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It is well established that a totally reflected light beam of finite diameter undergoes a lateral
displacement, known as the Goos-Haenchen shift. The theory for the corresponding effect in
nonlinear optics is presented. The special phase-matched case, in which both the fundamental
and the second harmonic are at critical total reflection, is shown to have a characteristic ra-
diation pattern. Since the finite beam diameter is taken into account, divergencies of earlier
theories are eliminated.

I. INTRODUCTION

When a light beam is totally reflected, there is
no net power flux normal to the boundary into the
less dense medium. There is, however, a non-
vanishing component of the poynting vector tangen-
tial to the boundary. The fields decay exponentially
normal to the boundary in the less dense medium,
but this decay of the evanescent field becomes in-
finitely slow at the critical angle, for which total
reflection first occurs. There is a singularity in
k space, as the normal component k, in the less
dense medium changes from small positive values
through zero to pure imaginary values. An aeeurate
description of the phenomenon of critical total re-
flection must consider explicitly the finite diameter
of the light beam and integrate properly over a dis-

tribution in f space around the critical point. This
problem in linear optics has been discussed by
many authors' and was solved in a rather complete
form by Artman. The field distribution of the fun-
damental light beam, of width coo in the less dense
optical medium for critical total reflection, is
shown in Fig. 1. The transverse component of the
poynting vector corresponds to a lzferal displace-
ment of the reflected beam. This displacement has
been observed experimentally and is known as the
Goos-Haenchen shift. '4

It is the purpose of this paper to extend these
considerations to the domain of nonlinear optics,
in particular, to the ease of harmonic generation
of light by a totally reflected fundamental beam.
The theory of total reflection of parametrically gen-
erated light has been given by Bloembergen and
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FIG. 1. A light beam of width zoo is incident on a less
dense optical medium, which occupies the half-space
z &0. The angle of incidence e~ corresponds to critical
total reflection. The field distribution inside the less
dense medium is essentially confined to the shaded area,
according to Artman (Ref. 2). It is bounded by the para-
bola z = [(2x—6o) x&/~]' and z = [(2m+ Rf)) ~~/~]

Pershan. ' They treat the case of light beams of
infinite cross section, or a 5 function in k space.
This formulation leads to a divergence in the re-
flected harmonic intensity for the case of phase-
matched critical total reflection.

Totally reflected second-harmonic light was first
observed by Bloembergen and Lee. Their exper-
imental results for the above-mentioned case are
compared with the theory of Bloembergen and Per-
shan in Fig. 2. Further experimental results were
obtained for phase-matched third-harmonic reflec-
tion by Bey, Giuliani, and Rabin. 7 Detailed exper-
imental results for the non-phase-matched case
of totally reflected second-harmonic generation
have also been given. In all these experiments only
the total harmonic power in the far field is observed.

In Sec. II of this paper a Green's-function for-
mulation is developed to describe the generated
harmonic field, with due attention being paid to the
effects of the finite beam diameter. In Sec. III both
the near- and far-field distributions for the case
of phase-matched critical total reflection (PMCTR)
of harmonic generation will be presented. In Sec.
IV the nonlinear analog of the spatial Goos-Haenchen
shift is calculated for both the phase-matched and
mismatched cases of total reflection. This shift
of the harmonic reflected radiation should be ob-
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FIG. 2. Integrated second-harmonic power in reflec-
tion from a KDP crystal as a function of the angle of
incidence, according to Bloembergen and Lee (Ref. 6).
Phase matching occurs at the critical total reflection.
The drawn curve corresponds to the theory of Bloembergen
and Pershan (Ref. 5).

servable in the near field.

II. GREEN'S FUNCTION FOR THE SECOND-HARMONIC
FIELD NEAR CRITICAL TOTAL REFLECTION

The Green's-function technique in harmonic gen-
eration has been used previously by Kleinman and

collaborators '9 to discuss the influence of a finite
beam diameter on transmitted second-harmonic
radiation near phase matching in uniaxial crystals.
It was also applied to conical refraction of second
harmonics in biaxial crystals. ' It is essential to
use this technique in the case of PMCTR to handle

the singularities in k space.
In the parametric approximation, the distribution

of the second-harmonic nonlinea, r source polariza-
tion is prescribed in terms of the nonlinear suscep-
tibility tensor of the medium and the distribution of

the fundamental field. In the case of critical total
fundamental reflection the second-harmonic sources
will be confined to a region as depicted in Fig. 1.
The phase of the source in each volume element is,
of course, determined by the phase of the funda-

mental field.
The elementary source volume element is chosen

as a slab of finite lateral dimensions, large com-
pared to the wavelength in the x and y directions,
tangential to the boundary, but infinitesimally small
in the normal z direction. This choice ensures that
the phase coherence properties giving rise to spec-
ular reflection are explicitly exhibited in the Green's
function which takes the form"

