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In single crystals with the large anisotropy of bcc 3He the wave vector of a sound wave de-
viates as much as 60' from the direction of energy flow. This effect permits one to find single-
crystal elastic constants from previous measurements of the transverse velocity, the Debye
temperature and the compressibility: cff 2. 35, cf2=1.97, c44=1.085 (in 10 dyn/cm) at a
molar volume of 24 cms/mole. The constants agree well with measured longitudinal sound
velocities and with theoretical constants of Horner, less well with constants obtained from the
single-particle theories of Nosanow et al.

The theories of lattice dynamics of quantum
crystals' have been applied mostly to the body-
centered-cubic phase of solid He rather than to the
less simple hexagonal close-packed phase of 'He

or He. Qnly recently, however, have sound-vel-
ocity measurements' on oriented single crystals of
bcc 'He become available for comparison with the
theoretical predictions. In view of the importance
of these experiments for the understanding of the
mechanical and thermal properties of bcc 'He, it
is desirable to have more and independent deter-
minations of the sound velocities and elastic con-
stants at different densities. The purpose of this
paper is to demonstrate that some information on
elastic constants can be extracted from earlier
measurements by careful data analysis.

All previous measurements of the sound velocity
in the cubic phases of He by Abel ef al. ~ ('He, lon-
gitudinal), by Vignos and Fairbank' ( He, He,
longitudinal), by Lipschultz and Lees (4He, trans-
verse), and by Lipschultz9 ('He, 'He, transverse
and longitudinal) were made on crystals of unknown

orientation. We will show below how the sample
orientation can be inferred from the geometry of
the apparatus used in the measurements of the
transverse velocity. " The three elastic constants
c„, c», and c«can then be determined from this
velocity and from known values of the compressi-
bility K, the Debye temperature at absolute zero
eo, and the density p. We assume that these trans-
verse velocities were measured in single crystals
and present supporting evidence for this assump-
tion.

If we mount a quartz plate (commonly used as
transducer to excite sound waves) on a crystal cut
in an arbitrary direction, the emitted sound beam

will generally not propagate perpendicularly to the
transducer plane, but will make an angle 0,, be-
tween the ave normal and the beam direction'
(Fig. I). That the direction of energy flow does
not coincide with the direction normal to the wave
front, or wave vector, is characteristic for waves
propagating in anisotropic materials, and the effect
is well known for light waves in birefringent crys-
tals. The deviation d, depends on the direction of
the crystal cut and also on the polarization i (I = l,
tf, t2 for longitudinal, fast transverse, and slow
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FIG. 1. Longitudinal and transverse sound beams in
the (100) plane with wave normal along [012]. Deviations
&» are calculated from the elastic constants of bcc 3He at
V=24 cm /mole cff=2, 35~10 dyn/cm cf&= .97&&10
dyn/cm2, c44 =1.085 X108 dyn/cm .
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ocity (= 230 m/sec). It turns out that the only di-
rections in which transverse sound is likely to be
observed are close to the (100) plane (and crystal-
lographically equivalent planes) and that the trans-
verse-sound velocity in these allowed directions is
within 2 or 3% of (c«/p)~. All other transverse
velocities are associated with ) 6& ) & 13'. The mea-
surements of Lipschultz and Lee ' show indeed a
spread of only 6%, most of which is attributable to
the volume dependence of the velocity. Therefore,
knowing c« to within a few percent, we can calculate
c,&

and e» from the measured compressibility' '":
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FIG. 2. Longitudinal and transverse sound velocities
e~ and angles &q between wave normal and beam direction
for different directions a, based on the elastic constants
of Fig. 1. Wave normal is in the (100) plane and 0. is the
angle between wavenormal and [001]. Only the velocities
indicated with a thicker line are observable in a sample
chamber with I&& I &13'.

transverse modes, respectively) and is shown in
Fig. 2 for wave normals lying in the (100) plane,
together with the corresponding velocities. It can
be seen that the deviations are by no means small
in crystals with the large anisotropy of bcc He.

The sample chamber of Lipschultz, which is al-
most identical to the one shown by Lipschultz and
Lee, has two transducers at opposite sides of the
crystal whose separation and diameter is such that
all sound radiated away from the emitting trans-
ducer will miss the receiving transducer completely
if ) 0, ) is larger than 13 . We see from Fig. 2 that
this geometry eliminates almost all directions for
the slow transverse branch. The mode that is like-
ly to be observed in the (100) plane is the fast trans-
verse branch t, whose velocity in this plane is v, ,
= (c«/p)v . The symmetry directions [010], [001],
and [011], although possible directions for the t 2

branch, have a very small probability to be seen.
I have extended this analysis to 200 other directions
in the crystal using elastic constants derived from
theoretical work of de Wette et al. ,

