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The consideration of the resonant interaction between a linear harmonic oscillator (LO) and

a (nonlinear) angular momentum oscillator {NO) is motivated by its relation to the interaction
between a field mode and a number of atomic systems, its relation to the interaction between
three field modes, and the appearance of qualitatively different results quantum mechanically
and classically even in cases that can be regarded as macroscopic. The analysis is carried
out both classically and quantum mechanically in the rotating-wave approximation, and the
time dependence of the energies of the two oscillators is examined, mainly by means of a non-
linear differential equation for the NO energy. In the classical analysis, the problem turns out
to be identical to that of a spherical pendulum, where the NO energy L3 corresponds to the pen-
dulum potential energy, the LO energy n corresponds to the pendulum kinetic energy, and the
coupling energy between the two oscillators ~&K/td is proportional to the angular momentum K
of the pendulum about the vertical axis, all quantities being expressed in suitable units. A

solution for L3{t) is obtained, and is shown to be described uniquely, apart from a shift in the
time origin, by the constants of motion E(=—L3+n) and K. L3 oscillates periodically, except
for the "unstable-equilibrium" solution and the "conical-pendulum" solution. The quantum-
mechanical problem is solved exactly for the cases in which the NO is a two-level system and
a three-level system, and certain aspects of the exact solution are derived in the case of a four-
level system. The constants E and K become a complete set of quantum numbers. It is found
that unstable equilibrium, in the sense that (L3) is constant, does not exist, because of spon-
taneous emission; it is also found that (L3 ) oscillates sinusoidally for the two-level system,
oscillates periodically but not sinusoidally for the three-level system, and oscillates aperiod-
ically for a four- or higher-level system, conclusions about the higher-level systems coming
from general considerations and numerical solutions found in the literature. Approximate solu-
tions for NO' s with arbitrarily large numbers of levels are obtained. One method of approxi-
mation displays spontaneous emission but not aperiodicity. Another approximate method, which
contains the statistical spread of the initial phase difference between the oscillations of the two
oscillators inherent in the uncertainty principle, displays both spontaneous emission and aperiod-
icity. It is shown that the aperiodicity —a property which does not exist classically for precise
initial conditions —does not disappear even in the macroscopic limit and is due to the averaging
performed, in taking the quantum-mechanical expectation value, over an ensemble of periodic
oscillations with a spread in frequencies.

I. INTRODUCTION

The oscillation of several types of fields —the
electromagnetic or acoustic field, for example—
corresponds to that of linear, or harmonic, oscil-
lators. The oscillation of many other systems—
atoms or molecules, for example —corresponds to
that of nonlinear oscillators. Jn fact, much of ra-
diation theory and many interesting resonance phe-
nomena may be regarded as the interaction between
linear and nonlinear oscillators. It is the purpose
of the present paper to analyze in a nonperturbative
manner the interaction between two coupled oscil-
lators, one linear and the other nonlinear. Such a
coupled system may be regarded as an idealized
model for a resonant field mode inside a cavity (or
a resonant lumped-constant circuit) coupled to a
number of atomic systems. Although one might
think, at first, that a number of atomic systems
would require the same number of nonlinear oscil-
lators in the model, there are certain conditions,

to be mentioned later, under which such systems
require only a single nonlinear oscillator. The
idealization consists of neglecting dissipation and
the coupling between the atomic systems other than
through the field. Dissipation has received wide
consideration in perturbative treatments, and fre-
quently, dissipation makes it unnecessary to con-
sider anything but a perturbative treatment. ' Ne-
glect of dissipation will allow emphasis on an inter-
esting long-time aspect of the solution, the absence
of a steady-state situation, which has been observed
experimentally when the losses are sufficiently low.
Our main interest will, in fact, lie in the time de-
pendence of the energy of each of the oscillators.
Although the transfer of energy back and forth be-
tween two coupled oscillators —the presence of
"beats" —is a familiar phenomenon when both os-
cillators are linear, the nonlinearity of one of the
oscillators changes the phenomenon in a basic
manner.
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The present problem has motivation beyond the
fact that it treats an idealized model of atomic
systems interacting with a field mode. Both the
linear oscillator (LO) and the type of nonlinear
oscillator (NO) to be considered are among the
most fundamental and widely used systems in phys-
ics. Their interaction will be studied both quantum
mechanically and classically, and, in contrast to the
case of two linear oscillators, mill turn out to have
qualitative features that are different in the two

analyses. This difference, which may appear
puzzling at first, since both oscillators could, in
principle, be macroscopic systems, contributes
toward the insight into the relationship between
classical mechanics and quantum mechanics.

II. MODEL

From a mathematical viewpoint, there is only
one kind of LO; it may be described by the dimen-
sionless coordinate and momentum q and P, re-
spectively, the Hamiltonian being

Hi=-,'K(u(q +P ),

single atoms or molecules by that of angular mo-
mentum oscillators have been given elsewhere. '
The description of combinations of angular momen-
tum oscillators in terms of total angular momentum
is well known through the angular momentum addi-
tion theorem, and those combinations that have a
mell-defined total angular momentum correspond
to a single angular momentum oscillator that may
have a large l. A special case of particular inter-
est to which the present discussion is applicable is
that of a large number of two-level systems, all
excited to their upper level before being coupled to
a resonant-cavity mode.

We need, next, an expression for the coupling
between the two oscillators. It can be motivated
by considering a specific application. If the LO
corresponds to a mode of the e1ectromagnetic field
inside a cavity, and if the NO corresponds to a spin
system, then the coupling between the magnetic
field and magnetic dipole moment can be expressed
byi

&r N
= ~q (Ypi &

+ Y alp + Y31g),
where

[q f]p=i, (2)

where the y's are coupling constants. We consider
the case of weak coupling, for which the relationship

where

0g = S(dl3, (3)

the bracket [ ~ ]~ standing for the commutator in
the quantum-mechanical description, and i times
the Poisson bracket in the classical description.
From the same viewpoint, there are many NO's,
with different types of nonlinearities. The one to
be considered presently may be called an "angular
momentum oscillator. " It is described by the di-
mensionless angular momentum variables l „ l»
and l3, the Hamiltonian being

(Y, j(u) «1, i = 1, 2, 3

holds. This assumption of weak coupling is not
made in order to utilize perturbation-theory ap-
proximations, but rather in order to consider a
system that displays strong resonance features.

It is convenient to use the familiar non-Hermi-
tian variables (classically, Hermitian conjugation
should be read as complex conjugation)

a= 2 '~'(q+ip), a'= 2 '~'(q —ip),

l, =2'~ (l, +ilm), l =2'~ (l, —il,),

[l„, l,] =if, , (4)
and introduce the associated reduced variables
A, A ', L„L,L„specified by

with x, s, and t standing for the cyclic permutation
of 1, 2, and 3. As is well known, and can be de-
duced from the equations of motion below, some
distinguishing characteristics of the angular mo-
mentum oscillator are the facts that its free oscil-
lations [which manifest themselves in l,(t) and lq(t)]
have the single (angular) frequency rz, and —un-
like the LO —both the energy and amplitude of os-
cillation cannot exceed certain maxima, which are
determined by the total angular momentum l. This
oscillator is a good model for many systems, both
microscopic (small l) and macroscopic (large l),
among which may be mentioned atomic systems for
which only a pair of energy levels participates in
a given resonant interaction ("two-level" systems),
as well as certain combinations of a number such
systems. The details involved in the description
of the resonant (single-frequency) behavior of

a =Ae '"' a' =A'e'"'

l =L e'"' ) =L e '"' l3 =L3 .

The reduced variables can be regarded as unitary
transformations of the original variables, given by

where

e - & &/h)Hot (t/h )Hot
y ~ (Sa)

Ho =Ha, +Hj (sb)

(This unitary transformation may be used to obtain
the reduction of variables other than those explicitly
shown above. ) One easily sees that when the oscil-
lators are uncoupled the reduced variables are con-
stant, and for weak coupling, which we are con-
sidering, they vary slowly compared to the natura1
oscillations. The interaction Hamiltonian can now
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be written

H» = —,'R(yA L +yAL e '"'+ v2 y~L+e '"')

+H. c. ,

where H. c. is the Hermitian conjugate and

(10)

y=ys +~ye .