G'= exp[ikr (r —r') —i(ko" z)(z —z')]

&& fdk
'

2 (2~/c) '(k'" z) t,',"

x exp[ik,
' (r —r ') —if','"(z —z')],
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gksH (kss ass )

& =(k'" —R,'"}(i-zz),

iz H 2kSH, /(kSB gzs )

Here /~, represents the Fresnel transmission fac-
tor at the boundary. The wave vector f " repre-
sents a Fourier component in the wave packet of
the second harmonic, centered around fo" which

represents the nominal value of the second-har-
monic wave in the medium. The deviation from
this nominal value for the z component is 6k,".
The subscript T denotes tangential components.

The reflected harmonic field just outside the
boundary at z = 0 is given by

& "(r")~, ,= fdr'G'(r —r')P'"(r'), (2)

igl'ff 1'P' the integration is over the half-space occu-
l}if (l l)y the nonlinear crystal.

While the Green's function of Eq. (2) is defined
in tin real r space, Eq. (1) shows thatG itself depends
explicitly on ko", a quantity defined in the trans-
formed f space. Our approach is therefore more
nr less a mixture of the approaches in the r and f
spaces. As we have mentioned, it is necessary to
f.onsider a region rather than just a single point
leo'" in the k space. The kr integration in Eq. (1}
does just that.

Note that the scalar form of Eqs. (1) and (2) deals
only with the case where the polarization is per-
pendicular to the plane of incidence. For simplicity,
we also neglect anisotropy of the media. However,
it is easy to take into account the anisotropy and
niore &„eneral situations for the polarization. "

For SHG close to the region of critical total re-
flection, we may approximate the variation 5)P,"
of the normal z component of the wave vector as a
tun(. tion of the changes k~ in the transverse com-
pt.}nants as

i
' [(k'"+ k', +k„')(k-~ —k'„- k„')]"'

= a(i —k') "'

( = &(y —y')2(2w)"'(2(u/c)'(dc, '" ~ z) '
IX=x —x Z z ~ z ~

The integral along C, approaches zero as the con-
tour C& tends to infinity, i.e. , as B,-~. We thus
conclude that

$ =lim drexp(-irX iPZr"-z) =0 for X&0.
R -R

For positive values of X, i. e. , for x &x, the

Im p

It may equally well be rewritten as a contour in-

tegral in the complex p plane with (k —k, ) identified
as the real part of P. Thus, we have

G'= t~'exp(ikoX —eos zZ),
(g)

= J cdp exp(- ipX —ipZp~'z)

The contour C is taken along the real axis in the

p plane as shown in Fig. 3. Also shown there is
the branch cut which makes a small angle 5 with

the positive real axis. The reason for the choice
of the cut will be clear later and 5 will be taken in

the limit towards zero from the positive side, i. e. ,
5-+0.

For negative values of X, i.e. , for x & x, the
contour of integration may be closed in the upper
half-plane by the semicircle C,. Since the func-
tion exp(- i pX —i pZp'") is analytic in the upper
half-plane, the use of the residue theorem yields

0= (f, + J;) dpexp(-ipX —ipZp'")

= f„drexp(- irX iPZ r -' )

+ f d@Re px(-iRe"X —iPZR'"e"' ).

w l 1 & '1'6'

P=(k "+k )" =(k "+k +k')"
g~8 H yo

X f k, =S k"
In the limiting case of PMCTR, the parameter

6 equals zero. The xz plane is the plane of inci-
dence. The integration over k„ in Eq. (1) is trivial,
:~nd this expression is reduced to