"as an example
(Fig. 3). The exact magnitude of the elastic con-
stants is not relevant for the following conclusions
as long as the crystal is highly anisotropic, which
we know from the large difference between observed
transverse velocity (~ 290 m/sec) and Debye vel-

where v, , vugg vt2 are the sound velocities, de-
pending on the density, "the elastic constants, and
the direction. This problem was solved by varying
c„and c,z within the constraint of Eq. (1) and nu-
merically integrating Eq. (2) by computer'6 until a
set of constants was found that satisfied Eqs. (1)
and (2). Smoothed interpolations for eo, K, and
molar volume V were used, with 90 as given in
Refs. 13 and 14, i.e. , disregarding the low-tem-
perature anomaly. ' 90 determines essentially the
difference between c» and c,2 through the lowest-
lying velocity v, z

= [(c„—cqqAp]' and K determines
essentially their sum, so that errors in 90 and K
do not unduly magnify through the computer calcu-
lations. I therefore estimate the accuracy of these
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FIG. 3. Observable direction (shaded) for sound prop-
agation if deviation between sound beam and wave normal
is restricted to I&& I &13'. Figure is based on the elastic
constants of Ref. 11, but is similar for the experimental
elastic constants of Fig. 1, or of Ref. 5, Velocity in the
allowed region of the t& branch is within 3%%d of (c44/p)'
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constants to be of the order of a 5%, which includes
an uncertainty of 10% in es. The results are shown

in Table I. With these constants, it can now be
verified (Fig. 2) that our previous conclusions were
correct and that indeed only the fast transverse
branch f, propagating close to a (100), (010), or
(001) plane could be seen in Lipschultz's sample
chamber.

Two old puzzles are now explained: The mea-
sured sound velocities are higher in the bcc phase
than in the hcp phase at similar pressure, both in

He and He, although the Debye temperature and

the density in the former is smaller. In addition,
the Debye velocity is much smaller than the observed
transverse velocity in the bcc phase. The reason
is that the apparatus used in these measurements
permitted the observationof only the highest veloci-
ties that occur in the bcc phase. The deviations 4,
are smaller for the hcp phase" and allow obse rva-
tion of a more random sample of directions. The
other puzzle was the small anisotropy seen in both
bcc He and He, especially for the shear velocities.
Ironically, the cause is the large anisotropy, lead-
ing to large ~, . The two observations mentioned
above favor the assumption that Lipschultz and Lee' s
samples were single crystals. If they had been
fine-grained polycrystals, the discrepancy between
Debye velocity and transverse velocity would be un-

explained, and a sample consisting of a few large
crystals of different orientation would be incompat-
ible with the observed small spread in sound veloc-
ities.

The elastic constants obtained in this way can
now be used to calculate the velocity of all three
modes in any given direction. " For the purpose of
the following discussion, we adopt an average of the
constants given in Table I, taken at a molar volume
of 24 cms/mole; c«=2. 35, c,s=1.97, c« ——1.085
(all in units of 10' dyn/cm ). Two sections through
the velocity surface of bcc He based on these con-
stants are shown in Fig. 4. They reveal a consid-
erable anisotropy and the existence of very low-
lying transverse velocities propagating in the [110]
direction that have so far escaped experimental de-
tection. At V=24 cm /mole, the longitudinal vel-
ocities fall in the range 432-531 m/sec and are as-
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FIG. 4. Sections through the velocity surface of bcc
~He, (a) in the (100) plane, (b) in the (110) plane, based
on the constants of Fig. 1.

sociated with relatively small beam deviations
t ~, I & 20', compared with the transverse deviations.
The observable range with I &, I & 13' is 432-440
m/sec and 488-531 m/sec, the upper range being
more probable. The measured longitudinal veloc-
ities"' are between 480 and 525 m/sec, after a
correction is applied for the variation of the veloc-
ity with volume [Eq. (3)], in fair agreement with

the calculated range, although no use was made of
longitudinal velocities to obtain the elastic constants.
For t ~, l & 17', which is the largest deviation that
can be observed in Greywall and Munarin's cham-
ber, ' we predict at 24 cm'/mole a range 432-445
m/sec and 473-531 m/sec, which also agrees well
with the directly measured and reduced velocities
of 430 m/sec and 475-545 m/sec.

At this point we comment on a small but signifi-
cant detail of the work of Greywall and Munarin. ~

We have calculated the beam deviations for all di-
rections in which sound velocities were observed
by these authors (Fig. 2 of Ref. 5), with the elastic
constants of Ref. 5 and also with elastic constants
obtained from a least-squares fitting of the data:
For three points (approximately 24' away from the

[100] direction) we find 4, & 20' + 1', where the er-
ror includes an uncertainty of ~ 2%%u& in the elastic
constants and + 1' in the orientation measurement.
This would mean that the sound beam would be re-
flected from the round walls of the chamber twice
before reaching the receiving transducer, thereby

TABLE I. Elastic constants of bcc SHe.