In the analysis of a resonant interaction, it is
customary to approximate by ignoring the rapidly
oscillating terms in the interaction Hamiltonian of

Eq. (10). The significance of this kind of approxi-
mation has been examined' and it can be shown

that, qualitatively speaking, it amounts to ignoring
slight shifts in the oscillating frequencies, that is,
reactive effects. In addition to this approximation
[the validity of which depends on the inequality (6)],
we adopt a simplification, for notational reasons,
which has little physical significance; we assume
y to be real, which is equivalent to the assumption
ya = 0. In resonance phenomena it matters little
whether the coupling takes place through one or
through both oscillating coordinates, and the entire
analysis can be carried out in the same manner
with a complex y. The resulting simplified inter-
action Hamiltonian is

Hzg = pk (y LA+ +A L )

The approximation contained in this interaction
Hamiltonian is frequently referred to as the rotating-
wave approximation.

The present problem is not a new one. Either the
identical problem or similar problems have been
studied previously, " ' mostly in connection with
a number of two-level systems coupled to a cavity
mode. The methods employed previously include
perturbation theory, ' numerical computation,
and other techniques. There will be occasion to
compare some of these analyses to the present
results, not all of which are new, but are needed
for a self-consistent and coherent discussion.

It may be of interest to note that the present
problem is formally identical to that of a mode (or
linear oscillator) of frequency &u, interacting with
two other modes, of frequencies co, and urz, re-
spectively, where

arR = [R, H, „],, (14)

where R stands for any reduced variable. Intro-
ducing the dimensionless time

1T=2y (15)

and noting that the reduced variables satisfy the
rules

[A, A ]~=1, [L„L ]J = L3, (16)
[L„L3].= L„[L-,L~]. = L,

with all other brackets vanishing, we have

A' = —iL,
L.' =-A'L„ L' =iA L3, (17)

L~ = —i (A L, -A 'L ),
where the prime indicates differentiation with re-
spect to w. These equations of motion are valid
both classically and quantum mechanically.

It is useful to introduce the notation

n—= A A, E=—n+L3, K=—AL, +A (18)

where, in units of h(d, n is the energy of the LO
(without the zero-point energy), E is the sum of
the energy of both oscillators, and —,'(y/~)K is
the coupling energy. From the equations of motion
it follows immediately that E and K are constants
of motion. Another constant, of course, is the
square of the total angular momentum of the NO,

L'=L'+L', +L', =L L +L L +L', .

Equations (17) yield

Lz' = —i (A'L, +A L',)+H. c.
(20)

as will be seen, the equations of motion for the
reduced variables are obtained from the interaction
Hamiltonian only, the solution of the present problem
leads to a solution of the problem specified by Eqs.
(12) and (13). The latter problem is that of an
idealized parametric amplifier. '

III. EQUATIONS OF MOTION

The equations of motion in terms of the reduced
variables are given by the relationships'

47 = (dP —4)g y

through an interaction Hamiltonian

H~= ~ u 2 Ky(AA|At+A A[Aq),

(12)

(13)

Noting that

2L L, =L —L3 —[L, , L]
and that

(21)

the operators being labeled according to the fre-
quencies of the modes to which they belong. The
formal similarity of the two problems is due to the
fact that the variables A|A&~ and A, Az obey the same
commutation rules as ~2L, and ~2L, with
—,'(Az'A~ -A, 'A, ) corresponding to L, ." Since,

AA =E —L3+ [A, A ],

we obtain, by substitution in Eq. (20),

L3" = 3L33—2(E + [A, A ])L~ + [L„L ]—L

(22)

(23)
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~ = 0, classically,

& = 1, quantum mechanically.

We can then write

(25a)

(25b)

It is convenient to use the notation

[A, A ]=X, [L, , L J=XL~, L =La(LO+X), (24)

where

L,". (K, however, cannot be so treated. )

IV. LIMITING SOLUTIONS OF ENERGY EQUATION

A detailed consideration of the energy equation,
for arbitrary E, will require separate treatment of
the classical and quantum-mechanical cases. In
the limiting situations of high and low energy,
however, such specialization is not required. Let
us consider, first, the situation

L3'--3L~ —(2E+&) L~ —Lo(LO + X), (26) g» 1. (33)

s =—Lj./a
0 y I 1/2t (26)

The second-order energy equation, in terms of the
normalized quantities, becomes

2» = 3Z' —(2 b + e) g —(1+e), (29)

where the subscript s indicates differentiation with
respect to s.

We can also obtain a first-order energy equation
involving the constants E and K. From the expres-
sions for L,' and K, we have

L3 +K =2(AA L,L +A AL L),
which yields, in a manner similar to that used in
the derivation of Eq. (26),

Lq -- 2L3 —(2K+X)Lq —[2LO(LO +&) —&]Lg

where L0 is the total angular momentum, classically,
and the corresponding quantum number, quantum
mechanically. Equation (26) is an ordinary non-
linear second-order differential equation for the
dynamical variable L3 in both the classical and the
quantum-mechanical formalism. We will refer to
it as the second-order energy equation.

For certain purposes, it will be convenient to
work with the normalized quantities

2 =—L3/Lo, &=—n/Lo, 8=—E/Lo =st+ g,
2 )

X = K/L"' ~ -=~/L„
and the "normalized" time

2@g (34)

the same equation as that for the coordinate of a
harmonic oscillator, and leads to the solution

&(s) = s(0) cosQ"'s+ [2,(0)/fl'"]sinQ'"s, (35)

where 0"' -=(2$), the frequency with respect to
s. [With respect to v, the frequency is (2E)'
and with respect to f, the frequency is —,'y(2E)'~'. ]
Equation (35) gives essentially the same result as
that obtained for an angular momentum oscillator
subject to a prescribed classical driving force.
This is to be expected from the correspondence
principle, since the assumption 8» 1 is equivalent
to the assumption that the linear oscillator is in a
high quantum-number state. Formally, Eq. (35)
is the same in both the classical and quantum-me-
chanical descriptions. The difference between the
two descriptions lies in the fact that &(0) and &,(0)
are noncommut'ng variables (or operators) in the
quantum-mechanical description, and cannot both
be specified precisely, in principle, in contrast to
the possibility of precise specifications in the
classical description.

For the opposite limiting case of small energy,
we set (noting that the ground state corresponds to
= —1)

Since the largest numbers associated with ~ are of
the order of unity, Eq. (29) becomes, approximately,

+ Lo(LO + X)(2 E -'X) —K . (31) 8= —1+$, $«1 (36)

In normalized quantities one can write this equation,
with some rearrangement, as

combined with L0» 1 or E «1. We can expect under
these conditions that & will differ only slightly from
—1, so that we may also set

&', = 2[r, —(8+ —,
' e)] [2' —(1+~ ——,

' e')] ——1+~ E, +f, (3V)

+c {8+-,'c) —~~ . (32) and treat $, f, and e as small quantities of first
order. To lowest order, Eq. (29) then becomes

Once we solve for the NO energy Ls we can imme-
diately obtain the LO energy n, since their sum is
the constant Z (which is determined by the initial
conditions). In the following discussion the NO
energy will be our chief concern. It is important
to note, in the quantum-mechanical considerations
involving the energy equation, that E may be treated
as a c number since it commutes with L3, L3, and

0„=—4K, (36)

which is, again, the same equation as that for the
coordinate of a harmonic oscillator, with 4' oscil-
lating about —1+-,'$, but now with the frequency in-
dependent of the energy. The frequency with respect
to s is 2; with respect to y it is 2L0; and with
respect to t it is yL0 . This result is consistent
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with the fact that an angular momentum oscillator
which is only slightly excited behaves as a linear
oscillator. The oscillation of energy, back and

forth, between two linear coupled oscillators —the
phenomenon of beats —is well known to have a pe-
riod independent of the energy.