&" = .' evp [ikoX+ ik', " zZ] f dk„

where

x exp [ik,
' X —iZP(h —k„') '"], (4) FIG. 3. Paths of contour integrations in the p plane

to evaluate the Green's function for PMCTR, given by
Eq. t5).
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contour of integration may be closed in the lower
half-plane by the branch cut are also included. By
and L~ along the branch cut are also included. By
inspection of Fig. 3, the residue theorem yields

f+f +f +fC L~ Lg Cp

In the limit that the contour C~ tends to infinity,
i. e. , R-~, and that 5-+0, the contribution from
the contour Cz vanishes;

I
$ = —lcm -fpx-$8zp~ ~

dP e
1

0

pet'e= —lim dr(e e '/'x 'zz/' ),„,-/4e "
d +0 /o

FIG. 4. "Effective region"
of radiation from a volume
element of SH polarization,
located at r'. Outside the
shaded region its field is
effectively cancelled by con-
tributions from neighboring

I
volume elements. The
boundary is given by the
x-x' = 4 —z')2/Q ".

-44 /ax /zz-p )-

0

dr e ' "4 "'(- 2i) sin[PZr /4(1 —i6/2)]

= lim (- 4i} dq 4) e "' " sin [pZq(1 —i6/2)].
6~ y0 0

We have made the change of variable from r to g
through the relation g~ = r in the last step.

With the aid of the identity

dx xe ' * sinax = (ax" /4q') e ' "' for Re q &0,

the Green's function for PMCTR takes the form

G'=0 for x- x &0

= «(y —y') [p(z z'}/(x——«')' "]
xexp{i[p(z —z ') /2(x —x') '"]4

+ik (x-x )j forx —x &0,

where

which is shown in Fig. 4. Outside this region the
phase in the integrand of Eq. (8} varies rapidly.
There will be a cancellation of contributions from
neighboring volume elements, at r and r, re-
spectively. The requirement of a "stationary phase"
defines an "effective region" of uncancelled con-
tribution of a radiative element at r, as depicted in

Fig. 4.
This argument is essentially the same as that

used by Artman in deriving the penetration of the
fundamental field at CTR due to sources at the
boundary as shown in Fig. 1.

The analytic expression for the transmitted fun-
damental field is'

/e4

E(x, z) = dx'F(x —x', z) .
k d

~ E(«, z)

where

F(x, z) = (27/} 'e"**fdx(ix) 'e""*""'"''4*'"""
4«(2%/c) (414 ' z) xl/2e -it/I4

The physical implication of Eq. (7) has a simple
geometrical interpretation. In the case of PMCRT,
the relationship k0= k "=k holds and the field ac-
cording to Eq. (2) is given by

E.'so= ~Pf. ..dr'I z z'l (« -x') '"-
x exp{iP'(z —z')'/4(x- x'))P "(r '), (8)

F is similar to G' in Eqs. (1) and (5).
In the case of CTR, F is simply

0 for x&x

F(x x z), /tt(x-t / /t/42~2 c -/tt /4 d
ago

Ifor x&x,

where

(10)

where now P "(r ) is essentially constant, since
the phase factor exp[- ikz(x —x')] in the source is
just cancelled out by the phase factor exp[ik "
x (x —x')] of the Green's function. The radiation
from different points inthe medium may be consid-
ered as coherent, if the maximum phase deviation
is less than v/2. This is true for an effective re
gion of radiation bound by the parabola

x-x'=(&,'s) '(z —z')'

a, =- z[k', x/4(»- «'}]"'.
It is essentially nonzero only in the region
z~ [4(x-x )/kz]'"=(2/v)'"[~4(x-x')] . This is in
agreement with the boundaries shown in Fig. 1.

III. SECOND-HARMONIC FIELD FOR CASE OF PMCTR

A. Near Field

For an incident beam with a uniform intensity in
a square cross section the second-harmonic source
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polarization

P'"«) = X""E'(», 2)

is confined to the shaded region in Fig. 1. Substi-
tution of Eqs. (9)-(ll) and (7) into Eq. (2) yields
the following result for the second-harmonic field
just outside the nonlinear medium at z = 0:

1 1—2?$ & X & + 2 W

f&'"(r)=P, e "for
—2Wp & y &+ 2Wp,

a'"(r) =O elsewhere.

