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A two-parameter analytic potential for electrons in atoms, introduced by Green, Sellin, and
Zachor, is used in conjunction with Dirac's equation to determine independent-particle —model
electronic energy levels for neutral atoms in their ground states. The parameters aredetermined for
each atom so that the predicted energy levels approximate observed electronic separation ener-
gies in accordance with a weighted least-squares sum, The agreement with experimental data
is as good as for relativistic Hartree-Fock results. Electronic energies are given for a random
selection of elements with Z =10, 20, . . . , 90.

In a recent study, Green, Sellin, and Zachor'
used a simple analytical potential to treat bound

states of electrons in an atom in the nonrelativistic
independent-particle-model approximation. For
an atom containing N electrons and Z nuclear pro-
trons, their potential is of the form

V(r) = 2[(N —1)T(r) —Z]/r,
'P (r) = 1 —1/[(e' "- 1)H + 1] .

(1)

(2)

It was shown that the parameters d and H can be
suitably adjusted for each atom to reproduce approx-
imately observed or calculated electronic energies
for neutral atoms in their ground states.

Such analytical potentials are clearly much more
convenient for many applications, such as the calcu-
lation of scattering cross sections or transition
probabilities, than numerically generated ones such
as those obtained from Hartree-Fock-Slater calcu-
lations. This is particularly the case when compu-
tations for very many atoms are being undertaken.
Furthermore, as we shall demonstrate, the elec-
tronic energies obtained from the potential {1)are
certainly not in worse agreement with experiment-
ally determined values (insofar as the latter can be
identified) than results of Hartree-Fock and related
calculations.

The Green-Sellin-Zachor work has the drawback
that the electrons are treated nonrelativistically.
This, as is known, leads to poor results for inner-
core electrons, particularly for heavy elements.
Though the relativistic correction, and spin-orbit
splitting, can be accounted for by adding suitable
terms to the nonrelativistic Hamiltonian, one

might as well use the Dirac equation in place of the
Schrodinger equation. This has been done in the
present work, thus permitting direct comparison
with experimental data or relativistic Hartree-
Fock calculations.

The Dirac equation for an electron moving in a
spherically symmetrical potential V(r) is

[ca ~ p+ pmc + V(r)] (=Eg, {3)

where all the symbols have their usual meaning.
As is well known, the equation can be reduced to
radial form in this case:

dF/dr= —(K/r)F+ &a [e —V(r)+ 4/a ]G,
dG/dr (K/r) G=——,'a[e —V(r)]F,

(4)

(5)

d u/dr + Qu=O,

where

1 d V 3 dV K dV
4B dr 2 16B~ dr 2Br dr

(6)

K(K+ 1)
+ —'a (e —V)B—

where F = F„„(r)and G = G.„„(r)are the large and
small radial components, respectively. Here, e
= E —mc, a = e /Ac, K= (l —j) {2j+1) while n, l,
and j = t + —,

' are the usual principal orbital-angular-
momentum and total-angular-momentum quantum
numbers. We use rydberg units, 2m = 8= &e~ = 1,
so that lengths are measured in units of Bohr radii
and energies in units of me'/2h = 13.6 eV.

In determining solutions of (4) and (5) numerically
we used the second-order equation
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and

B= ge —7+4/a ],
Ze 40 Sp

(d H} g ( oba aalc)

lE,b, I

(7)

is minimized. The summation in (7) is taken over
all electronic levels of the atom, E,~ are the de-
sired electronic energies taken from experimental
measurements of electronic energies6 or relativis-
tic Hartree-Fock calculations, ' while E„„are the
energies predicted by the present model. When the
weighting factors are given the power P = 2, )(

represents simply the sum of the squares of the
fractional deviations from the desired energies, with
all levels given equal weighting. Since our main
purpose is to reproduce observed energies, which
decrease in reliability with increasing eiectronic
energy, we give greater weight to the inner elec-
tronic levels, by using the power p = 1 in most de-
terminations of d and H. Table I shows our results
for 2= 40 with d and H adjusted in three different
ways. The first and third entries [columns labeled
E (ESCA) and E(RHF)] are experimental' and rela-

which is obtained by eliminating G from (4) and

(5) and setting F= B'~2u. The form (6) is now amen-
able to numerical solution using the relatively effi-
cient Numerov3 technique, the application of which
to numerical solution of the radial Schrodinger equa-
tion is discussed in many places." In solving (6)
numerically we have used, in essence, a modifica-
tion of the SchrMinger-equation program described
by Herman and Skillman. '