V. CLASSICAL DESCRIPTION

8 =2[(z -S)(z' —1}--,'k']. (46)

(Note that h is a constant of motion since the force
of gravity exerts no torque about the z axis. ) It is
easy to show that the angular momentum is given by

cal axis through the center, then its vertical coordi-
nate z (referred to the center) in a unit gravitational
field is given by the differential equation'

In the classical description, the second-order
energy equation [Eq. (29)] reads

h = [2(6 —z)(1 —z')]'i'cosP, (47)

~„=3 z' —2 '& - j. ,

and the first-order equation [Eq. (32}]reads

»-', = 2[(»'. —f. )(a' —I) ——,'x ]

(39)

F,(~)--=2S ( L, x), (40)

where the notation F,(»-') and !p(»', x) is introduced
for later use. Equation (39}follows from Eq. (40)
by diff e renti ation (for 2, 0 0}.

It is useful to consider the phases of oscillation
of the two oscillators 8, and 8& defined by

g-g ~me '1, g~-pg ~ e'1 (41a)

L —2-&~z(L Lz)&~zs~~oz (41b}

[Note that classically, A A ' =A 'A = n and L.L = L L.
= z(Lo —LB) . ] Substituting these expressions into
those for L,' and K [Eqs. (17) and (18)], we obtain

where P is the angle of the velocity with the circle
of latitude (that is, with the horizontal direction) on
the unit sphere at z.

Comparison of Eqs. (40} and (43) on the one hand,
with Eqs. (46) and (47) on the other, shows that the
(normalized) energy of the NO behaves exactly like
the potential energy of the (normalized) spherical
pendulum, with the phase difference between the two
oscillators 8 corresponding to the angle of the devia-
tion from horizontal motion p. It follows immedi-
ately that the energy of the LO corresponds to the
kinetic energy of the spherical pendulum.

The formal solution of Eq. (40) or (46) is well
known, ' and is expressed in terms of the roots of
the cubic polynomial F,(»'). If we label these
roots —which are determined by the initial conditions
(energies and phase relationship) —». , !;z, and».'„
with

».', = [2(6-».)(1 ». z)]"-zsine

and
x = [2(S-»:)(I —». ') ]'i' cose,

(42}

(43)

X, &&~& g3, (48)

»-' (s ) = ».', + (»: z
—».', ) snz [p (s —s o), k ], (49a)

the solution is given in terms of the standard form of
of the Jacobian elliptic function sn(x, k) by

where 8 is the phase difference between the oscilla-
tions of the two oscillators given by

where

8=82 —81. (44) p = [l (»-'o —»-' i) ]
"' (49b)

These expressions are consistent with Eq. (40).
They also allow a simple derivation of Eq. (40) from
Eq. (39). Integration of the latter equation yields

»'. =2O»: —6)(»-'' —I) —[»'(0) —b ][»''(0) —1]j
+».',(0) . (45)

Obtaining». ', (0) from Eq. (42), and recalling that
X = x (0), one gets immediately Eq. (40). Any solu-
tion of Eq. (40) is also a solution of Eq. (39), ex-
cept the solution

so is a constant of integration, and the modulus k
is given by

k= [(~, —L,)/(~, —L,)]"'. (49c)

Since the sn function oscillates periodically between
—1 and +1, we see that!.'(s} oscillates periodically
between c, and L'z, the period of oscillation (in s}
being given by

P= 2 f. ' «[F.(~}]-"', (50)
1

which can also be written as'~

r. (s) = »: (0), cose = 1, P= 2I/p, (51a.)

where»; (0) is arbitrary. The arbitrariness is re-
moved by Eq. (39).

Equation (40) has the form of a well-known equa-
tion, that for the vertical position of a spherical
pendulum (a point mass constrained to move on a
sphere in a gravitational field). If we consider a
spherical pendulum of unit mass, unit radius, total
energy &, and angular momentum h about the verti-

where I is the elliptic integral

r= f'dy [(I-y')(I -k'y')] ' '.
Thus, in general, energy of the amount

4 = Lo(~z

(51b)

(52)

(in units of 5!o) oscillates back and forth between
the linear and nonlinear oscillators with a period
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y(8, 0) assumes its largest value 3;~~. It follows that,
for this value, is a constant which, as can be
easily ascertained, is given by

& = Z, = z, = -,
' [S —(S'+ 3) "'],

and 8 is a constant, given by

8=0 or m.

(54)

(55)

y(ef, o )

The corresponding pendulum motion is that of a
conical pendulum. Thus the interchange of energy
between the two oscillators (for a given 8) varies
from a maximum to zero as X varies from 0 to

~, the latter quantity being given, from Eqs.
(43), (54), and (55), by

(c) X'„=$[(8'+3)"' -g'+98 ]. (55)

FIG. 1. Graph of y(, 0). (a) 8&1 (b) S&1; (c) b =1.

(in t) given by

(53)

Qualitatively, this oscillation is analogous to the
well-known oscillation of energy between two linear
coupled oscillators, or the phenomenon of beats.
In the case of linear oscillators, however (as was
seen earlier for low excitation energy), the period
of the oscillation is independent of the initial con-
ditions and depends only on the coupling strength.

A. Classification of Solutions

It is evident that the three roots of F,(2)[—= 2cp

(L,X)], which determine the solution a(s) except
for a translation along the s (or time} axis, are
themselves determined by 8 and X. The dependence
of the roots on these constants is illuminated by
reference to the graph of y(&, 0), shown in Fig.
1 for the three cases &&1, ' &1, and b =1. For

=0, Z oscillates from —1 to the smaller of the
two quantities h and 1. (In the case b = 1, the pe-
riod of oscillation is infinite, since Zz ——g3, and the
modulus k is unity. This special case will be con-
sidered later in greater detail. ) The corresponding
situation for the pendulum is that of zero angular
momentum, or "simple-pendulum" motion, where
the motion lies in a plane containing the z axis.
[Simple-pendulum solutions are discussed in Ref.
5. ] Consider now S fixed, and let X increase
from zero. The graph of rp(r, X) is obtained from
that of y(Z, 0) by lowering it by an amount ~ X 2.
We see that, as g increases, the roots Zz and &
approach each other, while g3 increases. The am-
plitude of oscillation of Z decreases, and becomes
zero when g, and g s merge. X then (when &, = ga)

F,(~) = 3(I —z')(I —~).

The roots of this polynomial are

(5V)

The integral expression for the period, Eq. (50),
diverges at the upper limit because of the coinci-
dence of the two upper roots. This divergence
and its cause are also demonstrated explicitly by
the elliptic integral of Eq. (51), which becomes
infinite as the modulus k approaches unity, and
the fact that k = 1 only if &2 = g, . It is obvious that
in this instance &(s) = 1 is a solution of the energy
equation (of both first and second order), the cor-
responding pendulum solution being that of unstable
equilibrium. We shall refer to the conditions 5 =
= 1 (or 2 = 1, st = 0), in which the NQ is excited to

The corresponding motion of the spherical pendulum
(for a fixed total energy} varies from that of the

simple pendulum to that of the conical pendulum.
As noted previously, 8 and X determine the solu-

tions, except for a shift in the time origin. We can
regard these two quantities, in analogy withquantum-
mechanical usage, as determining the "state" of the
system. As may be anticipated, these will, indeed,
be a complete set of operators in the quantum-me-
chanical description. It should be noted that +K and
—K correspond to different values of 8, and thus to
different phase relationships between the oscillations
of the two oscillators, but to the same energy be-
havior (except, again, for a possible shift in the
time origin). In the case of the pendulum, +K and
—K obviously correspond to rotation about the z
axis in opposite senses.

B. Unstable Equilibrium and Almost Unstable Equilibrium

We will now examine the case h = 1, X= 0 [Fig.1

(c)] in greater detail. The formal expressions for
2 and its period of oscillation, Eqs. (49}-(51),

show that & oscillates between —1 and +1, but that,
as mentioned previously, the period of oscillation is
infinite. In this case, we have
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its highest energy and the LO is unexcited, as "un-
stable equilibrium" conditions. There are other
solutions for the case 8=1, K =0, with the initial
conditions such as to produce an(infinitelyslow) ap-
proach to unstable equilibrium, 5 but it is unneces-
sary to discuss them for present purposes. We do

want to consider, however, for later use, initial
conditions that are very close to the unstable equi-
librium conditions.