The harmonic field just outside the boundary may
be evaluated in the form

SH
Eg p=

0 for x& ——,'w

' &2'e"** &(/n')[x (2 »+-,'w)] '2 for —,'w &x& ——,'w

e'e'"** ll(], n') [XS(X+-3'W)]&/2 fOr X & —,'wO1

(12)

for x& ——,w,1

E',"o = 0

for —,w &x & —2w,
j. 1

EsH ~ Pl2 f"+ dx/I( I/) 3/2-

(Isa)

where

1/(n ) f dg (-3/2 f dt&ti ei2r'r /t[t3c(t&/(I g)1/2)]2

Il(] n/} f dg g
-3/2 f d~ ~

ei2r'r2/3

where

y, [I+(1+(Xssx "}1/2/I) -&1 "r"1 /1]

(13b)

t = w/(x+ -,'w),

n = x2/x2 = n, /n,SH SH

Vfe have neglected the trivial y dependence here.
The nonlinear susceptibility and transmission

factor are absorbed in the proportionality constant
&3 . The function Sz(x} is related to the Fresnel-
diffraction integrals defined by

8;(x) =(1+1)/2- 8,(»),

S,(x) = c(x) + is(x),

C(x} = f dtcos(-,' t),«
S(x) = f dt sin(-,'st2).

Near the edge at x= ——,'w the field strength increases
parabolically as (x+-,'w) "2. This fast rise will, of
course, be less abrupt for a more realistic Gaussian-
beam profile. But the other features are not changed
very much for a Gaussian profile. Beyond the point
x = —,'w, the field amplitude drops off rather abruptly,
but does not vanish. For large value of x the am-
plitude drops as x " .

The analytical expressions Eq. (12) may be sim-
plified somewhat by assuming an effective rectan-
gular source region, with a characteristic penetra-
tion depth l=(x3 "w) ' =(xli"ws/cos8, )" . This val-
ue follows from a simple consideration of the dif-
fraction problem. The diffraction limited incident
beam of width wp causes a spread in the tangential
component of the wave vector b,k, -ki(xi/w) cos8, .
Near the angle for CTR this leads to an imaginary
part in k, equal to I ' with a source distribution

and for x &-,'w,

E,'"3= &33(4«)'"2l[(e "—I)/3, —(e '-- I)/3' ],
(Isc)where

x w —
p

From the SH field at the boundary we can obtain
the reflected second harmonics at an arbitrary
point r in the incident medium by use of diffraction
theory as follows:

E'"( )i,(, — '(X'") 'fdrrir —r
i

'

&2rlr r'&/11 ~SH / &)- (14)

In the far-field region Ir —r 1»(X,'"w)", we may
speak of Fraunhofer diffraction. The above expres-
sion may then be approximated as'

U(e, e,) = ffdx'dy' '
where

e, =x/z,

6„=Y/Z,

This form is more convenient for analytic cal-
culations, but the qualitative features of the spatial
distribution of the near field remain the same as
given by Eq. (12). The numerical result is plotted
in Fig. 5.

B. Far Field
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E,(X, Y) =e "*"E'" (z=X/cos8i~, y= Y, z=0) .
We have expressed the physical quantities in terms
of the new set of coordinates X, Y, Z which is re-
lated to the old set of x, y, z by

X = x cos8, "+z sin8, ",
Y=y,

Z = —x sin8, "-z cos8,".
For the discussion of the far-field pattern we

may focus our attention on the function U which is
essentially just the Fourier transform of the field
E "at the boundary.

Combining Eqs. (13), and (15)-(17), we find the
following expression for U for the square-beam
case:

v(e„, e„)= U„(e„)v„(e„),
where

U (e } = f o/fy &iv'er/!rlxi"
-1/Rtffo

lull'

8%
Y

I

37r

FIG. 6. Angular distribution of SH intensity in the far
field in a direction normal to the plane of incidence. Angle

8& is normalized to the diffraction limited angle
27t(zoo/~& )6y. The conventional diffraction patterns
are valid for square and Gaussian distributions of the
incident fundamental beam.

with

= (2s/o/e»r) sin(-,' e'„},

e0 = (2&~0/~i") e„,

(19) x [1—(1 —i)h/(1/(2zez»)" )]

(e») 1/2 1/(&&)
1/2 ]. (21)