For each atom we determine the parameters H
and d from the condition that the weighted least-
squares sum

~4
.2

el

Hf

r/a,

L2

-l.2
-l.4
-l.6

FIG. 1. Radial wave functions for 3p electrons of Zr
(Z =40). Solid curve: present model using potential
parameters of Table I (the curves for the three sets of
parameters are indiscernible on this scale). Dots: rela-
tivistic Hartree-Fock results of Mann. 7

Ecklc Eobs
r

Eobs

tivistic Hartree-Fock' results. The column labeled
E, (GSZ) gives the energies computed from the pres-
ent model with parameters adjusted to fit experi-
mental energies with lower levels given greater
weighting [i.e. , P = I in (7}]. The column labeled
E2(GSZ) gives analogous results obtained by fitting
to relativistic Hartree-Fock data, while E,(GSZ)
corresponds to E, (GSZ) but with equal weighting of
all levels [i.e. , p= 2 in (7)].

Note that either experimental or Hartree-Fock
results can be approximated equally well, as
evidenced by an inspection of the relative deviations

TABLE I. Electronic energies for Zr (g =40). E(ESCA), E(RHF), and E;, i= 1, 2, 3, are experimental, relativistic
Hartree-Fock, and present-model results, respectively. E„& —-100 I (E& —E)/E I, with E -E(ESCA) for i =1 and E
=E(RHF) for i=2, 3.

1s
2s
2p
2p
3s
3p
3p
3d
3d'
4s'
4p-
4p'
4d"

5s

E(ESCA)

1322. 81
186. 10
169.56
163.39

31.68
25 ~ 36
24. 33
13.45
13.23
3. 82
2. 13
2. 13
0. 22

E((GSZ)
d =0. 80197
H=3. 642 9

p= 1

1324. 31
184.28
170.07
163.52
30. 75
25. 16
24. 10
13, 77
13~ 58
3. 79
2. 26
2. 13
0. 18

0. 11
0. 97
0.30
0. 08
2. 94
0. 79
0. 93
2. 39
2. 63
0. 88
6. 34
0. 07

16.67

E(RHF)

1331.052
189~ 690
173.010
166.644
33.393
27. 068
26. 010
14.918
14.701
5. 019
3. 169
2. 911
0. 592
0. 429

E,(GSZ)
d = 0. 949 32
H= 4. 2804

p=l
1327. 18
187. 06
172. 90
166 ~ 34
32. 68
27, 11
26, 02
15.76
15.56
4. 63
3. 02
2. 87
0. 54
0.49

Er2

0. 29
l. 38
0. 06
0. 18
2. 15
0. 14
0. 06
5. 66
5. 84
7. 69
4. 59
1.52
8. 79

14. 82

E,(osz)
d= 0. 96265
H=4. 3554

p=2

1326.33
186.75
172. 52
165.97
32. 64
27. 06
25. 98
15.72
15.52
4. 66
3. 05
2. 89
0. 56
0. 50

0.35
1.55
0, 28
0. 40
2. 27
0. 03
0. 11
5 ~ 37
5. 56
7. 23
3. 88
0. 75
5. 67

16.41
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listed in the columns labeled E„, and E„~. The en-
ergy values obtained are not very sensitive to the
power of the weighting factors employed (cf.}E„~

and E„,}but the parameters d and H show substan-
tial variation for the three computations exhibited.