Let the initial conditions be specified by

&(0) =&i, $(0) = 1 —ep, 8(0) = 80, (56)

where e, and &&are small positive quantities of first
order, and Hp is arbitrary. In other words, the
initial conditions are those for which the LO is
slightly excited and the NO is almost fully excited.
We have then

8 = st (0)+z(o) = 1+6,
where

~=~~ -~a

and, up to second order,

g 3'. = 2Eglg cos Hp
1

(59a)

(59b)

Z~ = —1, Zq =1+—,'[5 —(8 —X )' ],
Z~ = 1+—,'[5+(6 + ac )'~ ],

and the period is given by

(62)

P= 51n2+ -'In(6 + X )
'

= 5»2+-,' In[(e& —ez) +4e,ezcos 8~]' . (63)

We see that as &, and E~ vanish, we recover for-
mally the unstable equilibrium initial conditions, and
P does indeed become infinite. The case &, = &q

40, cos Hp =0, which also yields an infinite P, de-
scribes a situation —to which reference was made
above —with just the right initial conditions to react.
(after an infinite time) unstable equilibrium. It is
important to notice the strong sensitivity of P to
the initial conditions when these are near unstable
equilibrium.

Vl. QUANTUM-MECHANICAL DESCRIPTION

We return now to the general second-order equa-
tion for the NO energy, Eq. (26), which, in the
quantum-mechanical case, reads

Ls =3Ls (2E+1)L3 —Lo(Lo+1) . (64)

The expression for F,(S) becomes

F,(C) = 2[(Z —1 —5)(R —1) —2e,emcos'80]. (61)

If either 5 or cos Hp does not vanish, the coincidence
of the two upper roots of F,(Z) is removed, and the
period becomes finite. It is shown in Appendix A
that, to lowest significant order, the roots are

The analysis differs in two respects from that of the
classical description. First, the formal differen-
tial equation is different (that is, the coefficients
are different) and, second, L, cannot be treated,
in general, either as a c number or as a diagonal
matrix. The latter difference is due to the fact
that L~ does not commute with L, [as is apparent
from Eqs. (17)]and a solution to a second-order
differential equation must depend, in general, on
an initial first derivative.

If we take expectation values of the operators
in Eq. (64), we obtain

(LB)"= 3 (Lg) —(2K+1) (L~) —Lo(La +1) . (65)

This equation is not a differential equation for (L, ),
since (L, }e(L,), in general, and approximations
will be necessary for its solution in the case of
arbitrary Lp. We can, however, obtain certain
information from this equation without the use of
approximation. Consider the NO to be initially in
its highest-energy state and the LO to be in an en-

ergy state with eigenvalue np, so that

(L3(0) )= (Lz(0)) =La, E =Lo+no. (66)

Equation (65) yields

(L,"(O))= —2L, (n, +1).
Now, if np = 0, we have initial conditions that, clas-
sically, are the unstable equilibrium conditions.
According to Eq. (67), however, the quantity
(L,(r) ) does not remain constant for these initial
conditions since the second derivative does not van-
ish. We see, therefore, that as far as the quantum-
mechanical expectation value is concerned, unstable
equilibrium does not exist. This fact, of course,
is merely the mell-known perturbation-theory re-
sult that there exists spontaneous emission when
the NO is initially in the highest-energy state and
the LO is initially in the ground state. For con-
venience, we shall continue to refer in the quantum-
mechanical discussion to these initial conditions
as the "unstable-equilibrium initial conditions, "
and to the fact that (L,(r) ) does not remain constant
for these initial conditions as the presence of spon-
taneous emission. In view of the qualitative differ-
ence between the quantum-mechanical and classical
behavior for these conditions, even for large Lp,
they will be of central interest.

A. Two-Level System

Although a detailed discussion of the operator
L3 is, in general, facilitated by an explicit repre-
sentation, we consider first a special NO, a two-
level system, for which an exact solution of the
energy equation may be obtained very simply with-
out reference to the representation. '3 For this
NO, Lo =-,', L~ is —,

' times the unit operator, La(LO
+1) is —,

' (times the unit operator), the first and



428 I. R. SE NIT ZKY

third term on the right-hand side of Eq. (64) cancel,
and the energy equation becomes

Lo' = —(2E+1)Lo. (66)

Recalling that E may be regarded as a e number,
we have as the solution of this equation

Lo (T) = Lo(0) cosQr+ [Lo(0)//Q] sinQr,

where

Q= (2E+ 1)'

(69a)

(69b)

Substituting for Lo(0) from Eqs. (17), we can write

Lo(r)= Lo(0) cosQr

—i Q ' [A(0) L,(0) —A'(0) L (0))sinQ7.

(70)

It is not difficult to check, as is shown in Appendix
B, that this formal expression for Lo (r) leads to
Lo(T) =-,'. Equation (70) displays L,(r) as an oper-
ator in both the LO and NO space.

B. Representations

It is convenient at this point to discuss explicit
representations, which are easily illustrated with
the two-level NO. The generalization to a larger
number of levels will be obvious, and the pertinent
quantitative relationships for making this general-
ization will be given.

The most obvious vector space for the represen-
tation of Lo(r) is constructed by taking the direct
product of the uncoupled LO and NO spaces, which
yields the basis vectors In, no), where m and no
are the eigenvalues of Lo(0) and n(0), respectively.
Of particular interest is the subspace defined by
m+no =E, with E fixed, since in the Schrodinger
picture a state vector initially in this subspace re-
mains in this subspace, E being a constant of mo-
tion. When the system under discussion has a well-
defined E, the only basis vectors we may need for
its description are Im, E —m ), where —L, & m & Lo
and m & E. For simplicity, we will suppress, in
the absence of any possible ambiguity, the second
quantum number, writing Im) instead of Im, E —m).
Different E's describe different subspaces, of
course. The dimensionality of a given subspace is
2LO + I for E & Loand L 0 +E + 1 for E & Lo. It should
be noted that the basis vectors defined above are
not eigenvectors of the Hamiltonian, but only of
E (= Lo +n) and Lo(0) [or n(0), of course]. We shall
refer to this representation as the L3 representation

There exists another representation, in which the
basis vectors are eigenvectors of the Hamiltonian,
which means, in this instance, that they are eigen-
vectors of both E and K (recalling that Ho/( = —,

' iiyK).
We shall refer to this representation as the K rep-
resentation. K, as noted previously, is a constant

of motion. The matrix elemerts of K in the L3
representation, obtained from the well-known har-
monic-oscillator and angular momentum matrix
elements, are given by (the full notation being used
for the L, basis vectors)

(m —1, no + 1!K!m, no) = (m —1, no + 1!A L !m, no)

= (m, no
I
K

I
m —1, no + 1&

= (m, n()!A L, !m —1,n() 1)

= (-,'(no+ 1)[Lo(Lo + 1) —m(m —1) ]j, (71)

all other elements vanishing. For the two-level
NO, with E &-,', the 2x 2 matrix K in the L3 repre-
sentation has its diagonal elements equal to zero
and its off-diagonal elements equal to —,'Q. The two
basis vectors in the K representation are

4. =2 "'(ll &+
I

—l&) (72)

and for these states the coupling energy H~„ is well
defined with eigenvalues + 4K' Q. Fr—om Eqs. (70)
-(72), we obtain immediately L,(7) in either repre-
sentation. In the Lo representation (with rows and
columns labeled according to I o&, I

—
o &), we

have

1 cosQr —i sinQr
2 i sinQr —cosQr ' (72)

and in the K representation (with rows and columns
labeled according to C, , 4 ), we have

p eiAT
L3(T) '

Q
QQ

(74)

!
2-(/2/@ (-)/2)(or @ ((/2)io)')T /

=
I
o&cos-,'Qr

I
o&isin-,'Qr,

! T X 2-1/2 iy (-1/2) i&T y (1/2)$& T)2 T/—

= —
I

-'&i »n-'Q~+
I

—,' & cos-, Q,—,

(75a)

(75b)

where the common phase constant e ' "' has been
dr opped.