V (e ) =o,e(z)'/2 —,'„" &

x — sin(-' W»ey) V(e»)

where

= o„[(2wjpz»} sin(-,' ez)] (///, /cos8, ) '"V(eg),

(20)

( }i/a((e~)i/a -i//4ez)

(arbitrary un&ts)
Jl

SH

2W

FIG. 5. Field distributions at the boundary of a non-
linear medium for the case of PMCTH. The fundamental
field is assumed to have the rectangular shape given by
the dotted line, and is incident from the left at the critical
angle. The second-harmonic field along the boundary
has the distribution given by the solid line.

e» = 2z(, // ', ")e„,
o, = 8(i/X,'")

'" iz~ .
We have assumed small frequency dispersion for

the indices of refraction in the above approxima-
tions.

Comparing Eq. (19) with Eq. (20), we see that
aside from the factor o'„, the difference between
the X and Y dependence of the far field is accounted
for by (ii/)"'V. Since U„simply represents the
well-known diffraction pattern from sharp edges,
we may interpret the product (ii/) "2V as the mod-
ification on the reflected SH diffraction pattern due
to the phase match parallel to the boundary.

The squared amplitudes of U~ and U» are plotted
in Figs. 6and 7, respectively. It is seen that both
V and U„are functions confined essentially to the
regions near the origin 9», 8&=O. The former,
however, has a sharper and narrower peak. The
angular dependence of V therefore predominantly
determines the form of U».

Whereas in all other cases the diffraction angle
for the far field of the reflected SHG about is half
the ratio of the SH wavelength to the beam width
of the incident laser, i. e. , l8, l = P.',"/(2wo), it
becomes narrower for the special case of PMCTR.
This is obvious from a comparison of Fig. 6 with
Fig. 7. We may give a simple physical explana-
tion as follows. From previous analysis for the
case of PMCTR, it is clear that the reflected SH
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i lUxl'

+lUx(8x*o)l~
) luxl'

:81
X

with an angle of incidence 8; = 66. 77' is larger by
a factor 10 than this power away from the critical
condition, where 0, = 66 . In this case the SH power
may be evaluated with the simpler plane-wave the-
ory. The present theory thus confirms the more
qualitative theoretical considerations and the ex-
perimental results of Ref. 6.

IV. GOOS-HAENCHEN SHIFT IN HARMONIC GENERATION

8X

FIG. 7. Angular distribution of the SH intensity in the
far field in the plane of incidence, as a function of the
diffraction limited angle e*=2''(ufo/~ f )6x. Considerable

X
narrowing occurs in the far field due to extended SH source
distributions in the near field, both for the square and
Gaussian distributions of the incident fundamental beam.

beam observed at the boundary has wider spread
than the fundamental beam. In other words, it
has an effective beam width larger than wp A
narrower diffraction angle is thus expected on the
basis of the uncertainty principle.

It is estimated by numerical evaluation that the
half-power point of U» is located at e$=0. 5. In
other words, half of the reflected SH power is con-
fined to e» & )(,"/()oo4v). Thus we conclude that we
have a reduction of the diffraction angle by a fac-
tor of (2»} ' due to PMCTR.

Integrating tUxl, IU„I over all angles Ox, 9~,
we find the total integrated power in the case of
PMCTR as

P „=c(A ") f f de„de„
I
&»Ur~'

~S 1/2

64 — [c)c()/(c) ) cos8) )]Po

x2J, de»'~ Ve '

-174. 2[en) /(A "cos8 )]P . (22)

This should be compared with the experimentally
observed maximum shown in Fig. 2.

The integrated SH power is not simply propor-
tional to the area of the incident beam Mp, but con-
tains an extra factor wp. This behavior may be
understood on the basis of the effective penetration
depth I = (wP/cos8, ), introduced previously. In
the phase-matched region the field at the boundary
is proportional to Po"t. This gives an extra fac-
tor wp in the SH power in PMCTR.

Numerical evaluation of Eq. (22) for the experi-
mental conditions of Ref. 6, with an aperture with
wp= 0. 3 cm, shows that the SH power in PMCTR

(23)

We have assumed that the crystal has a slight loss
and is thick enough so that the effect due to the far
end of the crystal is negligible.

