
496 LAWRENC E L. HOPE

modulated strong field is given by the real part of

E,(z, t) = Eoexp[iuroT —iuoz n„/c j. (3)

The spectral density S(uo —nu, ) is evaluated in the
usual manner in terms of the Fourier transform of

E,(z, t). The sideband number n is not restricted
to integer values; positive p, corresponds to the
Stokes spectrum. It can be shown analytically that,
independent of all parameters, (a) the Stokes and

anti-Stokes spectra are interchanged if the phase
angle 6 changes by z, and (b) the total integrated
powers into the Stokes and anti-Stokes spectra are
the same. The latter result does not contradict the
apparent favoring of one side by the observed
spectra away from the laser line, since the intense
region near the laser frequency contributes heavily
to the powers.

For the case of pulse bandwidth I' comparable to
~„ the spectra are quite sensitive to ~. The fil-
ament-to-filament spectrum variation is probably

largely due to stochastic variations in this phase.
The spectra of Fig. 2, computed using I'= 1 cm ',
P=100, T=O, and the CRCT value (d, =2. 5cm ',
compare favorably with some of Shimizu's CS2 ob-
servations. His other observations can be repro-
duced for different values of P and ~. Variation
of 7. has little effect except through ~.

The spectrum of Fig. 3 represents the long-pulse
limit I'» (d, . In this limit the spectra are indepen-
dentof ~, and the sideband width, although small,
increases with p. The peak spectral density de-
creases monotonically, but it can be shown that the
integrated power in the kth sideband is proportional
to the square of J,(P), as in the CRCT theory. A
spectrometer with insufficient resolution will per-
form the integration and produce a spectrum like
that of Fig. 1 rather than that of Fig. 3.

The author is grateful to A. Lempicki, M. Q.
Vassell, R. R. Alfano, and S. L. Shapiro for help-
ful discussions.
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Hamiltonians to describe vacancies and He impurities in solid 3He derived from a
Hubbard-like-model starting point are presented and discussed.

Giffard and Hatton' used NMR techniques to mea-
sure the exchange-lattice relaxation rate in solid
'He in the temperature range 0.4-0. 6 K in the
presence of He impurity atoms. They found an
extra contribution to the rate that is of the form
0(x) T" *', where x is the He concentration and T
is the temperature; n(x) varies from 8. 3+ 2 (for
x& 5X10 ') to 8. 7+0. 1 (for x= 3 X10 '). Guyer
and Zane argued against the interpretation of this
effect as being the result of a two-phonon process,
as was initially expected; they suggested that it
may be due to tunneling processes in the presence
of vacancies and He atoms in the lattice. In a
recent letter (hereafter GZ) they have used a Hub-
bard-like model Hamiltonian for solid He with a

single He atom present as an impurity, to con-
struct an effective Hamiltonian which describes
the exchange of positions of atoms caused by the
tunneling motion of the atoms through the lattice
in the absence of vacancies. They have found the
concentration dependence and the temperature
dependence of the relaxation rate in the above case.
In this paper, we develop a unified approach for
the study of tunneling processes that occur when
vacancies are present in the lattice in addition to
the 'He atom.

The model Hamiltonian used in GZ may be writ-
ten in the form

H= Ho+ V,
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where

Ho= PE g~s&, +4'Q n«p„
f,e

V=4 Q t«c«c)~+4'Q t(ga(ag =4V +4 V
fe jsfy &eJ

Ifere, c'„(a])creates a He atom with spin a (a 'Ife
atom} with the appropriate ground-state wave func-
tion in the ith cell. n&, and p& are the correspond-
ing number operators for 3He and He, respectively.
P (P') is the hard-core repulsion energy associated
with putting two 'He atoms (a 'He atom and a 'He

atom) in the same cell. 4 and 4' have the dimen-
sions of energy, and t,&

and t',
&

are dimensionless
hopping matrix elements (t«can be chosen to be
zero without any loss of generality}. In deriving
Eq. (1}, it is assumed that only one state is avail-
able per cell, which forbids two fermions with like
spin projections from occupying the same cell.
Also, all intercell interactions between atoms a,re
neglected compared to intracell interactions.
g' are much larger than 4, 4'. V wiII thus be
treated as a perturbation on Ho in Eq, (1}. In GK,

P and P' have been taken to be equal to each other.
Qfe shag treat this case first and then discuss the
"e4s4'

Eigenstates of H, of the form

] ge Ct) = Cl ~ ~ ~ II ~ ~ CN ] %0) (2)

can be found, where H is the total number of atoms,

its) is the vacuum state, and there is one He

atom in the lattice. The eigenvalues of Hp are E„
=sf, n=0, 1, 2, . . .. The nth energy level is 8„-fold
degenerate, and a& (j = 1, 2, . . ., J„) is the degener-
acy index.