The matrix form of L,(r) allows us to read off all
the statistical properties of the system. If the NO
is initially in the upper state, the expectation value
of the NO energy (in units of tf(d) is given by the
(-,', —,') element in the Lo representation, namely,

In the case of a two-level NO, the energy equation
was solved easily since it is linear. For higher-
level NO's the energy equation is nonlinear, and
it will prove simpler to solve the problem in the
Schrodinger picture. It is of interest, therefore,
to write down the solution in the two-level case,
also, in the Schrodinger picture. From the results
already derived, we obtain, for the states that are
initially I o ), I

——,'), in obvious notation
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—,'cosQv. We see that (L~(7) ) oscillates sinusoid-
ally between + —,

' and ——,'. If the NO is initially in
the lower state, the corresponding value is given
by the (- ~, —~) element, namely, ——,'cosQr. Note,
however, that for the same eigenvalue no, E (and
therefore 0) is different for these two initial states,
being no + ~ if the NO is initially in the upper state,
and no ——,

' if the NO is initially in the lower state.
This fact leads to the well-known relationship be-
tween spontaneous and induced emission, or between
the Einstein A and 8 coefficients. The transition
rate w when the NO is initially in the state

I
s —,')

is given by

f p Ell2 0
p (E+1)'»

I

i
(vs)

where rows and columns are labeled according to
the states I1), I 0),

I

—1) . The three eigenvalues
of this matrix are easily seen to be a ~~, 0, where,
as previously, A= (2E+1)' . Labeling the basis
vectors of the K representation (the eigenvectors
of K) with the subscripts +, 0, —, corresponding
to the eigenvalues of K that are + 0, 0, —0, re-
spectively, we obtain ~

~. =2 "fi ' [E"'I»+flI0)+(E+»"'I - »] (80»

co =& ' [(E +1)'
I
1) —E'

I

—1)], (80b)

where

= g ~ sinQ» 7, (Vsa) + =2"'&'[E"'I»-&lp) (+E+1)'
I

—1)7.
(80c)

1 2 1
2 0+ = a —+no+ (vl )

For T «0, we have

so that

~, / w = (no + 1)/no . (vs)

It is to be noted that the initial conditions speci-
fied by the statement that the system is initially in
the state

I ~, 0) are the unstable-equilibrium initial
conditions. Equation (75a) shows that the NQ oscil-
lates under these conditions from the upper energy
state to the lower energy state, with 0= v 2.

C. Three-Level System

We consider next a three-level system. Here,
Eq. (64) no longer reduces to a linear equation in
L„and there appears to be no simple method of
solving the Heisenberg equation formally. Our
vector space in this instance, constructed in the
same manner as that for the two-level system, con-
sists of three basis vectors, which, in the I.3 rep-
resentation, are

I
1, E —1),

I
0, E),

I

—1, E+1),
provided E&1. For E =0, the space is two dimen-
sional, with basis vectors Ip, p), I

—1, 1), and for
E = —1, it is one dimensional (and trivial) with basis
vector

I

—1, 0). We will consider only the first
case, E & 1; the case E = 0 is less interesting for
our purposes and can be studied by the same meth-
ods. As previously, we will suppress the second
quantum number and use the simpler notation
I1), Ip), I

—1) for the basis vectors in the Ls repre-
sentation.

From Eq. (Vl), the K matrix in the L~ represen-
tation is given by

and

(C„L,e, ) = —[2(2E +1}]'

(40, L~4 o) = (2E + 1) ',

(81)

(82)

which is qualitatively consistent with the classical
time averages for the conical pendulum and simple
pendulum, respectively. The probabilities of find-
ing the system in one of the states

I

—1),
I
0), I+1),

which can be read off from Eqs. (80), are also
qualitatively consistent with the classical picture.
One would expect, of course, that the similarity
to the classical picture becomes more quantitative
as the number of levels increases.

Viewing the system in the Schrodinger picture,
our main interest lies in the time variation of the
states that are initially

I
1), I 0),

I

—1). Using the

(These are all also eigenstates, of course, of Hz
+H„, with eigenvalue h&uE. )

We can begin to discern here the meaning of the
eigenstates of K in terms of the classical descrip-
tion of the coupled oscillators, or more simply yet,
in terms of the spherical pendulum. The state Co
corresponds qualitatively to the simple pendulum
with zero angular momentum about the z axis,
which, for the oscillators, implies a large inter-
change of energy between the two oscillators (we
recall that NO energy corresponds to pendulum po-
tential energy, and LO energy corresponds to pen-
dulum kinetic energy), while the states 4, corre-
spond, in the same manner, to the conical pendulum
with equal and opposite angular momenta about the
z axis, which implies a small interchange of energy
between the two oscillators. For the conical pen-
dulum the potential energy is somewhat below the
middle (the middle being zero), while for the plane
pendulum it oscillates between the two extremes
and spends more time on top than on bottom. We
have, indeed,
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same method as in the case of the two-level NO,

we obtain

~

17') = A ([E (I+cosQv)+ 1]~ 1) —iE'/ QsinQ7 ~0&

—[E (E+1)]'/'(1- cosAr)
~

—I&), (83a)

~Oy& = —iE'/ A 'sinQr~ 1)+cosA7~0&,

—i(E+1)'/ Q 'sinA&
~

—1), (83b)

i

—Iv& =Q (- [E(E+1)]' (I —cosA7)i 1)

—i (E+ 1)'/2A s inQr
~
0)

+[E + (E + 1) cosAv)i —I&), (83c)

x (1 —cos'Qy) + [E(E + I)]-') . (84)

We see that the expectation value of the energy os-
cillates, as in the two-level case, with a frequency
0, but, in contrast with the two-level case, it is
no longer a sinusoidal oscillation between the two
extreme eigenvalues of L,. First, the oscillation
contains a harmonic, and second, the energy ex-
pectation value (which starts at + 1) does not reach
the lowest eigenvalue —1. The minimum value
reached is

(s5)

where, again, the common phase constant e ' "'
has been dropped. By means of these expressions
we can write down the matrix elements of all the
Heisenberg operators, of course, and it can be
shown that the L, matrix satisfies, indeed, the
operator equation (64}. In particular, let us con-
sider the expectation value of the NO energy when

the initial NO energy is a maximum. One obtains

(17iL, ii7.& =E(E+l)A '(4cosQ7+(E+I) '

[As E becomes large, however, the oscillation be-
comes sinusoidal in accordance with Eq. (35}.] The
behavior of (L~& for the three-level oscillator is
thus qualitatively different from that for the two-
level oscillator, in which (L, ) oscillates sinusoid-
ally from Lo to —Lo. The three-level oscillator
which starts in the highest state does not go com-
pletely into the lowest state. This is also exhibited
by an inspection of the probability of finding the NO
in any one of the three levels when it is initially in
the highest level. Each of the probabilities is given
by the square of the absolute value of the corre-
sponding coefficient in Eq. (83a), and we see that
the probability of finding the NO in the highest state
does not reach zero at any time, the minimum value
being (when cosAv= —1)

(88)

[The other two probabilities at the same time are
~(0~IT&~ =o and

~
( —I~ IT&~ =4E(E+l)A . ) If

the LO is initially in the ground state and the three-
level oscillator is initially in the highest state, it
can be said that there is a finite probability of +9,

statistically speaking, of finding unstable equilibri-
um in the classical sense, that is, of finding that
the initial energy has not changed even though the
expectation value of the energy oscillates.

D. Four-Level System

We will now consider only one feature of a four-
level system, the energy eigenvalues, since a
complete treatment such as that of the three-level
system beconas quite complicated. From Eq. (71),
we obtain for the matrix K in the L3 representation,
with rows and columns labeled according to

K=
[-'(A' —2) ]"'

[%(Q2 2) ]1/2

[!(0' 2) ]"' )0

(87)

where, as previously, A = (8E + I)'/ . We have
assumed here that E & —,'. Lower values of E will
yield a matrix of smaller dimension, which we will
not consider. The eigenvalues of the above matrix
are

P = (1+9/4 Q )" —1

Now, for any multilevel system, we have

Imv&=~„x„c„e '"',

(88b)

(s9)

.=+-.' A[1 -4P]"', +-,* A[1+-.' P) ",
where

(ssa}
where the A„'s are appropriate superposition coef-
ficients, so that

(mr~ L, ~m~&= ZW„*.A.)C„., L,e„)e""'"" (9O)-.
K pK
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Thus, (L,(r)) will, in general, contain terms that
oscillate with frequencies equal to the differences
between the eigenvalues of K. As E becomes large
P approaches zero, and the four eigenvalues be-
come equally spaced with spacing Q, a result con-
sistent with previous discussion since it will yield
an oscillation of (L,(r})with the frequency Q. How-

ever, for E sufficiently small so that P may not be
neglected, the spacing between the eigenvalues
gives us slightly different numbers which are in-
commensurable, and the expectation value of L,
will oscillate aperiodically. We see here a new
qualitative feature in the oscillation of the energy
expectation value, an imprecise period, only ap-
proximately equal to 2v/A.