The Fourier component of the nonlinear polariza-
tion is determined by the corresponding Fourier
component of the square of the fundamental field in-
side the medium. If we restrict ourselves again
to the case of E-field polarization perpendicular
to the plane of incidence, the following relations
hold:

with

(fT) Xef) EO (t21)

E() = f f E(')(», y), ()e
'"r' d»dy

(24)

(25)

and the convolution of the linear transmission fac-
tor with itself,

(tz, ) =tz, to»

t„=2k, z/[(k, +k, ) z].

(26)

(27)

Substitution of Eqs. (24) and (25) into Eq. (23} yields
the result

As was already pointed out in the Introduction,
a totally reflected beam of light undergoes a lateral
displacement according to the laws of linear optics.
In this section the nonlinear analog of this phenom-
enon will be considered. Qualitatively, two factors
may be considered as contributing to the shift of
reflected harmonic generation. One is caused by
the displacement of the fundamental field inside
the nonlinear medium, which causes a displacement
Di of the nonlinear source polarization. The other
is the displacement D» of the reflected radiative
field with the respect to this source, if the condi-
tion for total reflection for the second harmonic is
met.

First, the nonlinear Goos-Haenchen shift will be
examined for the case away from critical total re-
flection, i. e. , away from singular points in k space.
Then, the f space representation used in Ref. 5 is
applicable, and the second-harmonic field at the
interface may be expressed as

fS SH

E,"=(2 ) fO (P ((()()-ic)'(„-,
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E'."-o=(»} ' 1' dkr) err EoF(kr}e"'", (2S)

where

(Fr @FL)FNL = t2&
L

k,'=R, -R;, q=- [F(k',)] ' .,„- F(f„)„,y.s8kz

It is valid provided F is analytic in the vicinity of
0T'
Inserting Eq. (29) into Eq. (28), we conclude that

E.'-".=X. F(kQ[E.(r-4)].'..""".
The implications of this expression are clear.

The distribution of the SH field at the boundary
plane is the same as that of the distribution of the
square of the incident field, except for a lateral
displacement equal to the real part of Q, and an
additional phase distortion which depends on Imp.
The beam shift D may be written as

FNL f SH (2~/c)
"2(E'"."}[(K'" Ir') "]

(2or/c}2 (P —k'") z
(ks)2 (ksH)2 (k sH+k sH). z

It is readily recognized that F and F" are re-
lated to the linear and the nonlinear Fresnel fac-
tors, respectively, which have been defined in the
k space approach for the reflected SHG. "

Since the laser beam is well localized in the f
space, E0 is virtually zero except in the immediate
vicinity of a fixed value of kr, namely, at kr =k2
' (I —zz}. To a good approximation, we may thus
expand the factor F as follows:

F(k,) =F(k',) —r(k,' q)F(k', )

=F(k r}exp[-ikr q], (29)

where

Do„= (X,/2rr)sin8, (sin 8r —sin'8, ) "2 (34)

and in terms of a nonlinear shift, for total reflection
of second-harmonic radiation,

Do„= (&r/4rr)sin8, (sin28, —sin 8, ) '~ (35)

Four cases must be distinguished:
(i) Neither beam is totally reflected; D =0, since

FL and F" are both real.
(ii} Both beams are totally reflected,

D = Doz cos8 "/2cos8, Do„, (36)

which occurs for 8, &8, and 8,".
(iii} The fundamental beam is totally reflected,

but the second harmonic is not;

cos8rr" sin(8rr" + 8r")
2cos8, 2 sin(8, +8, )

(37)

This situa. ion occurs in a narrow range 8, & 8,. & 8,".
These three regimes have been realized in the

experiments of Bloembergen, Simon, and Lee. '
It is seen that total reflection of the fundamental
beam contributes essentially a shift of the same

E(nr

LIOUIO
r r r r rrr rr~rr rrr rrrrrrr

[IT}] CRYSTAL

pNLS(p~)

to the Taylor series expansion to first order as ex-
pressed in Eq. (29). The dominant part obviously
corresponds to the 0th-order term F(k r}. We may
also easily identify the minor part there to the 1st-
order term (- ikr QF) with the aid of the well-known
theorem: If f(x} has f(k) as its Fourier transform
then ikf(k) is the transform of df(x)/dx.

