. 5
The angles Bp= (g, By, Yo) can be taken to be the
three Euler angles needed to rotate a coordinate
system attached to the body-fixed internuclear axis
into a space-fixed system most conveniently defined
by the incident direction of the impinging electron
beam.® The integrations needed for the rotational
function [Eq. (1)] are simple generalizations of the



