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for the 3P' state of Z=40. Relativistic Hartree-
Fock and present-model wave functions (using the
parameters given in Table I) are exhibited. Clearly
the agreement is very good. Results for other
atoms are similar. Table II shows our results for
a random selection of elements (Z= 10, 20, . . . , 90).
In each case the top entry is the experimentally
determined value, the second entry is our fit to
it [with P = 1 in (7)], resulting in the parameters
indicated on the left, while the bottom entries are
relativistic Hartree-Fock energies shown for pur-
poses of comparison. The numerical (FORTRAN IV)

programs used to obtain these results are available
on request.

The results presented above indicate that a simple
analytical potential can yield as good a description
of ground-state atoms as a numerically generated
one from self-consistent field methods. For appli-
cation purposes, the former has obvious advantages.
It is evident, in particular, that the two-parameter
analytical potential of Green, Sellin, and Zachor
serves as well for relativistic calculations as it
did for the nonrelativistic independent-particle-
model work.

We would like to thank Dr. J. B. Mann for pro-
viding us with some of his relativistic Hartree-
Fock results for atoms, prior to publication.
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The work of Balling, Hanson, and Pipkin on the density-matrix equations for spin-exchange
collisions is extended and is simplified in the case of S~2 atoms. The results allow straight-
forward calculation of the detailed effects of spin exchange on the density-matrix elements.
The equations are useful when dealing with an ensemble of atoms such as in the hydrogen maser,
in the rubidium maser, and in optical pumping cells.

I. INTRODUCTION

@in exchange'I is one of the dominant mechanisms
effecting changes in the spin states of colliding
atoms having unpaired electrons. For an ensemble
of atoms, the characterization of the spin coordi-
nates can be conveniently made by a density matrix.
The effect of spin exchange on the elements of this
density matrix is an important consideration when
dealing with systems of colliding atoms, such as in
the hydrogen maser, in the rubidium maser, or
in optical pumping cells.

The result of exchange of electron spin coordinates
can be derived by considering elastic scattering
from a spin-dependent potential. Balling, Hanson,
and Pipkin (BHP) have used this method to calcu-

late the effect of spin exchange on the density ma-
trix. Their theory ignores spin-orbit interactions
and direct magnetic interactions between the collid-
ing atoms. As shown below, a simplification of
their result can be made in the case of spin exchange
between S,&z atoms, wherein the effect of spin ex-
change on the density matrix of each system is only
through the electron polarization of the other, and
is not dependent on the specific population of each
hyperfine level.

II. DENSITY MATRIX RATE EQUATION

Consider the two-body collision involving an atom
of type A and an atom of type H. (A may be the
same as or different from H. ) The joint density
matrix for this composite system is
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This method of treating spin exchange has been
used by BHP. They derive a result for the effect
of spin-exchange collisions on the density matrix
in terms of a spin-flip cross section o» and a shift
parameter K. As shown in BHP, these parameters
can be expressed as sums which are dependent on
the singlet and triplet phase shifts. If small terms
contributed by the possible nuclear identity of A

and H are neglected, then the result is [BHP, Eq.
(27) ]

p (H) = t V, (H, A) n(A) lTS r(H, A) TR~[- 3p(A, H)

The effect of spin exchange is introduced by means
of a scattering matrix that adds independent phase
shifts to the singlet and triplet states of the collid-
ing system:

The subscripts n for A and m for H represent any
of the possible I', m~ hyperfine states. The sub-
scripts a, b for A and c, d for H stand for the par-
ticular hyperfine states connected by the off-diagonal
element. This form of the density matrix frequent-
ly arises when a resonant frequency is being applied
to an ensemble of colliding atoms such as one finds
in optical pumping and hydrogen masers.

When the above expressions are substituted into
Eq. (3), the matrix multiplications can be examined
explicitly and simplified. The properties of the p

matrices are used,

ulcc = ~it+ i+«lttOl

A useful combination of matrix elements can be de-
fined as the electron polarization,

«(A}=~(nl o.(A) ln) p-(A)

where n represents the possible E, m~ states in the
hyperfine spectrum of A. Not all terms will sur-
vive when time averaged, i. e. , rapidly oscillating
terms are eliminated.

Only those terms that have the correct time de-
pendence need be retained to give the final quasi-
stationary solution. As indicated in the subsequent
equation, there arise additional terms having the
correct time dependence if A and H are the same
atom. They are not to be confused with terms con-

+(I+2iK(H, A))(r„~o„p(A, H) +II —2iK(A, H)].

xp(A, H) „o„o+„o„o(pAH)o„. oA]. (3) TABLE II. Matrix elements of (7 for deuterium.