When there are no vacancies in the lattice and

only the lowest energy level E, is considered, an
effective Hamiltonian~ (correct to second order in
4 and 4'), that gives the second-order splitting of
the unperturbed energy level Ep, is found quite
easily using degenerate perturbation theory. This
is because in this case (i) there is no first-order
splitting of the level, and (ii} the perturbation con-
nects the level Ep only to the level E&. However,
this method cannot be generalized directly either
to the level Ep when there are vacancies, or to
higher levels E„Ez, etc To incl.ude such cases,
we make use of a canonical transformation first
introduced by Kohn, and subsequently used by
Harris and Lange' on the Hubbard-model Hamil-
tonian for electrons in narrow energy bands in a
crystal. Our Hamiltonian is somewhat more com-
plicated than this last, owing to the presence of
bosons. When applied to Eq. (1), the canonical
transformation leads to an effective "master" Ham-
iltonian (correct to second order in 4 and 4') from
which all second-order processes can be studied,

in particular those which occur when there are
vacancies in the lattice along with the 'He atom.

We work in a representation with the vectors in
Eq. (2) as the basis. When the perturbation V is
switched on, H = Hp+ V does not have a reducible
representation. We carry out a canonical transfor-
mation on H to obtain an effective Hamiltonian H
that does not connect subspaces corresponding to
different values of n (i. e. , H has a reducible rep-
resentation). Thus, we want to find a unitary
transformation

V= exp[- S(4, 4')), S' = S-
such that

H= e'ee~,
with

(3)

&na, a, ~t~n, a, ) =0, Vs~m. (4

In Eq. (3), only terms up to second order in 4
and &' are to be retained. S is expanded in a dou-
ble series in & and &' of the form

S=(4/ Q)sg+(4'/P)s[+(4/P) Sg

(4'/y)'S'+(44'/P )S + "~ (5}

Using Eq. (5} in Eq. (3), we find

H =H+[4S, +4'S'„Ho]ly

+[4 S +4' S'+44'S", H ]/PI

+[4sg+4'S[, [4sg, Hp]+[4'S[, Hp]+2/V]/2$,

(6)

x(pi —pi) -&(s«-s«) (p, - ps)] c,~,cs ~, (8)
2 3 2

S', = Z tf,[(n„-s„)——,'(n„-n„)
&s/s&

x(s, -n~ ) ]a,a, .

where S& through S2' must be chosen so as to sat-
isfy Eq. (4). We proceed as follows: Equation (4)
is a rather weak condition, since it says nothing
regarding the matrix elements of H when n= m,
i. e. , within a given subspace. We determine the
full operator form of the first-order terms 4$& and
4'S[ by imposing instead of Eq. (4) the stronger
(sufficiency) conditions

I

Ha, V + (I/p)[s), Hp] =0,
(7)

I

Ho, V +(I/p)[S,', Ha] =0.

Equation (7) is satisfied by the choice

S, = Z t,&[(n&, s&,) + (p, ——p&) ——,'(s„-n&, )
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(We have used the fact that p(s= p„since there is
only one He atom present, or effectively, the He

density is very low. )
Next, Eq. (4) is imposed successively on the co-

efficients of 4, 4', and &&' in the expression on
the right of Eq. (6), giving the matrix elements of

$2, $2, and Sz' when n4 m; those when n= m may be
chosen to be zero. ~ Then, H has a reducible rep-
resentation (each subspace decoupled from all the
others); its matrix elements within a submatrix
are simply the corresponding ones of the sum of
the first, second, and fourth terms on the right of
Eq. (6). We can writes a rather complicated opera-
tor expression based on the above arguments,
whose matrix elements in each subspace are iden-
tical with those of B.

We now discuss explicitly the subspace corre-
sponding to n = 0, i.e. , when there is no more than
one atom per site. We call this the "physical sub-
space" since, at temperature T, the probability
factor exp( —E„/kt) is overwhelmingly the largest
for states in this subspace for reasonable param-
eter values. The operator expression for H is
considerably simplified in this case because "mixed"
operators such as

Q t(((n(~-n(a) (p( —p()ct ~c(
isf, a

t( f (n( a n((() {n( ((
—n(, ) a( a(

isfsa

[see Eq. (8)] that would occur in the terms involving

[Hp& S(]& [Hp& S(]& etc. , in Eq. {6)do not contribute
to the matrix elements of Hin this subspace.

We discuss two cases:
((() No vacancies in the I((ttice We find. that

first-order terms in &, ~ do not occur in this case,
case, and H may be written in the form

H= 2 Z &((1( 1(+ Z &'(, n„p,
isf

for impure solid 'He, we have found the He-con-
centration dependence of the Zeeman-exchange
rel.axation time, the transverse relaxation time,
and the exchange specific heat. The results of
these calculations will be publ. ished elsewhere. A
calculation of the magnetic susceptibility is under-
way.