E. Higher-Level Systems

One can write down the K matrix in the L, repre-
sentation for arbitrary Lo from Eq. (71). It can
be shown that its eigenvalues occur symmetrically
about zero. This fact is to be expected from the
classical meaning of K since a change in sign of K
corresponds merely to a change of initial phase
angle (from 8 to v-8) between the oscillations of
the two oscillators, or an opposite rotation about
the z axis in the case of the spherical pendulum.
Numerical calculations for certain combinations of
L p and E have been made and show the same
qualitative features as those exhibited by the four-
level system, in particular, slightly unequal spacing
between the eigenvalues of K or what amounts to
the same result, aperiodic oscillation of (L,(r)).

As we have seen in the present discussion, the
highest absolute eigenvalue of K designates the
state that corresponds most closely to the classical
"conical pendulum" solution of the coupled oscil-
lators, and the lowest absolute eigenvalue of K de-
signates the state that corresponds most closely to
the classical "simple-pendulum" solution, with ap-
propriate intermediate correspondences. It is in-
teresting to compare the classical value of L, cor-
responding to 'K

I „(the "conical-pendulum" value)
to the numerical calculation of (L, ) for the state of
highest l~l, where ~ is an eigenvalue of K. One
finds, for instance, a numerical calculation of
(L,) for the case E=L,=25, the value being —6.210.
If we set 8 = 1 (that is E=Lo) in our Eq. (54), which
gives the value of when lK l is a maximum, we
see that

l 252 = —3 or L3—- LpZ = ——;3 7

this result differs from the computed value by ap-
proximately 1%.

One can also approximate the largest eigenvalue
of K by the classical K ~, and then obtain h~, the
average spacing between the eigenvalue of K, by
dividing 2K~ by the number of intervals between
the eigenvalues. For E & Lp, the number of such

intervals is 2Lp, and we have

n, K=K ~/La=La Wax
2 (& L )1/2 [(@2+2)3/2 f3 +9g ]

l/2 (91)

where Eq. (56) has been used for X „. For the
unstable equilibrium initial conditions, 8 = 1, and
the above equation yields

8
~K = —, (-.'L,}"'. (92)

If we approximate by ignoring the unequal spacing
between the eigenvalues of K, we have here a value
for the frequency of oscillation of (L~(r)). It is
interesting to note that the frequency of this "quan-
tum-mechanical" oscillation (L, does not oscillate,
classically, for the unstable equilibrium initial
conditions) is obtained by using the classical result
for K ~. For h»1, we obtain from Eq. (91)

F. Large Lo: Semi-Quantum-Mechanical Approximation

We return to the quantum-mechanical second-
order energy equation for a general Lo, Eq. (64),
and examine the possibility of an approximate solu-
tion for large Lp As observed previously, the
problem differs in two respects from the classical
treatment; the coefficients in the differential equa-
tion are different, and the dependent variable is an
operator (or matrix). (Note that if the equation
were linear, the second difference would be of no
consequence for the solution of the energy equation
since the differential equation would apply to each
matrix element separately. )

We now make the approximation

(L', (r)) = (L,(r))', (94)

so that Eq. (65) becomes a differential equation
for (L,(r) ). This does not destroy all the quantum-
mechanical properties of Eq. (65), since the quan-

gK= (2E)'«

in agreement with previous results.
Besides a listing of computer calculations of the

eigenvalues of K, one finds (as mentioned previous-
ly) computer calculations of (L,(r) ) [or rather
(n(r)), which is E —(L3(r))] plotted against r for
the unstable-equilibrium initial conditions. " In
Ref. 8, the case Lp=40 is plotted and exhibits the
following features: (i) The expectation value of the
NO energy, initially at Lo, oscillates; (ii) the mini-
ma and maxima fluctuate and do not all reach + L p;
(iii) the oscillation is only approximately periodic;
(iv) the period (in units of r) that occurs most
frequently, and is also the largest period, is 0.9.
[Note that our Eq. (92) yields a value of 0.7 in this
instance. ] We have already observed the first three
qualitative features in some of the above special
cases for small Lp. We will now consider approxi-
mate methods for the study of (L,(r)) for large L,.
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—[Z(0) —(8 +-,' e)] [Z'(0) —(1+e)] )+22(0)

-=F,(Z) . (95)

The only difference between this first-order energy
equation and the corresponding classical equation
[Eq. (45)] is the presence of e. One has here, as
in the classical case, an equation that leads to an
oscillatory periodic solution for 2, the details of
which are determined by the roots of the polynomial
F,(Z) in accordance with Eqs. (48) and (49), where
now Z„Zz, Z~ are the roots of F,(Z) rather than

F,(Z). We see immediately that one consequence
of the approximation of Eq. (94) is the elimination
of the aperiodicity in the expression for the expec-
tation value that was present in the exact ( for
Lo ~ 2) and numerical solutions considered
previously.

We examine the solution of Eq. (95) only for the
case Lo» 1. It is clear that this equation will yield
a solution that differs significantly from the clas-
sical solution only when the roots of F,(Z) differ
significantly from the roots of F,(Z) or when the
presence of e in F,(Z) affects the roots significant-
ly. Since E «1 and the presence of E can only pro-
duce a shift in the roots of the order of magnitude
of f, the roots of F,(Z) will differ significantly from
those of F,(Z), as far as the effect on the solution
is concerned, only when F, has a double root (or
almost a double root) at 2= 1 (that is, 22=2,), and
the presence of E produces a separation of these
roots. (Separation of a double root at 2= —1, on
the other hand, has little effect on the solution. )
In accordance with the previous discussion of the
classical case, a double root at 2 =1 1.eads to un-
stable equilibrium either as a condition that exists
initially or that is approached after an infinite
time. Under both conditions 8 = 1. The unstable-
equilibrium initial conditions are of greater present
interest" and we consider only these. We there-
fore set

turn-mechanical coefficients are still there. We

may call this approximation the "semi-quantum-
mechanical" (SQM) approximation. For simplicity
of notation we drop the expectation-value brackets,
remembering, however, that L, stands for (L, ) in
the present discussion.

One can proceed to solve Eq. (65) with the ap-
proximation of Eq. (94) exactly as in the procedure
for the classical case, merely taking note of the
fact that the coefficients are different. It is con-
venient to use again the normalized quantity Z,
which is now an expectation value and therefore a
c number. The differential equation for Z is Eq.
(29) with e=L, . Multiplying both sides of Eq. (29)
by EC, —also an expectation value —and integrating,
we obtain for general initial conditions'

Z ,'= 2 ([2 - (8 +-,' e)] [2' —(1+e) ]

$(0) = 8 =1, S,(0) = 0 . (96)

The vanishing of Z, (0) follows from the fact that
under the present initial conditions both the NO

and LO are in energy states, for which the expecta-
tion value indicated by 2,(0) vanishes.

Equation (95) now reads

Z', =F,(Z) = 2[f(Z) --,' e'],
where

f (Z) -=[a —(1+-,'e)][@'-(1+e)].

(gva)

(97b)

Z, = —(1+~&), Zp= 1, F3=1+& . (98)

The solution Z(s) is given by Eq. (49) with this set
of roots. We see immediately that 2 will oscillate
between 1 (its initial value) and —(1+-,'e) One o. b-
serves here another error introduced by the ap-
proximation of Eq. (94), the dipping of 2 below —1,
which, however, is slight.