Volume
(Ref. 15)

(cm /mole)

Pressure
(Ref. 9)

(atm)

Shear
velocity
(Ref. 9)
(m/sec)

Debye
temperature

(Refs. 13 and 14)
(K)

Compress-
ibility

(10 8 cm /dyn)
cf f c12 c44

(10 dyn/cm )

23. 80
23. 84
24. 06
24. 28
24. 40

36. 8
36.5
34. 5
32. 7
31.7

303
292
289
288
284

20. 11
20. 05
19.63
19.24
19.02

0. 459
0. 462
0.484
0. 505
0.518

2. 43
2. 44
2. 32
2. 22
2, 17

2. 05
2. 03
1.94
1.86
1.81

1.16
1.08
1.05
1.03
1.00
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FIG. 5. Theoretical and experimental elastic constants
(logarithmic) of bcc 3He versus molar volume. Theory:
H: Horner~9; WNW: de Wette, Nosanow, and Werthamer
HMN: Hetherington, Mullin, and Nosanow~o; MNS: Mul-
lin, Nosanow, and Steinback. ~~ Experiment: squares:
Greywall and Munarin; circles: this work. Theoretical
calculations extend over a wider volume range than in-
dicated, but only a portion is shown for clarity.

loosing any phase coherence over its cross section
and becoming undetectable. We conclude, there-
fore, that the uncertainty of 2%%u0 in the elastic con-
stants of Ref. 5 may have to be increased in order
to reconcile the calculated beam deviations 4, & 20'
with the geometry of the sample chamber 4, & 17'.
An increase in the quantity c» —c» would then not
only reduce the anisotropy and therefore &, , but
also significantly increase the elastic Debye tem-
perature 80 to a value which is closer to the calori-
metric Debye temperature.

In general, the polarization of the modes is not

pure, and a transducer for transverse sound will
also generate longitudinal sound. High velocities,
characteristic for longitudinal sound, were indeed
measured occasionally by Lipschultz when both
transverse beams were cut off because of excessive
beam deviations 4, and only the longitudinal beam
reached the receiving transducer. However, the
cause for this apparently strange behavior was not
recognized at that time. The high velocities fall in
the predicted and observable range for longitudinal
sound and can therefore be identified as such; the
low velocities, clustering around 290 m/sec, as
transverse.

In Fig. 5 the results are compared with experi-
mental elastic constants of Greywall and Munarin'
and with the latest theoretical constants, taken di-
rectly from Ref. 19 or calculated from theoretical

dlnv
y, = — + 3 = 2. 2 + 0.2,din V

(3)

independent of direction or polarization within the
stated accuracy. This is in good agreement with,
although not entirely independent from, the param-
eter obtained from specific-heat measurements' '
at this density:

d 1n9O
yD = — ' = 2. 25 .

din V
(4)

The single-particle theories predict y in the range
1.4-1.6, and Horner finds y-—1.9.

It would be useful to determine the elastic con-
stants of the bcc phase of He by the same method.
The transverse velocities have also been measured, '
andthe same strikingly small spread in velocity
was found so that at least c« is well established.
However, the phase extends over such a small tem-
perature and pressure range that the compressibili-
ty ' ' K=O. 33x10 ' cm~/dyn, is presently known
to only about + 20%%uo, and the Debye temperature ' '
at 0 K, 80 = (21 + 2) K, can only be estimated, since
the phase does not exist there. With these reser-
vations we find for bcc 'He

c&j =3.3+0.5, cj,2=2. 9+0.5, c44=2. 34+0. 1

(in 10' dyn/cm ).

The large anisotropy of bcc He has some inter-
esting consequences for second-sound and heat-
pulse propagation experiments. From the relation
between first- and second-sound velocity v„ in
isotropic materials, we find v» =175 m/sec along

sound velocities" or, in one case, ' from the
theoretical values for Debye temperature, com-
pressibility, and longitudinal velocity along [111].
Our results for c„and c44 at 24 cm /mole extrapo-
late very well to those obtained from sound velocity
measurements' at 21.6 cm /mole while some dis-
crepancy exists for c». The best way to resolve it,
and also the most accurate acoustic determination
of 60, would consist of a measurement of the slow
transverse velocity in the [110] direction, v,
=[(c» —cq2+p]' . Obviously, the large beam devi-
ations associated with this branch make this a diffi-
cult measurement.

Among the theoretical constants we find best
agreement with the self-consistent phonon theory
of Horner' as far as the magnitude, the ratio be-
tween the constants, and their volume dependence
is concerned. The single-particle theory, developed
by Nosanow et ~l. and its refined versions, "'
seem to agree less well with the experimental con-
stants derived above.