Figure 1 is a plot of the wave functions F and G

TABLE II. Electronic energies and potential parameters for a selection of atoms. The parameters were chosen so
that results of present model approximate experimental values. The relativistic Hartree-Fock values are shown for
purposes of comparison.

d H ls 2s 2P 2p 3s 3P 3P 3d 3d 4s'

10 (Ne) 0.4272 1.0309
63.723
63. 695
65. 635

3.307
3. 050
3, 872

1.323 —Experimental results6
1.381 1.373 —Present model
1.705 1.697 —Relativistic Hartree- Fockv

20 (Ca) 0. 8800 2. 9458

30 (Zn) 0. 5424 2. 1173

296. 784
296. 086
300. 327

709. 916
712.915
715.497

32. 192
31.301
33.934

87. 757
86. 216
gO. 692

25. 724
26. 151
27. 463

76. 732
77. 128
79. 480

25. 234
25. 852
27. 185

75, 041
75. 241
77. 702

3.234
3.244
4. 524

10.069
9.601

11.600

1.911
1.919 1.892
2 ~ 698 2. 668

6, 394
6.453 6.227
7.916 7. 674

0.367
0.393

0, 661
0. 705 0. 682 0. 589
1, 542 1.509 0.597

40 (Zr) 0. 8020 3. 6429
1322. 81
1324. 31
1331.05

186. 10
184.30
189.69

169.56
170. 07
173.01

163.39
163.52
166.64

31.68
30.75
33.39

25. 36
25. 16
27. 07

24. 33
24. 10
26. 01

13.45 13.23
13.77 13.58
14. 92 14.70

3.82
3.79
5. 02

2146. 12
50 (Sn) 0. 6137 2. 8936 2172. 48

2158. 64

328. 17
331.85
332. 62

305. 46
314.24
309. 76

288. 77
296. 15
292. 73

64. 97
62. 14
67. 11

55. 64
54. 03
57. 74

52. 55
50. 69
54. 53

36.31
35.22
38. 16

35. 64
34. 49
37. 51

10.07
8.64

11.76

60 (Nd) 0. 8743 4. 5939
3202. 23
3230. 80
3220. 82

523. 75
524. 99
529. 08

494. 05
501. 07
499. 23

456. 28
461. 04
460. 89

115.83
112.45
118.25

103.12
101.12
105.50

95.40
93. 18
97. 61

73. 50
72, 00
75. 72

71.88 23.23
70, 25 22. 43
73. 94 25. 03

70 (Yb) 0. 6284 3. 5099
4507. 78
4563. 01
4535. 36

770. 85
775. 42
777. 79

733.36
746. 71
740. 11

657. 29
665. 70
662. 97

176.17
171.61
179.42

159.64
156.92
162.84

143.25
140. 03
146. 19

115.83
112.54
118.38

112.22
108.77
114.78

35.79
34.43
37.35

6107. 90
80 (Hg) 0. 6201 3. 6908 6195.57

6148. 65

1090.64
1101.05
1100.53

1044. 33
1066.36
1053.70

902. 85
915, 66
910.31

261.80 241. 00
257. 04 238. 48
266. 23 245. 28

209. 25
205. 71
213.08

175.29
171.47
178.86

168.68
164.32
172. 03

58. 80
57. 04
61.30

90 (Th) 0. 9796 6. 3349
8059. 12
8170. 54
8117.63

1504. 65
1512.17
1517.21

1447. 39
1468. 09
1459.77

1198.02
1204. 52
1207. 15

380. 87
374. 29
386 23

355. 07
350.63
360.25

297. 37 256. 58 244. gO 97.75
291.80 249. 47 237. 36 96.27
301.77 260. 60 248. 69 100.37

4p" 4p 4d 4f 5s' Sp 5p' 5d 5d' 6s' 6P 6P 6d 6d 7s'