We have in the set of roots given by Eqs. (98) a
solution that is similar to the classical solution
for initial conditions that are slightly different from
those of unstable equilibrium. As can be seen from
Eqs. (49)-(51), the solution is approximately (that
is, up to lowest significant order in e) the same as
for the set of roots,

Z, ——1, 22=1-p&, 23=1+@6, (gg)

since the significant aspects of the roots are the
position of the first root (approximately —1), the
position of the remaining pair (approximately +1),
and the separationbetween the members of this pair
(e). Comparison of Eq. (99) with Eq. (62) shows
that we now have in the SQM treatment for unstable-
equilibrium initial conditions exactly the same set
of roots as in the classical treatment for off-un-
stable-equilibrium initial conditions, if we set in
the latter treatment

5=0, (100)

Therefore, the period is given, from Eqs. (62) and
(100}, by

P = 5 ln2+ inc ' = 5 ln2+ ln L 0 . (101)

We recall that 2 oscillates between Z& and Z2,
where 2, ~ 22 ~ 2, are the three roots of F,(Z).
The roots of F,(Z) can be visualized in terms of
the roots of f (Z} exactly in the same way as the
roots of F,(2) were visualized in terms of the roots
of y(2, 0}; we merely think of the graph of f(2) as
being lowered by an amount ~c . The roots of f (2)
are, inincreasingorder, —(1+a) ', (1+-',e), (1+a) '2.

Up to the lowest order of E, these roots are
-(1+,e), —(1~—,a), and (1+—,'e). Lowering the curve
of f (2) by an amount —,

' e will affect the first root
negligibly, and —as can easily be ascertained—
separate the second and third roots, shifting them
in opposite directions by &E, respectively, so that
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A'e recall that this is the magnitude of the period
measured in terms of s. In terms of v' it is givenby

P "—Lo P=LO' (5ln2+InLO), (lo2)

and in terms of t, it is given by 2y 'P"'. lt is
seen that one important qualitative difference be-
tween the quantum-mechanical and classical de-
scriptions, the presence of spontaneous emission
for unstable-equilibrium initial conditions, is con-
tained in the SQM approximation. For Lo= 40 as
mentioned previously, the numerical results of
Abate and Haken yield a fluctuating P"' that occurs
most frequently with the value 0.9. Equation (102)
yields the value 1.1.

It is illuminating to examine the mathematical
significance of the approximation used in the SQM
treatment. We note, first, that quantum mechani-
cally (we return to the explicit use of expectation-
value br ackets)

(L 3) -' (L3)' ~ (102}

Initially, for the unstable-equilibrium condition, the
equality signholds. Subsequently, however, the error
committed is that of replacing (L', ) by a smaller value
(except, perhaps, for some discrete values of r)
Since the curvature of the graph of (L, ) versus &

is proportional to (L, ) ", we see from Eq. (65) that
a correct value of (L', ) will decrease the (absolute)
curvature of (L,(r)) whenthe curve is concave down-
wards and increase the curvature when the curve
is concave upwards. Qualitatively speaking, this
amounts to a decrease in the curvature of the upper
portion and an increase in the curvature of the lower
portion of the graph. Such a correction will have
two effects; it will raise the minimum of (L, ) and
thus prevent the (unphysical) dipping of (L, ) below
-Lo, and it may also, unless some special rela-
tionship exists between (L', ) -(L,)' and the period,
introduce some aperiodicity. One sees, therefore,
that the qualitative aspects of the difference between
the correct solution and the SQM solution are con-
sistent with an inspection of the error introduced
in the SQM approximation.

where

A(0) =Ae ' ~, A (0}=Ae' &, (1O4a}

A'(0}A(0}=A' =-', , (104b)

8& being a random variable (with all values equally
probable); and for the NO we assume an oscillation
amplitude described by

L,(0) = L e ' ~ L (0) = L e '&,

where, noting that

2L,(0)L (0) = 2L = Lf + Lm,

we set

(1O5a)

(105b)

the aperiodicity disappears only when Lo reaches
much larger orders of magnitude than those con-
sidered, say, orders of magnitude of 10' . In order
to obtain a more complete understanding of the

aperiodicity and, in particular, to see how it is af-
fected by an increase in Lo far beyond the values
used for numerical calculation, we seek its physical
explanation.

We will discuss a classical system but introduce,
or take into account, the uncertainty principle. Al-
though such a combination does not necessarily lead
to rigorous quantum mechanics, it does in many
instances give a qualitative, or even an approximate
quantitative, explanation of the difference between
the classical and quantum-mechanical results. Let
us consider the initial conditions for unstable equi-
librium, namely, L,(0)=LO, n(0)=0. Classically,
L, (0) and L (0) are well defined as zero, and A(0)
and A (0) are also well defined as zero. According
to the uncertainty principle, however, L, (0), L (0),
A(0), and At(0) cannot be well defined since, as
operators, the first two variables do not commute
with L3(0), and the last two variables do not com-
mute with n(0). In order to satisfy the uncertainty
prinicple, we introduce a random amplitude of os-
cillation (that is, random with respect to an en-
semble of systems) for both the LO and NO. For
the LO, we assume an oscillation amplitude de-
scribed by

G. Large L 0: Statistical Approximation 2L = Lo(LO+ 1) —L~~(0) = Lo, (105c)

The SQM solution gave no indication of aperiodi-
city. One might argue, on physical grounds, that
since the classical solution for L,(r) displays no
aperiodicity, the aperiodicity exhibited by the quan-
tum-mechanical solution for (L,(7) ) disappears as
Lo becomes macroscopically large, that is, in the
classical limit. ' On the other hand, the mathe-
matical plausibility argument for the aperiodicity,
presented in the above discussion of the error in-
troduced in the SQM approximation, is independent of
L 0 Also the computational results, ' as far as
they go, indicate no trend toward exact periodicity
as Lo increases. It is conceivable, however, that

02 also being a random variable (with all values
equally probable). It mill be recognized that the
magnitudes and phases of these random oscillations
are chosen to give the same first and second mo-
ments for the oscillation amplitudes as those yielded
by a quantum-mechanical description when the LO
is in the ground state and the NO is in the highest
state. These random oscillations require that we
add explicitly to our previous classical E the
quantity —,

' (the "zero-point" energy), so that E„
-E+-,', and take account explicitly of the increase
in L so that L„-Lo(LO+ 1) .

Now, the classical equation, in terms of E and
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L, is [from Eq. (23)]

L,"= 3L', —2EL, —L'. (106)

The "classical" equation that takes into account the
uncertainty principle becomes, therefore,

Ls' = 3L~ —(2E+ 1)L~ —Lo(LO+1) . (10V)

Formally, this looks identical either to the quantum-
mechanical equation [Eq. (26)] in which L, is an
operator, or to the equation of the SQM approxima-
tion in which L, is an expectation value. Actually,
however, it is neither of these. L3, here, is not an
operator but a c number which commutes with L3,
and it is also not an expectation value but a random
variable which will be averaged only after the solu-
tion is obtained. The essential difference, for our
purposes, between the treatment of L~ as a random
variable and the treatment of L3 as an expectation
value is the fact that, with the two oscillators in
energy states initially, L,'(0) vanishes in the latter
treatment while it does not necessarily vanish in the
former treatment; from Eqs. (17), (106), and (107),
we have, in fact, for the unstable equilibrium initial
conditions

(P )„=61n2+ lnLO,

and the mean square deviation being

&P'&.,—&».,=hv'.

(113)

(114)

The solution of Eq. (10V) is therefore a periodic
oscillation, the period (measured in terms of s)
being given by Eq. (101) with the above replacement,
namely,

P= 51n2+ln(c l cos8l)
'

= »n2+»Lo+»(I cos8l '). (111)

The function ln(l cos8
l

') varies from 0 to ~ as 8

varies from 0 to —,'&, but is weighted for the low
values since'

t
w/2

&ln
l
cos8

l
')„=—— d8 ln(cos8) = ln2 (112a)

0

and

((lnlcos8l ') )„—(ln2)'=$ v'. (112b)

Vfe see, therefore, that P is a random variable
which assumes values from 5ln2+lnL0 to ~, the
average being

L', (0) = —i[A (0) L,(0) —A '(0) L (0)]