(6) Vacancies Present in the lattice I.n this case
we find that Hdoes have first-order terms in & and

These terms are

[&t(((1—n, ,—p;)c„c(,+I( t;((1 —n„)a,a(].
(10}

The two terms in the expression (10) represent,
respectively, the hopping of a 'He atom and a 'He
atom into an empty lattice site. ' In the absence
of a 'He atom, the expression in (10) can be written
as

t, ( A((, A(„ (11)
i,f, a

where A„= (1 —n (,) «c. From the equation of mo-
tion for A(~, = g( A((e xp(ik x, ), using the expression
(11}and nearest-neighbor hopping, we find that At~
creates a wave (with wave vector k) propagating
through the lattice, "describing the motion of a
vacancy in the crystal, when the second-order
effects are negligible. The energy-dispersion re-
lation for these wa"es is e(k)= —&t gs exp(ik a),
where a represents a nearest-neighbor lattice vec-
tor.

The second-order correction to the expression
in (10)has also been found:

—(& /(i() Q t(((t((n( (1 - n((, —p~)c«c(,
is feksa

( /0 ) Q k( lf (1 (4- py) tM(

i, j,k, a

—(t('/P) Q t„t((p, (1 —n, , p, )c' c(, —
i(fsksa

y+Ii = Cit Ci4 ~

g 1I, = c„c„, I, = —, (n„—n„}.

1
Jif CiaQigf Cfa s

isfea

where the operator I, is given by

(9)
(b,

'
/(t() g t(I t, n„((1 —n( }a(,a(

isfsksa

(~~'/(t(} p t((ttf(1 —n, ,—p, ) c(t((c„a;a(
iaaf sksa

(t(t('/y) Q t„t„(l—n(„a)(((((((ct c( .
i,f, k, a

The coefficients J,f, J,f, and J,f are defined as

Equation (9) is equivalent to Eq. {6) in GZ, although
it is in a, different form. Q(a((c„exp(ik x, ) creates
a mass-fluctuation wave in the lattice. The pro-
cesses described by Eq. (9) have been discussed in

GZ. Using Eq. (9) as the exchange Hamiltonian

The sum over lattice sites in the terms of the above
expression consists of two parts: j= k and j Wk.

The former gives only the exchange terms on the
right of Eq. (9), and the latter describes second-
order hopping processes in the presence of vacan-
cies.

(c) Case(t(((Q ': We now discuss the case (t( (((t(

in brief. We may now work in a basis labeled by
two integers n, p (corresponding to the eigenvalue
n(t(+P(t('of Ho), where n=0, 1, 2, . . ., and P=0 or
1 when only one He atom is present. However,
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expanding 8 as in Eq. (6) and imposing the condi-
tion of Eq. (4}on a matrix element such as

(m, P=1; a&~H( m+1, 0=0; a&) (I&)

leads to the "singular" denominator (P —P ') i«he
expression for S, (and thus for Ss, etc. ). We ex-
pect from the definitions of P and (t) as hard-core
repulsion energies that the difference (P —P ) may
be quite small. This would invalidate a perturba-
tion expansion of the type used in Eq. (6). We may

avoid this difficulty by working in a different basis.
However, if we merely want to decouple the physi-
cal subspace, corresponding to n=O, P=O, the
above problem does not arise [see Eq. (13)]. In
fact our previous experience in the case ft) = (t)

tells us that the choices

S, = Q t,~[(n„-n~,)+ (P/P')(p, —p, )]c,', c,

Sf Q f ff (p/p )(nt ng )Qj QJ (14}

In (b) the first-order terms remain unchanged and

can be interpreted as before. The operator ex-
pressions in the second-order terms are also not
affected except for the replacement of P by P' in
the last four terms in the expression (12).

Vfe summarize our conclusions as follows: Clas-
sically, one regards vacancies in a lattice as lo-
calized entities that can occasionally move from

would be suitable for this purpose. Proceeding as
before, we obtain the effective Hamiltonian in the

physical subspace, in the two cases (a) and (b). In

(a}, H is given once again by Eq. (9), with the new

definitions

~tg = - (&'/0 ')f
tg

—(& "/0 )f tg+ (&'/20)f 'o,

Jt)- —(4h 1'/4' }ft)ttg.

site to site, the motion being an increasing func-
tion of the temperature. However, in crystals
such as solid He, the quantum-mechanical zero-
point motion of the atoms (which persists even at
very low temperatures} is very large. 's This ef-
fect becomes important in studying the dynamics
of vacancies at low temperatures, and we have
found that the canonical transformation method used
here greatly facilitates the analysis. It is seen that
the vacancies give rise to waves"' that can prop-
agate through the crystal [see Eq. (11) et seq. ].
One can therefore think of the lattice energy in solid
'He with vacancies as the sum of the phonon energy
and the energy associated with the vacancy waves.
One purpose of our work is to help set the problem
of diffusion in solid He, which has so far been
treated phenomenologically, ' on a more quantitative
basis.