2. 13 0. 22
2. 26 2. 13 Q. 18
3. 17 2. 91 0. 59

6. 54 1.74
5. 90 5. 37 l. 04
8. 49 7. 90 2. 66

l. 74
0. 98
2. 57

Q. 383
0. 429

0. 07 0. 07
0. 61 0. 29
1.01 0. 49

17.93
18.06
20. 17

16.54 8. 67
16.41 8. 93
18.23 10.27

8. 67
8. 64
9. 55

0. 15
0. 18
0. 78

2. 79 1.62
3. 12 1.90 1.66
3.71 2. 25 1.95

0.35
0.35

29. 11
28. 31
30. 55

25. 21 14. 48
24. 62 14. 05
26. 75 15.56

13.52
13.38
14. 84

0. 44 3.90 1.69
0. 47 0. 38 4. 27 2. 50 1.99
1.09 0. 96 4. 88 2. 84 2. 37 0.39

49. 76
48. 80
52. 25

41.97 27. 86
41.07 26. 83
44. 37 29. 59

26. 46
25. 37
28. 10

7. 57
6. 90
8. 94

7.28
6.62
8. 62

8. 82
8. 89

10.21

5. 95
6. 10
7. 08

4. 26
4. 6g
5.69

0. 51
0. 88 0. 74 0. 65
1.30 1.15 0. 66

85. 85
85. 45
88. 68

71.15 52. 48
70. 45 52. 16
73.41 54. 63

49. 76 25. 28
49. 38 25. 50
51.79 27. 05

24. 62
24. 86
26. 33

21.32 16.83
22. 12 17.89
23. 12 18.49

13.38
14.22
14.99

6.98
7. 79
7. 95

6.47 4.41 3.60 3.16 0. 15
7.23 3.70 2. 42 1.75 0.34 0.43
7. 41 4. 11 2. 66 1.97 0.45 0.41
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for the 3P' state of Z=40. Relativistic Hartree-
Fock and present-model wave functions (using the
parameters given in Table I) are exhibited. Clearly
the agreement is very good. Results for other
atoms are similar. Table II shows our results for
a random selection of elements (Z= 10, 20, . . . , 90).
In each case the top entry is the experimentally
determined value, the second entry is our fit to
it [with P = 1 in (7)], resulting in the parameters
indicated on the left, while the bottom entries are
relativistic Hartree-Fock energies shown for pur-
poses of comparison. The numerical (FORTRAN IV)

programs used to obtain these results are available
on request.

The results presented above indicate that a simple
analytical potential can yield as good a description
of ground-state atoms as a numerically generated
one from self-consistent field methods. For appli-
cation purposes, the former has obvious advantages.
It is evident, in particular, that the two-parameter
analytical potential of Green, Sellin, and Zachor
serves as well for relativistic calculations as it
did for the nonrelativistic independent-particle-
model work.

We would like to thank Dr. J. B. Mann for pro-
viding us with some of his relativistic Hartree-
Fock results for atoms, prior to publication.
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The work of Balling, Hanson, and Pipkin on the density-matrix equations for spin-exchange
collisions is extended and is simplified in the case of S~2 atoms. The results allow straight-
forward calculation of the detailed effects of spin exchange on the density-matrix elements.
The equations are useful when dealing with an ensemble of atoms such as in the hydrogen maser,
in the rubidium maser, and in optical pumping cells.

I. INTRODUCTION

@in exchange'I is one of the dominant mechanisms
effecting changes in the spin states of colliding
atoms having unpaired electrons. For an ensemble
of atoms, the characterization of the spin coordi-
nates can be conveniently made by a density matrix.
The effect of spin exchange on the elements of this
density matrix is an important consideration when
dealing with systems of colliding atoms, such as in
the hydrogen maser, in the rubidium maser, or
in optical pumping cells.

The result of exchange of electron spin coordinates
can be derived by considering elastic scattering
from a spin-dependent potential. Balling, Hanson,
and Pipkin (BHP) have used this method to calcu-

late the effect of spin exchange on the density ma-
trix. Their theory ignores spin-orbit interactions
and direct magnetic interactions between the collid-
ing atoms. As shown below, a simplification of
their result can be made in the case of spin exchange
between S,&z atoms, wherein the effect of spin ex-
change on the density matrix of each system is only
through the electron polarization of the other, and
is not dependent on the specific population of each
hyperfine level.

II. DENSITY MATRIX RATE EQUATION

Consider the two-body collision involving an atom
of type A and an atom of type H. (A may be the
same as or different from H. ) The joint density
matrix for this composite system is