AL [ ((()g-())) -f(()g-()()]

~~~ sing (106)

If now we consider the random variable & and take
its average, which corresponds, in the present ap-
proximation, to the quantum-mechanical expectation
value, we will be averaging over a range of periods
and obtain an aperiodic function.

also a random variable. In normalized notation
(recalling that s =Lo r) we can write

4, (0) = Lo sin 8 = e sin 8 . (109)

One can arrive at Eqs. (10V) and (108) from
another viewpoint. Instead of starting with a clas-
sical description and introducing the uncertainty
principle, one can start with a formal quantum-
mechanical description and convert it into a purely
statistical description in terms of classical random
variables having the same first and second moments
as the quantum-mechanical variables. In either
case there is an approximation involved, of course,
since quantum mechanics, although involving statis-
tics in an essential manner, cannot be converted
into pure statistics. '

Since Eq. (107) is formally identical to that of
the SQM approximation it can be integrated to yield
Eq. (95), with Z,(0) now given by Eq. (109). Sub-
stituting the unstable-equilibrium initial conditions
2(0)=$ = 1, we obtain

&,=2[2 —(1+-,'e)][2 —(1+a)]-e cos 8. (110)

The only difference between this equation and Eq.
(97)for the expectation value of 2 is that the a~ term
in Eq. (97a) is replaced by the random variable
e cos'8, so that the curve for f(&) is lowered by
the amount —,'& cos g instead of by the amount ~

H. Aperiodicity

The realization that the expectation value con-
stitutes an ensemble average over a range of peri-
ods is the physical explanation of the aperiodicity
in the quantum-mechanical expectation value of the
NO energy (and, therefore, also in the LO energy).
When the initial conditions are those for unstable
equilibrium, that is, when the LO isinthegroundstate
and the NO is in the highest state, there are uncer-
tainties in the oscillation of both oscillators of a
coupled pair; these uncertainties are usually referred
to as quantum fluctuations, the fluctuations being
the random differences among members of an en-
semble in which each member is a pair of coupled
oscillators. As we have seen in the classical anal-
ysis [Eq. (63)], the period for a given pair is ex-
tremely sensitive, for initial conditions near those
of unstable equilibrium, to slight differences in ini-
tial conditions. In taking expectation values we
average over the quantum fluctuations, that is, over
all members of the ensemble, and thus average
over a range of periods, obtaining aperiodicity.
One would also expect that for those initial condi-
tions for which slight uncertainties do not affect the
period significantly the aperiodicity of the expecta-
tion value is negligible; as seen in the discussion of
the SQM approximation, and in numerical treat-
ments of certain special cases, ' this is indeed
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(T)„=2y 'Lo'~ (61n2+lnLO). (116)

A measure of the spread, as given by the rms devia-
tion r T is, from Eq. (114),

3-1/2 ~ ~-1 L-1/2

A measure of the aperiodicity introduced by this
spread may be obtained by considering two periodic
oscillations with periods T, and T, where

T, = (T)„+,'c T, —

assuming them to be in phase at t = 0, and finding
the time to at which they become completely out of
phase. It is clear that the two oscillations will be
out of phase after r periods, where

r = (2( )T„/& T=}&3w '(6ln2+ lnLO}, (118)

and the time to at which they will be out of phase
is

to= r(T)„=2&3w 'y 'Lo" ~(61n2+InLO) . (119)

In terms nf periods of oscillation the aperiodicity
decreases with increasing Lo, but very slowly-
logarithmically, to be precise. In units of time,
the aperiodicity increases with increasing Lo. Even
when measured in periods, however, the aperiodi-
city can hardly be said to disappear as Lo becomes
macroscopically large. Thus, as Lo changes from
10 to 10', r changes only from 3. 5 to 15, so that,
even in the classical limit, the aperiodicity persists.

The fact that the aperiodicity, which is of quan-
tum-mechanical origin, manifests itself in the in-
teraction between two oscillators of which each may
be considered macroscopic, with the energy of the
coupled system also being macroscopic, may ap-
pear to be in conflict with the correspondence prin-

true.
The above explanation of the aperiodicity is con-

ceptually somewhat similar to that of the spread
of the wave packet in the motion of a free particle.
If the initial position of a free particle is reasonably
well defined there is an initial spread in velocities
among members of an ensemble, and a purely
statistical (classical) analysis of the spread in posi-
tion at a later time based on the initial velocity
spread derived from the uncertainty principle will
approximate the main features of the spread of the
wave packet. In the present instance there exists
an initial spread of periods (or frequencies) which
produces an aperiodicity in the oscillation of the
average.

We are now in a position to examine the aperiodi-
city as Lo becomes macroscopically large, say,
10' . Expressing the period T in terms of ordinary
time t, we have

T= 2y-'L;"' [6in2+InL, +In(~cosa~ ')] (116)

and

ciple. The apparent conflict can be explained away,
however. The aperiodicity is significant only for
initial conditions close to the unstable-equilibrium
conditions (or conditions that, classically; lead to
unstable equilibrium after an infinite time and can
be treated in an essentially similar manner). For
these conditions, the LO is in a low quantum-num-
ber state and may not necessarily be regarded as
classical. It so happens, because of the particular
nonlinear properties of the NO, that the period of
oscillation of the NO energy is extremely sensitive
to the above initial conditions —conditions under
which the LO is not classical. Thus, the quantum-
mechanical aspects appear in the oscillation of en-
ergy of each of the oscillators. This phenomenon
indicates that conditions for the application of the
correspondence principle must be carefully ex-
amined, under some circumstances, in cases in-
volving coupled systems.

Note added in proof. The present problem is also
treated by R. Bonifacio and G. Preparata [Phys.

336 (1970)], who obtain a periodic solution
for the expectation value of the NO energy in the
classical limit. A brief discussion of some of the
ideas of the present paper, especially with reference
to the aperiodicity, is given by I. R. Senitzky
ibid. 2, 2046 (1970)].

APPENDIX A

We consider here, in connection with Eqs. (58)-
(61), the solution of the equation

8', = F,(Z) = 2[(g —1 —6)(&' —1) ——,
' BC'], (Al)

x —-'6 + -'(5'+X2)'~,

which leads to the set of roots

(A4)

where 6 and X are small quantities of first order.
The solution is given by Eq. (49) in terms of the
roots of the cubic polynomial F,(Z). In zeroth
order, the roots are

(A2)

It is easy to see that the presence of 6 and X pro-
duce a second-order shift in , ' ' and first-order
shifts in z ' and 3 ', and, particularly, a separa-
tion of Z2 ' and 3 '. Furthermore, a small change
in 2,' ' produces an insignificant change in the solu-
tion while a separation of Z, z

' and 2,' ' produces a
qualitative change, altering the solution from a
nonoscillatory to an oscillatory function. We there-
fore ignore the change in Z,' ' produced by the pres-
ence of X. The first-order change in Z2 and , is
obtained by setting

(A3)

and finding the roots of F,(1+x), to lowest order,
in the neighborhood of I. These are given by
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[6 (62 X2)i/2 ]
1

[6 + (68+St2)i/2 ] (A6)

To lowest order, p and k, in Eq. (49), are given
by

—i Q {Li,(AL. -A L ))sinQrcosQi. , (B2)

where the notation {A, 8)-=A B+BA is used, and

where the operators without argument refer to
r = 0. Noting that for a two-level system

P 1 k2 1 a(62 X2)i/2 (A6) {Li,L, I= (Li, L I= L, = L = 0, (B3)

According to Jahnke and Emde ' [where the notation
K is used for the complete elliptic integral which we
designate by I in Eq. (51)], for k close to unity we
have

4
(1 k2)i/2 (62 ~3,2)1/4

we obtain

Li(r)=Licos Qr+Q ~(AAiI, , L +ANAL L,) sinaQ7.

(B4)

Since

AA = n + 1, (L„L )I= L —L

=$ ln2+-, ln
& +3'.

which leads to

P= (2/p)I= 5ln2+-,'ln(& +X ) ',
the result of Eq. (63).

APPENDIX B

(A7)

( A8)

L, L = ~(L —Li+Li),

we have

Lie(i.) = Licos Qi + Q [n(L - Li}

We prove here formally that Lai(w} = —,', where,
from Eq. (70),

L,(r) = Li(0) cosA 7.

+ -,'(L2 —Lii+ L,) ]sin 0 v .

Now, for a two-level system

L =~, Li(0)=~.

(B6)

(B6)
—i Q ' [A(0) L,(0) -A'(0) L (0)]sinQr, (Bl)

and the No is a two-level system.
The square of this expression is

Li(y) = Licos Q v —Q (A L, +A iL ) sin Q7.

Substituting these values into Eq. (B5), and noting
that

Q = 2E+ 1= 2(n+Li)+ 1,

we obtain the desired result.
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