When a 'He impurity atom is present, ignoring the
presence of vacancies, one finds that mass-fluctua-
tion waves exist. When both an impurity atom and
vacancies are present, the canonical transforma-
tion method continues to remain useful and gives an
effective Hamiltonian H capable of describing both
vacancy waves, mass-fluctuation waves, and their
mutual interaction. Of course, at low 'He and va-
cancy concentrations, their interaction will. be ef-
fectively weak. " In addition, both wave types can
interact with the phonons. In exchange-lattice
relaxation, therefore, the exchange energy can be
converted into vacancy waves, mass-fluctuation
waves, as well as phonons. We have provided a
unified method of finding the energy-dispersion re-
lations for the first two of the above. This is nec-
essary in order to develop a quantitative theory of
exchange-lattice relaxation in solid He when both
'He impurity atoms and vacancies are present.

We would like to thank V. Balakrishnan for help-
ful discussions.
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Lambert's proof that the inclusion of nuclear spin does not alter the equation of motion for
the electronic polarization is shown to be valid only when the hyperfine interaction is negligible.
Usually the hyperfine frequency is much greater than the frequency of spin-exchange collisions;
then the effect of the hyperfine interaction between collisions invalidates Lambert's proof.
In general, spin exchange with a second depolarized species relaxes the electronic polariza-
tion as the sum of two exponentials, as shown by Gibbs and Grossetkte.

Lambert' has recently presented a proof that
equations describing the effect of spin-exchange
collisions on the electronic polarization of systems
without nuclear spin also hold for systems with
nuclear spin. The range of validity of his proof is
discussed in this note.

In 1962 and 1963 Grosset0te and Gibbs3 showed
independently that, in general, the electronic po-
larization relaxes as the sum of two exponentials
as a result of spin exchange with a second disori-
ented species. Experimental evidence of this
double-exponential prediction was also presented. '

On the other hand, Balling, Hanson, and Pipkin
(BHP) claimed that their analysis without nuclear
spin was valid with its inclusion. But in a subse-
quent erratum they admitted that the replacement
of Rb by a system without nuclear spin was not
rigorously justified, yet expressed their feeling.
that such a replacement was a good approximation.
Gibbs pointed out that their Table IV (or VIII) leads
to a double-exponential solution, i. e. , that Rb is
represented very poorly by a zero-nuclear-spin
alkali, in general. Bouchiat has treated the re-
laxation of the electronic polarization by wall and
buffer-gas collisions and shown that, in general,
nuclear spin leads to a double-exponential decay.
Electron randomization (without affecting the nu-
clear spin) is equivalent to spin exchange with a
disoriented second species in its effect on the elec-
tronic polarization. 3 In the absence of alkali-rare-
gas molecular formation, the electronic polariza-
tion is expected to relax by electron randomization
in buffer-gas collisions, and evidence for this and
the associated double-exponential decay has been
presented. " Therefore, the importance of in-
cluding the nuclear-spin effects in analyzing the
relaxation of the electronic polarization would seem
to be well established even though many experiments
measuring spin-exchange and buffer-gas cross sec-

tions and diffusion coefficients were performed be-
fore this importance was appreciated. For exam-
ple, it is likely that nuclear-spin-produced nonex-
ponential decays have been attributed to higher dif-
fusion modes.

Lambert's proof' begins with Eq. (27) of BHP,

dp(1)
tra[ —3p (1, 2) + (1 + 2 Ia') o, ~ oz p(1, 2)

1

+(1 —2ix)p(1, 2) ooz+o, ~ ozp(I 2)o& o&]

+iesnton(I)p( }o.( } (2)

where summation over repeated indices is under-
stood and where

P~(2) = tro~(2)p(1, 2) = trio~(2)p(2).

Equation (2) agrees with (I-5a) and (II-1) of
Grossette's article which describe the dominant
variation of p(1} during a spin-exchange collision.
Between collisions, which is most of the time in a
typical alkali experiment, the variation is domin-
ated by the static Hamiltonian K&, including the
Zeeman and hyperfine interactions,

It is useful to sketch Grossethte's careful density-
matrix derivation to point out how it differs from
Lambert's. She divides the density matrix p(1) into
two parts, p(1) = p(1) +p(l), where p(1) describes
those atoms which undergo no collisions during the
time dt and p(t} describes those which undergo at
least one collision in dt Equation. (1) above can be
written as [with o„(2)o,(2) = 5„,+ie„„o't (2)]

{—3p(1) + o„(1)p(1)o„(1)
1

+ [(I+2 ix) o„(1)p(l)+ (1 —2 tx)p(1) o„(1)]P„(2)