The total beam shift D"+ D" may now be evaluated
from Eqs. (28)-(33) in terms of the Goos-Haenchen
shift in linear optics for perpendicular polarization
of the beam,

with

D = D"+D"L = i ~ ReQcos8,

L 1 ~F SHD =Im L cos8,F cos8, a8,

(3l)

(32)

x 150-

C

THEORETICAL

NL 1 ~F sH= Im F 81m 8
cos8gF cos8, 88&

(33)

The technique described above is closely related
to that employed by some authors "4 for the evalua-
tion of the Goos-Haenchen shif t in the linear case.
There, the reflected beam was treated as consisting
of two parts. The dominant part has the same
beam shape as the incident light, whereas the other
small part is related to the spatial derivative of
the i.ncident beam in the direction transverse to its
propagation direction. In essence, this is equivalent

65'

e

70'
ANGLE OF INCIDENCE

75'

FIG. 8. Integrated second-harmonic power in reflection
from a crystal of NaC10& as a function of the angle of
incidence, according to Bloembergen, Simon, and Lee
(Ref. 15). The drawn curve corresponds to the theory
of Bloembergen and Pershan (Ref. 5). Cusplike behavior
in the region around e~ and 8 ~" is evident.
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order of magnitude as —,'DG„, and so does total re-
flection of the second harmonic. The two contri-
butions are additive. The experiments only ob-
served the integrated SH in the far field, an example
of which is reproduced in Fig. 8. The lateral dis-
placement should, however, be experimentally
observable

(iv) If the second harmonic met the condition for
total reflection, but the fundamental field did not,
which would occur for 8,"& 8& & 8, , the shift would

be

D=DG„.NL (ss)

DoL„(8, = 8,) = (9/2v) X, cos8,/sin'8, (s9)

Without going into detailed calculations, we may as-
sume that this value should be used in Eqs. (36) and
(37} for 8; =8, . For critical SH total reflection the
radiation pattern from a prescribed harmonic source
polarization with effective penetration depth l may
be calculated according to the methods of Sec. III.

It is seen that Eqs. (32) and (33) for Dos and Do„
diverge as 8; approaches 8, or 8,", respectively.
At the point of critical total reflection the function
F is nonanalytic and the expansion (29) is not
valid. The nonanalyticity is also apparent in the
integrated reflected harmonic power curve, which
according to Fig. 8 exhibits cusps at these points.
Whereas the reflected field distribution has no sin-
gularity, the derivative does. The Green's-function
technique of Sec. II can be employed to calculate
the complete field distribution, and consequently
the average shift, in the immediate vicinity of the
critical points.

When the fundamental field only is critically re-
flected, Artman has already calculated the linear
shift by a method, which is equivalent to our Green's-
function procedure.

He found for the shift near the critical angle for
fundamental total reflection

From Eqs. (2) and (7) it follows that the effective
displacement is

(40)
2

If the fundamental is already totally reflected 8,
& 8,", the effective penetration depth for the source
is

I= ' (sin'8'" —sin 8 ) '".
4m

(41)

An observable lateral displacement is predicted
for second-harmonic generation in situations of
total reflection. This is the nonlinear analog of
the Goos-Haenchen shift. A diffraction theory has
been given for the case of phase-matched critical
total reflection, in which case the behavior of the
parametrically reflected light depends sensitively
on the lateral dimension of the incident fundamental
beam. In this case the SH lateral displacement
becomes comparable to the beam width.

The second-harmonic displacement is increased
significantly, but does not diverge, as Eq. (33}would
indicate.

For phase matching the two critical angles co-
alesce, 8, =8,". In this case Eq. (41) also diverges
and one must return to the direct calculation of the
radiation pattern in Sec. III for PMCTR.

Note that, according to Eq. (41), the effective
penetration depth l is proportional to the square
root of the product of the coherence length l„„and
the wavelength as previously predicted by Bloem-
bergen and Lee and discussed by Shih. "

It is clear from Fig. 5 that the net average dis-
placement of the beam pattern in the near field
becomes a significant fraction of the width sea of
the incident beam. The "center of the gravity" of

the square beam is in fact shifted by 0. 36&no from
the center of the incident beam, which was assumed
to have a rectangular shape. In this case both the
beam distortion and displacement are maximum.

V. CONCLUSIONS
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