From the volume-dependent constants of Fig. 5,
we obtain the volume dependence of the sound vel-
ocities and express them in terms of a Gruneisen
parameter y, .'
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[100] and 75 m/sec along [110], with a spatial av-
erage of 116 m/sec at V = 24. 0 cm'/mole. Although
it is probably naive to use this relation in aniso-
tropic crystals, these values do not exclude the di-
rectly measured second-sound velocity vga =127
m/sec at V=21. 05 cm'/mole [9V m/sec at V=24
cm /mole with Eq. (3)]. This velocity is remark-
ably close to the lowest transverse velocity of 123
m/sec in the [110] direction. Therefore, bcc 'He
is the most promising substance for observing a
resonance effect between first and second sound
that was suggested by Guyer, and the slow trans-
verse mode should be strongly attenuated in this
direction, according to this theory.

Another effect due to elastic anisotropy is phonon
focusing, first observed in heat-pulse propagation
in LiF and KCl. Since bcc He has an even larger
anisotropy A,

A = 2c44/(c ~ &
—c~2) = 5.7, (5)

than LiF (A = 1.56) or KC1 (A = 0. 31), in fact the
largest A of any insulator, phonon focusing should
be easily observed once experiments are carried
to the low temperatures necessary for ballistic
propagation of phonons. For a further discussion
of ballistic heat-pulse propagation it is illustrative
to draw the wave surface' of the crystal (Fig. 6).
This is an instantaneous picture at a time t of the
wave front originating from a point disturbance, and
is to be distinguished from the velocity surface,
which is simply a three-dimensional plot of velocity
versus direction, but has no physical meaning. In
an isotropic material, the wave surface consists of
two spheres with radius v, xt and v, &t. In bcc
He, it may have up to five sheets in certain direc-

tions, as can be seen from Fig. 6. In these direc-
tions, a single heat pulse will produce phonons that
travel with five different velocities and five distinct
pulses will be received. The reason is that a heat

fool] [001]

tolo] [)&0]

0 200 400 600m/sec

FIG. 6. Sections through the wave surface of bcc He,

(a) in (100) plane, (b) in (110) plane, based on the con-
stants of Fig. 1.

source emits longitudinal and transverse phonons
with wave vectors distributed in all directions in
space, in contrast with a piezoelectric transducer,
where the emitted phonons have wave vectors per-
pendicular to the transducer plane. When the di-
rection of energy flow does not coincide with the
wave vector, it may happen that two phonons have
the same direction of energy flow but different wave
vector and velocity. This leads to the multiplicity
of wave fronts in some directions.

In summary, we have found a set of elastic con-
stants for bcc He which is consistent with measure-
ments of transverse, longitudinal, and second-
sound velocities, and, by definition, with compressi-
bility and Debye temperature, and explains appar-
ent discrepancies between some of these measure-
ments. Further sound-velocity experiments in this
phase which are necessary to obtain the constants,
especially e» —c,z, with higher accuracy, should
pay attention to the large deviations of the sound
beam direction from the wave normal.
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The solution of the Liouville equation is expressed in the interaction representation. We
show that the early-time behavior of the single-particle distribution function E& for a classical
gas consisting of particles interacting through weak two-body central forces is governed by the
Vlassov equation. The two-body potentials are assumed to be "good" functions. The derivation
fails if initial correlations are present. The argument is carried out in configuration space.
The analysis is extended to the derivation of differential equations governing the time evolution
of the multiparticle distribution functions E~. In this "Vlasov approximation" to the solution
of the Liouville equation, we find that the Vlassov equation for E&, together with the differential
equations for the E& (k & 1), amounts to the statement that the multiparticle distribution functions
are factorable into products of single-particle distribution functions.

I. INTRODUCTION

In this paper we consider a classical gas consist-
ing of weakly interacting particles which are dis-
tributed throughout configuration space. We assume
that the distribution of the gas in configuration space
is inhomogeneous. The analysis is restricted to the
"bulk" limit, expressed by

V-~, N/V-c,

where N denotes the number of particles in the sys-
tem, V the volume, and c the average density. The
only forces are those arising from the two-body in-
teraction potentials between particles. The inter-
action potential is assumed to be a "good" function'
and the weak interaction assumption is embodied in
the statement that the average kinetic energy per
particle ((p) )/m is large compared to the maximum
value of the interparticle potential Up:

The treatment will pertain to times of the order of
t&, where

0&tent, . (1.4)

The two times t, and t„satisfy

t, «t„~

The introduction of the characteristic times t&,

m tr, /((p )') = «& 1.

The potential is assumed to have a range rp.
We shall discuss the behavior of the system on a

time scale which is short compared to the "kinetic"
relaxation time t„:

4 crp8 3

(~ra)/((p)'&"'