If T» is a time characterizing relaxation of H pop-
ulation differences by spin-exchange collisions with
A, then

—= n(A) V~, (H, A) o~r(H, A).
1
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(4}

In both Eqs. (3) and (4), n(A) is the density of
atoms A and V, (H, A) is the average relative velo-
city of A and H. The spin-exchange cross section
for collisions between H and A is given by os F(H, A);
K(H, A) is the shift parameter and reflects the fact
that spin-exchange collisions introduce a shift in
addition to a relaxation. The trace indicated in

Eq. (3} is taken over the hyperfine states of A.
Into Eq. (3) can be put the density matrices for A

and H, where attention has been restricted to the
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tributed by nuclear identity. The problem of spin
exchange of identical particles where symmetriza-
tion of the nuclear wave functions is taken into ac-
count has not been considered here. It has been-

tacitly assumed that the colliding particles can be
identified by their nuclear coordinates, and that
symmetrization is important only for the overlapping
electron wave functions. Since the overlap of nu-

clear wave functions is small, the amount contributed
by terms due to nuclear identity can be neglected.

The terms contributing only when the two atoms
are the same species arise because of the possibil-
ity of coherent transfer of oscillation from one atom

to another. These terms are contained in square
brackets in Eq. (8).

It is convenient to group the terms into those af-
fecting the diagonal elements and those affecting
the off-diagonal element. With the foregoing quali-
fications, the effect of spin exchange on the density-
matrix-elements can be given as
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TABLE III. Matrix elements of o for Rb
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As mentioned earlier, terms inside [ ] contribute
only if A and H are identical atoms. The identifica-
tion of A or H has been dropped on the right-hand
side of the equations since the only manner in which
the A system affects the equations is through the
single parameter e(A). A similar conclusion has
been given by Grossetl'te. ' This substantiates the
suspicion that it is, after all, only the expectation
value of the electron spin polarization that is im-
portant in spin exchange. The nuclear spin only in-
creases the number of hyperfine spin states among
which this polarization is distributed. The appear-
ance of e(A) in Eqs. (8) also indicates the manner
in which spin exchange serves as a "polarization
detector" between two types of atoms. This effect
has already been used extensively. " Further-
more, the off-diagonal part of Eqs. (8) enables one
to readily determine the form of the spin-exchange
shift for a particular resonant atomic system.

III. CONCLUSIONS

As shown by the form of the equations for the

diagonal and off-diagonal elements, the only man-
ner in which the A system affects the time evolution
of p(H) is through the particular combination of
density-matrix elements e(A) and not through the
specific population of each hyperfine level. Although

the final equations appear complex at first glance,
they are much easier to deal with than the matrix
equation that was the starting point. Qnly the ma-
trix elements of 0„, v„and 0, for the systems of
interest are needed to give quickly the equations
of motion for spin exchange. For example, since
Rb has eight hyperfine levels, using Eq. (3) direct-
ly would mean manipulating 64 && 64 matrices, and

the simplification of this calculation is particularly
evident. 9 Equation (8), of course, reproduces
previously published results for the cases of hydro-
gen-hydrogen spin exchange, "' hydrogen-deuterium
spin exchange, deuterium-deuterium spin ex-
change, rubidium- rubidium spin exchange, and
rubidium-hydrogen spin exchange. 6 The matrix
elements of o for these calculations are displayed
in Tables I-III."
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It is shown, as an extension to Ref. 1, that a relatively simple analytic potential, which
was obtained from studies of bound electron states in atoms, gives differential cross sections
in good agreement with experimental values for the rare gases Ar, Kr, and Xe.

A relatively simple analytic potential for describ-
ing the elastic scattering of electrons by atoms was
proposed by the present authors. ' The model is
based on a single-particle model for bound states
of electrons in atoms.

The purpose of the work done in Ref. 1 was to
study the feasibility of the approach by considering
the case of electrons on helium, although the more
general problem was discussed somewhat. In this

paper, the results of applying the model to argon,
krypton, and xenon are shown and compared with
recent experimental data. Our main purpose i.s to
show that the simple modification given in Ref. 1
of the analytical form used in Ref. 2 is sufficient
to account for the main features of the observed
cross sections without further adjustment of the
parameters involved.

The solid curves shown in Fig. 1 for Ar, Fig. 2


